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Abstract
Learning and exploiting problem structure is one of the key challenges in optimization.
This is especially important for black-box optimization (BBO) where prior structural
knowledge of a problem is not available. Existing model-based Evolutionary Algo-
rithms (EAs) are very efficient at learning structure in both the discrete, and in the con-
tinuous domain. In this paper, discrete and continuous model-building mechanisms
are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous
variables.

We revisit a recently introduced model-based evolutionary algorithm for the MI do-
main, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT).
We extend GAMBIT with a parameterless scheme that allows for practical use of the
algorithm without the need to explicitly specify any parameters. We furthermore con-
trast GAMBIT with other model-based alternatives. The ultimate goal of processing
mixed dependences explicitly in GAMBIT is also addressed by introducing a new
mechanism for the explicit exploitation of mixed dependences. We find that processing
mixed dependences with this novel mechanism allows for more efficient optimization.

We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strate-
gies (MIES) and other state-of-the-art MI optimization algorithms from the General
Algebraic Modeling System (GAMS) commercial algorithm suite on problems with
and without constraints, and show that GAMBIT is capable of solving problems where
variable dependences prevent many algorithms from successfully optimizing them.

Keywords
Genetic Algorithms, Estimation-of-Distribution Algorithms, Mixed-Integer Optimiza-
tion.

1 Introduction

The key to efficient problem optimization lies in efficiently exploiting the problem’s
structure. The exploitable problem structure, however, may not be directly available.
This issue is encountered in various areas of industry, for example, when the exact
problem formulation such as the objective function definition, or constraint specifica-
tions are not known or provided. Problems where no prior knowledge about the prob-
lem structure is available are known as black-box optimization (BBO) problems. This
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knowledge can be gained, however, by learning useful structural problem features dur-
ing optimization.

Many real-world applications are based on solving problems which contain both
discrete and continuous variables. Such problems are known as mixed-integer (MI)
problems and are often regarded as particularly difficult to solve. While many opti-
mization techniques exist about discrete or continuous optimization individually, the
area of mixed-integer optimization is relatively less explored. Approaches to mixed-
integer optimization do, however, exist. Some of them can be found within the Gen-
eral Algebraic Modeling System (GAMS) framework (Bussieck and Meeraus (2004)).
GAMS is a suite of commercial optimizing software, which includes a collection of MI
problem solvers. Another alternatives include an extension of the well-known (µ + λ)
evolution strategy (ES) for mixed integer problems, MIES (Li et al. (2013)) and the co-
variance matrix adaptation evolutionary strategy CMA-ES (Hansen (2011)). A Bayesian
network based approach has also been introduced with the Mixed-Integer Bayesian
Optimization Algorithm (MIBOA) by Emmerich et al. (2008). While we consider a
selection of already existing approaches, this article explores yet another alternative:
model-based Evolutionary Algorithms (EAs).

There are various ways in which the structure of a problem can be exploited.
Through model building, model-based EAs attempt to dynamically capture the prob-
lem structure, often by estimating variable dependences. The work on model-based
EAs in both the continuous and the discrete domains is extensive, and has been es-
pecially successful in black-box settings. The robustness and efficiency that EAs are
known for, along with recently published results on combining continuous and dis-
crete model-building EAs, motivates the idea that model-based EAs can be a poten-
tially powerful approach for the MI domain. The main research objective of this paper
is to establish whether the capacity of model-based EAs to capture and exploit problem
structure extends to the MI domain.

In recent work (Sadowski et al. (2014)) we have introduced the Genetic Algorithm
for Model-Based mixed-Integer opTimization (GAMBIT) and suggested that combin-
ing model-based EA approaches from the discrete and continuous domains is a promis-
ing foundation for dealing with mixed-integer problem landscapes. However GAM-
BIT, like many algorithms, requires specification of some parameter settings before it
can begin any optimization process. Population size, for example, is an essential pa-
rameter in evolutionary computation. Research results are often presented using the
optimal population size parameter settings, which are determined empirically. While
this approach is academically insightful, it may often be very impractical, or even infea-
sible to determine the optimal population size. In order to eliminate the need to specify
a population size, we modify and apply a population size-free scheme proposed by
Harik and Lobo (1999)for the so-called parameterless GA to GAMBIT. Additionally,
we introduce a mechanism which allows for the removal of another important param-
eter from the user input in GAMBIT: the number of clusters to be used. Coupled with
the population size-free scheme, this results in a practical mechanism which removes
the need to specify any GAMBIT parameters by the user. Parameterless GAMBIT refers
to the use of this mechanism with GAMBIT.

Previous work on GAMBIT highlights the importance of properly balancing the
use of discrete and continuous models. To further motivate the balanced model ap-
proach, we extend our previous work on GAMBIT by comparing it to alternative al-
gorithms based on similar model-based approaches, which do not maintain balance
between the continuous and discrete models in the same fashion. Instead, they allow
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for one model to be the driving force of the optimization process. Specifically, we intro-
duce an algorithm which uses discrete model building techniques only, by discretizing
the continuous space. Conversely, we consider an algorithm using only continuous
model-building techniques by treating discrete variables as continuous. Additionally
we consider an algorithm which couples a model-building approach for a continuous
domain with a local search algorithm for the discrete domain.

MI problems may include variable dependences between the discrete and con-
tinuous problem variables. So far, GAMBIT addressed such dependences only indi-
rectly, with the use of a clustering mechanism explained later in this article. One of the
biggest challenges in MI optimization however, is the ability to directly exploit such
mixed dependences. We introduce a novel mechanism to process mixed variable de-
pendences, and integrate it into GAMBIT. We wish to learn whether sampling models
with mixed dependences has the potential to result in more efficient optimization. To
accomplish this, we provide a priori configured mixed models to GAMBIT and study if
the mixed dependency processing mechanism can cause a significant decrease in eval-
uations needed to solve benchmark problems, or if it will result in additional overhead.

Many state-of-the-art industrial mixed-integer optimization software tools exist
that are efficient and successful on a wide range of constrained and unconstrained
problems. However, when faced with challenging non-convex problems they may not
perform as well. We therefore contrast our work with state-of-the-art MI optimiza-
tion algorithms included in the previously mentioned General Algebraic Modeling Sys-
tem (GAMS) (Bussieck and Meeraus (2004)) commercial algorithm suite as well as the
Mixed-Integer Evolution Strategy (MIES) (Li et al. (2013)).

The remainder of this paper is structured as follows. Section 2 provides back-
ground information on the model-building evolutionary algorithms LTGA and iAMaL-
GaM, designed for discrete and continuous problems variables respectively. Section 3
details GAMBIT and its components. Section 4 introduces the Mixed-Integer bench-
marks and explains their landscape features. In Section 5 we introduce and test a
parameterless implementation of GAMBIT. Section 6 summarizes the algorithms that
extend known model-based approaches into the MI space and compares their perfor-
mance. Section 7 introduces a new sampling mechanism to GAMBIT, which allows for
processing and sampling of mixed dependences. Section 8 provides a comparison to
a set of commercial solvers on our benchmark set. Finally, Section 9 is a discussion
section and Section 10 concludes this article and motivates future work.

2 Background on two related model-building EAs: LTGA and iAMaLGaM

Model-based EAs have a specifically identifiable model that governs how they perform
optimization. By learning how to configure this model on-line, i.e. during optimization,
model-based EAs can capture and exploit problem structure, which can be particularly
useful in the black-box setting. GAMBIT combines mechanisms from known model-
based EAs for the discrete and continuous optimization domains to perform optimiza-
tion in the mixed-integer domain. Specifically, GAMBIT combines the Linkage Tree
Genetic Algorithm (Thierens (2010)) from the discrete, and iAMaLGaM (Bosman et al.
(2008)) from the continuous domain. Both LTGA and iAMaLGaM are model-based EAs
which have been proven to be competent and efficient approaches in their respective
domains 1.

1The source code of both LTGA and iAMaLGaM is available for download online at
http://homepages.cwi.nl/˜bosman/source_code.php
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2.1 LTGA

The Linkage Tree Genetic Algorithm (LTGA) is a member of the Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA) family (Thierens and Bosman (2011)). For
any GOMEA instance, to generate a new solution, a collection of subsets of problem
variables, known as the Family of Subsets, or FOS, is traversed and each subset is used
in a mixing operation with existing solutions. The rationale of the FOS structure is to
identify and exploit subsets which make up important building blocks. Generally, FOS
subsets could be composed of any number of variables. To determine the subsets, the
specific GOMEA instance LTGA employs hierarchical clustering to arrive at a linkage
tree that expresses a clustering of variable dependences, ranging from independent to
fully dependent. Each node of this tree is considered a FOS subset. An example of a
linkage tree and the associated FOS is given in Figure 1.

Figure 1: A linkage tree created with a hierarchical clustering algorithm, and its associ-
ated FOS structure.

Specifically, in each generation of LTGA, hierarchical clustering is performed. To
this end mutual information is used as the basis for a distance measure. A tree is built
from the bottom-up, where each node represents a subset of problems variables. This
process starts from singleton clusters that are leaf nodes of the linkage tree, where each
cluster contains only one problem variable. Each linkage tree node represents a learned
dependency between some subset of problem variables. As illustrated in Figure 1,
each linkage tree node becomes a subset of the FOS. Using the linkage tree as a FOS
structure allows for learning important building blocks of the solution while retaining
good computational efficiency, as exactly 2ld − 1 subsets are created each time, where
ld represents the number of discrete variables.

The general procedure of LTGA is as follows. First, an initial population of N
randomly generated solutions is created and each solution is evaluated. In each gen-
eration, the linkage tree is built using hierarchical clustering. Next, LTGA iterates over
every solution in the population. For each solution, a copy is created and represents an
offspring solution and LTGA iterates over each of the subsets in the FOS. For each of
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these subsets, a random donor solution from the current population is selected. Vari-
able values specified by the current FOS subset of the donor solution are copied onto
the corresponding variables of the current offspring solution. This mixing process al-
ters the offspring solution, which is immediately evaluated. If this mixing, depicted
in Figure 2, results in an equally good or better solution than the solution before mix-
ing, the new offspring solution is saved. Otherwise the changes are discarded. LTGA
then moves on to the next subset of FOS and the mixing process is applied again to the
offspring solution. If no improvement is found after processing all of the FOS subsets
a Forced Improvements (FI) mechanism is invoked. FI repeats the mixing procedure,
using as the donor the best solution currently available in the population. FOS sub-
sets are processed again and once an improvement is found for a subset, the solution
is accepted and the remaining subsets are omitted. FI have been shown to improve
the convergence of solutions, without overly increasing the selection pressure (Bosman
and Thierens (2012)). After each solution in the population is processed in this fashion,
the offspring solutions replace the parent population, the algorithms proceeds to a new
generation, and the process begins anew.

LTGA achieves very good results on problems such as Deceptive Trap, NK-
Landscapes, MaxCut, and Hierarchical Functions (Bosman and Thierens (2012)) as well
as MAX-SAT (Sadowski et al. (2013)) .

2.2 iAMaLGaM

The Incremental Adapted Maximum-Likelihood Gaussian Model Iterated Density
Estimation Evolutionary Algorithm (iAMaLGaM) is a state-of-the-art Estimation-of-
Distribution Algorithm (EDA) for real-valued black-box optimization (Bosman et al.
(2008)). Following the general EDA paradigm, iAMaLGaM estimates a Gaussian dis-
tribution every generation from the selected solutions and generates new solutions by
sampling the estimated distribution. The mean vector and covariance matrix are es-
timated incrementally using intergenerational memory decay on maximum-likelihood
estimates. A mechanism which scales up the co-variance matrix when needed is used to
counteract the risk of premature convergence on slope-like regions of the search space.
Finally, the intergenerational Anticipated Mean Shift procedure improves the behavior
of iAMaLGaM in slope-like regions of the search space. iAMaLGaM has been shown
to achieve rotation invariance and very good scale-up on many well-known black-box
optimization benchmarks (Bosman et al. (2009)).

3 GAMBIT

The Genetic Algorithm for Model-Based mixed Integer opTimization (GAMBIT) is an
integration of LTGA and iAMaLGaM for mixed-integer problems 2. Components of
GAMBIT were first described by Sadowski et al. (2014) and showed promising results
for MI optimization. The algorithm was formally introduced as GAMBIT in the follow-
up work, which also introduced a clustering mechanism and constraint handling tech-
niques, allowing GAMBIT to solve a wider range of problems, including ones which
require symmetry-breaking and the handling of constraints (Sadowski et al. (2015)).
This section compiles and summarizes the most up-to-date version of GAMBIT.

Optimization with GAMBIT is done in two parts. First, at the beginning of
each generation, a clustering mechanism splits the current population into k sub-
populations. This clustering allows for more efficient optimization of multi-modal

2Executable code of the version of GAMBIT presented in this paper is available at
https://svn.science.uu.nl/repos/sci.3611914.SO-GAMBIT
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Figure 2: Creating a candidate solution with LTGA

problems, and was shown to improve GAMBIT’s performance on problems with mixed
variable dependences (Sadowski et al. (2015)). Optimization is performed with in-
stances of an integrated model-based mechanism on each sub-population. The off-
spring solutions from each instance are joined, replacing the previous population, and
the process begins anew. A basic overview of the algorithm is presented in Figure 3. A
detailed explanation of the clustering process, and the integrated model building and
sampling are presented next.

GAMBIT Overview
P ← GENERATEANDEVALUATERANDOMPOPULATION(n)
while ¬TERMINATIONCRITERIONSATISFIED do
C ← DETERMINECLUSTERCENTERS(P, k)
for j ∈ {0, 1, . . . , k} do
Pk ← DETERMINESUBPOPULATION(P, Ck)
O′k ← INTEGRATEDMECHANISM(Pk)

P ← O′0 ∪ O′1... ∪ O′k

Figure 3: Pseudo-code overview of GAMBIT. P represents the population of size n. C
is a set of solutions representing cluster centers for k clusters, or sub-populations. Pi
represents the i-th sub-population and O′i is the i-th set of offspring generated from
sub-population i.

3.1 Clustering Mechanism

The clustering process takes place at the beginning of every generation, where k cluster
centers are first selected. The best solution available in the current population is first
selected as a cluster center. Remaining cluster centers are iteratively selected as solu-
tions with the furthest distance from all already chosen centers. Once the centers are
determined, n/k solutions closest to the chosen centers are added to the clusters. This
approach to determining clusters is based on a successful approach previously applied
to multi-objective optimization (Rodrigues et al. (2014)).

Previous work suggests that a mixed distance metric between solutions leads to
the best performance of GAMBIT. Specifically, the distance between two solutions is
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captured by scaling down the continuous variables to a 0-1 range, where the largest
value in the population takes on the value of one, and the smallest zero. Binary vari-
ables are then treated as real values and the Euclidean distance is computed between
two solutions.

Each cluster represents a (possibly overlapping) sub-selection of solutions from
the population. For each of these sub-populations, the integrated mechanism is used
to generate offspring for a given generation.

3.2 Integrated-Models Mechanism

The key to efficient performance of GAMBIT relies on a properly balanced model-
building and sampling mechanism, which is used for every sub-population.

Recall that LTGA uses subsets of variable indices generated by learning a linkage-
tree over the discrete variables, while iAMaLGaM samples all the continuous variables
for a given solution at once to generate offspring solutions. GAMBIT aims to preserve
both of these mechanisms. Two key modifications are made to the FOS mixing process
in order to extend it for continuous subsets and allow for interleaving of discrete and
continuous models.

The first key modification allows for the inclusion of continuous subsets within the
FOS. Recall that LTGA builds a linkage-tree with 2ld − 1 nodes representing important
subsets of discrete variables. These FOS subsets are iterated over for each solution,
and offspring candidates are generated. To keep a proper balance between sampling of
the discrete and continuous variables, and simultaneously account for the difference in
problem composition (i.e. number of discrete vs. continuous variables in the problem),
2lc − 1 continuous subsets are added into the FOS. In order to preserve iAMaLGaM’s
way of sampling new continuous variables, all continuous subsets added to the FOS in
GAMBIT contain all of the continuous problem variables. With the extended version of
the FOS, GAMBIT employs two different ways to manage subsets of the FOS. If a subset
is a discrete one, the corresponding discrete variables are copied from a random donor
solution from the population onto the current solution, following the LTGA procedure.
If the subset is of the continuous type, the offspring solution is generated by sampling
all of the continuous problems variables from iAMaLGaM’s continuous model.

The second key modification is the order in which the FOS subsets are processed.
LTGA, for each solution, iterates and processes every FOS subset. This mechanism is
modified in GAMBIT, in order to allow for a better balance of interleaving the use of dis-
crete and continuous models. With GAMBIT, the FOS subsets are put in a random order
first. Then, one subset is used to generate offspring from all solutions, before moving
on to another subset. If it is a continuous subset, after iterating over all solutions and
creating new offspring following iAMaLGaM, the continuous model is updated. If it
is a discrete subset, the discrete model is only updated after all other discrete subsets
have been processed in this generation, following LTGA procedure. This mechanism
enables GAMBIT to process discrete and continuous subsets and create offspring solu-
tions in a interleaved fashion, but re-builds and updates the discrete and continuous
models at different rates, preserving the original model building properties of LTGA
and iAMaLGaM.

The details of the integrated mechanism which makes up the core of GAMBIT
are presented in pseudo-code in Figure 4 and are explained here. After the clustering
mechanism creates k sub-populations, each of these sub-populations is independently
processed by an instance of the integrated mechanism for a single generation. Each of
the integrated mechanisms consists of a discrete and a continuous model, and is used to
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create offspring solutions for a given generation. At the beginning of each generation,
the discrete model of the instance is updated and a linkage tree is built over all discrete
variables, and used to generate the 2ld−1 discrete FOS elements as illustrated in Figure
1. The FOS is then appended with 2lc−1 continuous subsets, each containing all lc con-
tinuous variables. The FOS subsets are then exhaustively processed in a randomized
order. The processing of the subsets depends on the subset type. If the subset type is
continuous, the continuous model is updated, and each offspring solution is created
by copying all discrete variables from the current parent solution, and sampling all
new continuous variables. The offspring solution is always accepted, following the iA-
MaLGaM sampling procedure. Updating the continuous model consists of re-building
a covariance matrix, based on τ = 0.35 fraction of best solutions in the population,
and updating iAMaLGaM’s intergenerational mechanisms. If the subset is discrete, the
variables specified by the subset are copied from a donor solution randomly selected
from the current population, and copied onto the current solution, while the remaining
discrete variables and all of the continuous variables remain unchanged. This offspring
solution is only accepted if it is not worse than the parent solution. This procedure is il-
lustrated in Figure 2. After every subset is processed for every solution, the generation
ends. The offspring solutions generated by each instance of the integrated mechanism
are merged together, forming a new offspring population, and is used for clustering in
the next generation.

3.3 Constraint Handling

MI problems are often accompanied by constraints which limit the feasibility of the
search space. In a black-box setting, we cannot make any assumptions about the num-
ber or types of constraints present in a given problem. The only feedback we may
hope for is an indicator of how strongly the current problem constraints are violated.
For such conditions, our previous work (Sadowski et al. (2015)) suggests the use of the
Dynamic Penalty Function Method (Runarsson and Yao (2002)).

The Dynamic Penalty Method worsens the value of the objective function if the
solution is infeasible. This penalty factor is proportional to the constraint violation
value as well to the number of generations which have already passed. This means that
as time passes, the penalty factors of infeasible solutions becomes stronger. Because of
these features, the penalty method initially allows for exploration of promising but not
feasible regions. As time progresses however, feasible regions become more important.
In our implementation the penalty function value is the square of the total constraint
violation value multiplied by the number of generations which have already passed.

4 Benchmark Problems

In the remainder of this article we shall present extensions of GAMBIT and show their
impact on performance directly. In this section we define problems that we use in our
experiments.

A Mixed-Integer Problem is defined as follows:
min f(xd,xc)

s.t. h(xd,xc) = 0, g(xd,xc) ≤ 0

where x represents the solution
x = xdxc = d0...dld−1 c0...clc−1

where di ∈ {0, 1}, ci ∈ R and xd, xc are the groups of all discrete and continuous
variables, respectively. f is the objective function. h and g are the sets of equality and
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Integrated Model Sampling for a cluster sub-population Pk
INTEGRATEDMODELMECHANISM(Pk)
SubsetType = {′discrete′}(2∗ld−1) ∪ {′continuous′}(2∗lc−1)
SubsetType = shuffle(SubsetType)
UPDATEDISCRETEMODEL(Pk)
for i ∈ {0, 1, . . . , (SubsetType.length− 1)} do

if SubsetType(i) = ’continuous’ then
S ← TRUNCATIONSELECTION(Pk, τ)
UPDATECONTINUOUSMODEL(S)
for j ∈ {0, 1, . . . , n− 1} do
Oki ← GENERATECONTINUOUSPART(Pki)

else if SubsetType(i) = ’discrete’ then
for j ∈ {0, 1, . . . , n− 1} do
Oki ← GENERATEDISCRETEPART(j,Oki,Pk)

Pk ← Ok
return Pk

GENERATECONTINUOUSPART(Pi)
Oc ← SAMPLECONTINUOUSMODEL()
O ← Oc ∪ Pid
EVALUATEFITNESS(O)
return O

GENERATEDISCRETEPART(j,Oi,P)
Oprev ← Oi
donor ← GETRANDOMSOL(P)
Od ← COPYSUBSET (j, donor,Oi)
O ← Oic ∪ Od
EVALUATEFITNESS(O)

if fitness(O) ≥ fitness(Oprev) then
return O

else
return Oprev

Figure 4: Pseudo-code for generating solutions for mixed integer problems with GAM-
BITs Learning Models.

inequality constraint functions respectively. If both of these sets are empty, the Mixed-
Integer problem is considered to be unconstrained.

4.1 Unconstrained Problems

We first consider a set of unconstrained mixed-integer benchmarks. These benchmarks
are designed from well-known discrete and continuous benchmark problems, and are
combined in ways that capture different mixed-integer landscape features. Table 1
specifies the discrete and continuous functions used to generate our mixed-integer
benchmarks set. This set is designed to test algorithms coping with the following land-
scape features:

• Intra-domain variable dependences

• Inter-domain variable dependences

• Multiple optima

Intra-domain dependences refer to dependences between variables of the same
type. Inter-dependences refer to dependences across the discrete and continuous do-
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mains. The first mixed problem F1 is the Onemax-Sphere function. It is a concatena-
tion of two problems where all the variables are completely independent. F2 introduces
intra-domain dependences due to 45 degree parameter rotation of the continuous prob-
lem variables, while the discrete variables remain independent. A counterpart to this
function is F3, where continuous variables are independent, however discrete variables
exhibit strong dependences due to the Deceptive Trap (DT) function. DT is a binary de-
composable function which is composed of m trap functions. In our problems we con-
sider trap functions of size 5. Its definition in Table 1 shows that the global optimum
occurs when all the bits are 1’s. However, 2m − 1 deceptive local optima exist when all
bits are 0’s. The DT5-R.Ellipse, or F4, is a problem where discrete variables are strongly
dependent on each other because of the Deceptive Trap Function behavior, while the
continuous variables are strongly dependent on each other due to a parameter rotation
of 45 degrees. However, no dependence between the discrete and continuous domains
exist. Cross-Dependent function F5 includes intra-domain, as well as inter-domain de-
pendences. It is a specific combination of the previously defined FDT5 function with the
rotated ellipsoid. It is additively decomposable and consists of sub-functions pertain-
ing to blocks of k discrete and k continuous variables. For a trap function with k = 5,
there are 2k = 32 different binary combinations per block. A differently translated
k-variable 45 degree rotated ellipse function corresponds with each of those combina-
tions. The continuous function which is being optimized depends on the binary coun-
terpart, introducing dependences between the discrete and continuous variables that
pertain to the same subset. In the function definition, Dblock

i is a block of five discrete
variables. Cblock are the corresponding five real-valued variables. The Dblock variables
determine which of the 2k different rotated ellipsoid functions are being optimized,
while Cblock provides the values of the ellipsoid function variables. In this benchmark
the number of discrete variables is the same as the continuous variables: ld = lc = l/2.
Finally, Paired-MixDependency, or F6 function, is a problem with mixed dependences
between variable pairs, where each continuous variable has a dependence with a cor-
responding discrete variable. All these MI problems are summarized in Table 2.

Table 1: Continuous and discrete functions used to define our unconstrained mixed
benchmarks

Functions Domain

FSphere(xc) =
∑lc−1
i=0 c2i Continuous

FR.Ellip.(xc) = FEllip.(R ∗ xc) , where Continuous
FEllip.(xc) =

∑lc−1
i=0 106∗i/(lc−1) ∗ c2i

FOnemax(xd) =
∑ld−1
i=0 di Discrete

FDT5(xd) =
∑ld/k−1
i=0 fsubTrap−k(

∑ki+k−1
j=ki dj) ,

where Discrete

fsubtrap k(u) =

{
0 : if u = k
1− (k − 1− u)/k : otherwise

4.2 Constrained Benchmarks

Many industrial mixed continuous-discrete problems include constraints. We there-
fore also consider a set of mixed-integer problems from the MINLP Benchmark Library
specified by Bussieck and Pruessner (2003). The specification of the objective function,
constraints and parameter ranges can be found in Table 3. This benchmark set con-
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Table 2: Unconstrained benchmark problems
ID Definition Landscape Feature
F1 F1(xd,xc) = FOnemax(xd) + FSphere(xc) All Independent
F2 F2(xd,xc) = FOnemax(xd) + FR.Ellip.(xc) Continuous Dependences
F3 F3(xd,xc) = FDT5(xd) + FSphere(xc) Discrete Dependences
F4 F4(xd,xc) = FDT5(xd) + FR.Ellip.(xc) Cont. and Disc. Dep.

F5 F5(xd,xc) =

∑0.5l/k−1
i=0 (1 + 10fsubtrap(

∑ki+k−1
j=ki dj))

∗(1 + fsubEllipse(D
block
i , Cblocki ))

Cont., Disc. and Mix. Dep.

F6 F6(xd,xc) = 2 ∗
∑lc−1
i=0 (di − c2i )− di Mixed Pair Dependences

tains the same problems as used by Li et al. (2013) for testing the Mixed Integer Evolu-
tion Strategy (MIES). Minimization is assumed for both unconstrained and constrained
problems.

Table 3: Specifications of the MINLP selected constrained benchmark problems, and
initialization ranges for problem variables

Name Function Constraints Range

F7 2r1 + d1 −r21 − d21 ≤ −1.5, r1 + d1 ≤ 1.6
r1 ∈ [0, 1.6]
d1 ∈ {0, 1}

F8 2r1 + 3r2 + 1.5d1 + 2d2 − 0.5d3

r21 + d1 = 1.25, r1.52 + 1.5d2 = 3
r1 + d1 ≤ 1.6, 1.333r2 + d2 ≤ 3

−d1 − d2 + d3 ≤ 0

r1,2 ∈ [0, 10]
d1,2,3 ∈ {0, 1}

F9 0.8 + 5(r1 − 0.5)2 − 0.7d1
−exp(r1 − 0.2)− r2 ≤ 0

r2 + 1.1d1 ≤ −1, r1 − 1.2d1 ≤ 0

r1 ∈ [0.2, 1]
r2 ∈ [0.22554,−1]

d1 ∈ {0, 1}

F10

6 + (r1 − 1)2 + (r2 − 2)2

+(r3 − 3)2 − d1 − 3d2 − d3
−0.693147180559945d4

r1 + r2 + r3 + d1 + d2 + d3 ≤ 5
r21 + r22 + r23 + d3 ≤ 5.5

r1 + d1 ≤ 1.2, r2 + d2 ≤ 1.8
r3 + d3 ≤ 2.5, r1 + d4 ≤ 1.2
r22 + d2 ≤ 1.64, r23 + d3 ≤ 4.25

r23 + d2 ≤ 4.64

r1,2,3 ∈ [0, 10]
d1,2,3,4 ∈ {0, 1}

F11 −5r1 + 3r2

8r1 − 2r0.51 r2 + 11r2 + 2r22 − 2r0.52 ≤ 39
r1 − r2 ≤ 3, 3r1 + 2r2 ≤ 24

r2 − d1 − 2d2 − 4d3 = 1, d2 + d3 ≤ 1

r1 ∈ [1, 10]
r1 ∈ [1, 6]

d1,2,3 ∈ {0, 1}

F12

(r4 − 1)2 + (r5 − 2)2 + (r6 − 1)2

−log(1 + r7) + (r1 − 1)2

+(r2 − 2)2 + (r3 − 3)2

r1 + r2 + r3 + d1 + d2 + d3 ≤ 5
r26 + r21 + r22 + r23 ≤ 5.5, r1 + d1 ≤ 1.2

r2 + d2 ≤ 1.8, r3 + d3 ≤ 2.5, r1 + d4 ≤ 1.2
r25 + r22 ≤ 1.64, r26 + r23 ≤ 4.25

r25 + r23 ≤ 4.64
r4 − d1 = 0, r5 − d2 = 0
r6 − d3 = 0, r7 − d4 = 0

r1,2,3 ∈ [1, 10]
r4,5,6,7 ∈ [0, 1]
d1,2,3,4 ∈ {0, 1}

5 Parameterless Scheme

When algorithmic results are presented, they are often associated with certain param-
eter settings that were used during execution. For some parameter settings a given
algorithm can perform much better than for others on a given problem. Up to this
point GAMBIT needed the specification of two crucial parameters: population size and
number of clusters used. In this section we explain why the need for setting these
parameters can be problematic, especially in a black-box optimization setting, and pro-
pose a methodology that allows for a parameterless execution of GAMBIT.

Population size is an essential parameter of evolutionary algorithms. Determining
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a population size that results in efficient performance, however, is often difficult. Set-
ting the population size too small will result in premature convergence and inability to
solve the problem. Choosing the population size too large may result in an unnecessary
overhead leading to inefficient performance in terms of evaluations needed. Research
on population-based algorithms very often reports results based on empirical data ob-
tained by an algorithm with an optimal population size for a given problem. While the
use of bisection to find the optimal population size is very useful to examine algorith-
mic performance, it is very often infeasible in practice. For example, if the optimum of
a problem is not known, it may be impossible to know if a given population size results
in good or poor performance. Additionally, to perform a bisection, a stopping criterion
is needed when the problem is not being solved for a given population size.

Predicting a good population size for a given problem in a black-box setting can be
near impossible. While it is generally true that when the dimensionality of a problem
increases, the population size required to solve it also increases, there is very little infor-
mation that tells us what this optimal population size might be for different problems.
This is because many factors affect problem difficulty such as multi-modality, variable
interactions or constraints.

Similarly to the population size parameter, determining an optimal number of
clusters for a given problem prior to execution may often be impossible in practice.
Choosing the wrong number of clusters however, can have a negative impact on the
performance. An insufficient number of clusters may lead to the inability to exploit
more complex problem structures, while too many clusters will likely result in signifi-
cant overhead.

In order to design an algorithm which may be useful in a real-world setting, the
problem of determining values for the population size and the number of clusters pa-
rameters needs to be addressed. We adapt the Parameter-Free scheme initially pro-
posed for discrete optimization by Harik and Lobo (1999). Our goal is to determine
if it is possible to adapt this scheme to GAMBIT while retaining similar performance
in terms of scalability as with the optimal population size. We test the performance,
with and without the parameterless scheme, of GAMBIT on problems with different
landscape features and with different problem composition.

5.1 Methodology

The population-free scheme was initially proposed for discrete optimization. In recent
work this approach was successfully used with LTGA ( Luong et al. (2015)). In this
scheme, the optimization algorithm is initialized dynamically over time for different
population sizes. The generational progress of each instance is inversely proportional
to the instance’s population size, allowing for an evaluation balance between instances.
Additional mechanisms exist which determine when to terminate smaller instances
based on their relative performance or when to start new, larger instances. The general
idea behind this scheme is to give instances with smaller population sizes a chance to
solve a problem, but allow larger instances to attempt to solve it simultaneously with-
out the need of instances with smaller population sizes to reach a termination criterion.

More specifically, an instance of an algorithm is first created given a minimal popu-
lation size. This instance runs for b generations, where b represents the base, suggested
to be 2 or 4. After this, a new instance of the algorithm is created, with a doubled pop-
ulation size. This instance will perform a single generational step at the frequency 1/b
smaller than the previous instance. After b generational steps of this instance (by which
time the first instance made b2 generational steps), again a new instance with a double
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population size is created and the process continues.
A major drawback of using bisection is the need to specify when the algorithm

should move on to a larger population size. Such stopping criteria are very often diffi-
cult, if not impossible, to specify. With the population-free approach, this is no longer
necessary as algorithm instances with larger population sizes will be utilized, alongside
of smaller population size instances.

Some modifications are made to this scheme. If for a given population size instance
within the parameterless scheme, the average fitness of solutions selected by GAMBIT
is higher than the average fitness of the selected solutions for a smaller population size
instance, all smaller population size instances cease execution. This is a way to save
needless evaluations, since a larger instance already reached better fitness levels. Ad-
ditionally, the best current solution out of any instance is always preserved and shared
among all instances. In our implementation we use b=4. The minimal, or starting pop-
ulation size is based on iAMaLGaM’s population size guidelines, which is 10

√
lc. We

adapt this guideline to the mixed-integer case, by setting the initial population size to
10
√
lc + ld.
Determining the number of clusters is done in a similar manner. Every time a new

instance (with the doubled population size) is introduced, the number of clusters for
this instance is increased by one from the previous instance. With a linearly growing
number of clusters k, and exponentially growing population size n, the number of so-
lutions in each cluster will increase with time, as the number of population members
per cluster is n/k. In our implementation the starting cluster size k = 1.

5.2 Parameter Free Results

We compare the parameter free GAMBIT with GAMBIT parameterized with the opti-
mal population size determined via bisection. We test benchmarks with different land-
scape characteristics: F1, F2, F3 and F4. For each of the problems, different problem
sizes and problem compositions are considered. Let ρ describe the ratio ρ = lc/(lc + ld)
of the continuous variables in a given problem. For instance ρ = 1.0 denotes a problem
where all variables are continuous, while ρ = 0.5 represents a problem with the same
number of discrete and continuous variables. We consider different values for ρ: 1.0,
0.75, 0.5, 0.25, 0.0. The success criterion is finding the optimum in at least 29 out of 30
runs.

Heat-maps in Figure 5 show how many evaluations are needed for problems with
different dimensionality and variable composition. As could be expected, as the prob-
lem dimensionality increases, so does the number of evaluations required. Addition-
ally, a larger number of evaluations is also needed when the problem composition
becomes more continuous (larger values of ρ), or when problems containing discrete
dependences (F3 and F4) are present.

From the heat-maps it follows that the parameterless GAMBIT obtains a similar
behavior as the GAMBIT instance with an optimal population size in terms of evalua-
tions distribution. We examine both approaches further by considering scalability.

Table 4 shows a linear least squares regressions on log-log scaled data for the aver-
age number of evaluations e depending on the total problem length l = lc + ld with the
population-free scheme and optimal population size with an error term ε as follows:

log(e) = log(lα) + ε.

Data provided in Table 4 suggests that the population-free scheme with GAMBIT
can achieve very similar scalability as the scalability attained with an optimal popula-
tion size. While in some cases (eg. F3 : ρ = 0.75) the scalability with optimal population
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Figure 5: Heat maps representing the number of evaluations needed with the optimal
population size and with the parameterless scheme. Horizontal axis represents the
problem length, the vertical axis is the fraction of continuous variables (lc/(lc + ld))) in
the problem.

size is slightly better, in the majority of cases the population-free scheme scales just as
good. In some cases (eg. F2 : ρ = 1) the parameterless scheme even allows for slightly
better scaling.

The applicability of an algorithm with the parameterless scheme for many prob-
lems where bisection is not feasible, combined with comparable scalability results
where an optimal population size can be determined, justifies the use of the param-
eterless scheme as a preferred alternative. For the remainder of this paper, all GAMBIT
results will therefore be obtained using the parameterless scheme, unless otherwise
specified.

6 Extension of Model-Based approaches to MI Problems

Because of the successful results of both LTGA and iAMaLGaM in their respective do-
mains, a natural question arises: can the model-based abilities of these algorithms be
extended to MI problems such that dependences between discrete and continuous vari-
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Table 4: Regression coefficients for scalability of evaluations on F1 through F4 bench-
marks. αρ is the regression coefficient where ρ is the fraction of continuous variables in
the problem.

Population Scheme Scalability Coefficient
α0 α0.25 α0.5 α0.75 α1.0

F1 Optimal Population-Size 1.5 1.5 1.8 2.0 1.9
Parameter Free 1.5 1.6 1.8 2.2 1.9

F2 Optimal Population-Size 1.5 1.6 1.8 1.9 1.9
Parameter Free 1.4 1.7 2.0 2.0 1.9

F3 Optimal Population-Size 1.4 1.7 1.8 1.9 1.9
Parameter Free 1.7 1.6 1.9 1.9 1.8

F4 Optimal Population-Size 1.6 1.8 2.4 2.2 1.9
Parameter Free 1.6 1.7 2.5 2.6 2.0

ables are explicitly also considered? We address this question by first considering a
few straightforward model-based approaches and by comparing their performance to
GAMBIT.

6.1 Algorithms

We consider MI-LTGA and MI-iAMaLGaM: algorithms that extend the individual al-
gorithms from their respective domain to the mixed-integer domain using only discrete
or continuous models. Additionally we consider iAMaLGaM+LS where we allow the
continuous model-building and sampling of iAMaLGaM to guide the search, while a
first-improvement local search hill-climbs in the discrete variable space. Good perfor-
mance of model-based algorithms, LTGA and iAMaLGaM in their respective domains
does not necessarily translate to good performance in the mixed-integer space.

6.1.1 MI-iAMaLGaM
In MI-iAMaLGaM, all binary variables are initialized to either 0 or 1, but further treated
as if they were real-valued. These variables are turned back into binary values during
function evaluation, where values smaller than 0.5 are considered to be 0, and values
greater than 0.5 are considered to be 1.

6.1.2 MI-LTGA
MI-LTGA is the discrete analogy of MI-iAMaLGaM, i.e., all variables are considered
discrete.To this end, a discretization of the continuous variables takes place. MI-LTGA
uses the well-known Gray encoding. With Gray coding adjacent numbers always dif-
fer by exactly one bit. This solves the problem of Hamming cliffs present with decimal
encoding, where a small change to the encoded number can cause a completely differ-
ent representation in the binary space. We furthermore use 24 bits to represent every
continuous variable.

6.1.3 iAMaLGaM+LS
Another intuitive approach is to use the domain specific mechanisms for that domain
only and perform local search in the other domain. Using local search in one domain
effectively eliminates effects of having a variation of partial solutions for that domain,
as the local search guarantees finding a local optimum, given that values of the vari-
ables from the opposite domain are fixed. In iAMaLGaM+LS all continuous variables

Evolutionary Computation Volume x, Number x 15



K.L. Sadowski, P.A.N. Bosman and D. Thierens

of MI problems are modeled and sampled by iAMaLGaM, however each function eval-
uation is followed by optimization over all discrete variables with first-improvement
local search with a bit-flip neighborhood.

6.2 Results

Results are shown on problems with an equal number of discrete and continuous vari-
ables. Bisection was used to determine a population size that resulted in at least 29/30
successful runs with the least number of evaluations. The success criterion for a run is
reaching a solution whose objective value is within 10−10 of the global optimum. Bi-
section starts by attempting to solve a problem with some small population size (eg.
1, or 10), and if a success criterion is not met the population size is doubled and the
process begins anew. Eventually, when a problem is solved for some population size n,
a binary search process between n and n/2 is used to find the smallest population size
for which the problem is still solved. In addition to results obtained via bisection, we
also present the performance of GAMBIT with the parameterless scheme.

On the completely independent benchmark F1 the algorithms perform relatively
well, and manage to solve this simple benchmark for all tested problem sizes. iAMaL-
GaM+LS requires smaller population sizes than other algorithms on F1 and F2. How-
ever, it performs significantly worse than the other algorithms in terms of function
evaluations. MI-iAMaLGaM performs better than iAMaLGaM+LS in terms of function
evaluations on F1 and F2. However it is not able to consistently solve F3 - a prob-
lem where strong discrete dependences are present. MI-LTGA can only solve small
instances, and becomes very expensive as the problem size increases. GAMBIT is the
most consistent and most efficient approach. It is able to solve all problems and per-
forms better than other algorithms in terms of the number of evaluations needed.

The observations from the previous section are reinforced here. The use of the pa-
rameterless scheme with GAMBIT produces results which scale with only a constant
factor (in a 2.0-3.0 range) difference to the ones of GAMBIT using an optimal popu-
lation size. Moreover, the parameterless configuration of GAMBIT is still capable of
outperforming the alternative approaches.

The results indicate that the tested model-based approaches, regardless of how
powerful they can be in their respective domains, are not flexible enough to efficiently
extend to the Mixed-Integer domain alone. It is clear from Figure 6 that the inter-
leaved discrete-continuous model-based mechanism of GAMBIT outperforms the sin-
gle model-based approaches, and warrants further consideration.

7 Explicit Exploitation of Mixed Dependences

One of the key challenges in MI optimization is developing the ability to efficiently
identify and exploit dependences which exist across the discrete and continuous do-
mains. So far, GAMBIT addresses any mixed variable dependences only in an indirect
way. Some problems that include mixed dependences can be solved efficiently with
GAMBIT, because of a well-balanced integrated discrete and continuous model-based
mechanism. The goal of this section is to gain insight into the potential impact on
the performance of GAMBIT if mixed dependences could be exploited explicitly. To
accomplish this, we relax the black-box restriction and consider a setting where the
problem structure is known. This allows for the creation of predetermined structures
that capture the known problem dependences, without the need to learn them during
execution.

One of the key characteristics of GAMBIT is the use of LTGA’s linkage tree as
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Figure 6: Optimal Population Size and Number of Evaluations for functions F1, F2, F3.

the means to represent discrete variable dependences. Continuous dependences are
captured via covariance information following the mechanism of iAMaLGaM. Because
the current procedure to generate solutions in GAMBIT is already quite effective, we
chose to preserve the current use of the FOS structure to represent the intra-domain
dependences, and add mixed dependences on top of it.

7.1 Processing of Mixed Dependences

In this section we introduce a mechanism to GAMBIT which allows for direct process-
ing of mixed dependences, by creating new models for all mixed subsets to sample
from. Each such model is built by taking into account only the variables in the subset.
This is illustrated in Figure 7. Specifically, each cluster is grouped into smaller clusters
using the same mixed distance metric explained earlier in this paper. This results in
k equally-sized sub-clusters that describe more closely the relation between configu-
rations of the discrete variables within the mixed subset and those of the continuous
variables within the mixed subset. This means that k2 ∗mmixed models will be created
and maintained throughout the execution of GAMBIT, wherem is the number of mixed
subsets present in the subset structure. The value for k is set equal to the number of
clusters used by the clustering mechanism of GAMBIT detailed in Section 4. This way
k does not need to be explicitly specified. Unlike the main continuous model, which is
used for sampling the entire continuous space, a sub-model represents only the vari-
ables present in those subsets, making it relatively inexpensive in terms of computing
resources needed.

In the loop over FOS subsets a new mixed subset type may now be encountered.
When a mixed subset is encountered, for each solution a donor solution is randomly
selected from the cluster. Depending on the donor, a sub-cluster to which this donor be-
longs is probabilistically calculated. The discrete variables of the donor are mixed with
the solution in question, while the continuous variables are sampled from the model
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Figure 7: Different models are used for sampling different types of subsets.

which was determined to be the match. Changes are immediately evaluated and kept
only if it results in an improvement. Otherwise, the change is rejected. The proce-
dure for sampling new solutions when a mixed subset is encountered is summarized
in pseudo-code form in Figure 8.

7.2 Performance Results

In this section we consider three ways of handling variable dependences:

• original GAMBIT

• GAMBIT with a predetermined discrete linkage-tree-based FOS

• GAMBIT with a predetermined discrete linkage-tree-based FOS appended with
known mixed variable subsets

We compare the three approaches in a parameter-free setting. Functions F1 and F4 do
not contain any mixed dependences. Because of this lack of mixed dependences, the
only comparison possible on these functions is the performance of the original GAM-
BIT with GAMBIT using a predetermined discrete linkage-tree-based FOS. Since F1

only consists of independent variables, it may be intuitive that neither configuration
outperforms the other, since no exploitable variable dependency structure exists in the
problem. More surprisingly, on a problem with a clear underlying structure F4 also
shows no difference in efficiency between the learning and predetermined tree struc-
tures. This suggests that GAMBIT is very efficient at learning the structure of this prob-
lem.

The structures of functions F5 and F6 posses underlying structures which include
mixed dependences. The graphs in Figure 9 and the scalability coefficient α in Table 5
indicate improvement in scalability when known mixed dependences are processed.
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Sampling a mixed subset for cluster sub-population Pk
IF SUBSET IS MIXED

for i ∈ {0, 1, . . . , k − 1} do
Pki ← SUBCLUSTER(Pk, Subset)
Ni ← ESTIMATERESTRICTEDMODEL(Pki , Subsetc)

donor ← GETRANDOMSOL(P)
match← IDENTIFYBESTMODELMATCH(donord)
for j ∈ {0, 1, . . . ,Pk.length− 1} do
Oprev ← Pkj
Ojsub.d

← COPYDISCRETEPARTOFSUBSET(donor)
Ojsub.c

← SAMPLEMATCHEDMODEL(Nmatch, Subsetc)
Oj ← REPLACESUBSETVARIABLES(Oj ,Ojsub.c

,Ojsub.d
)

EVALUATEFITNESS(Oj)
if fitness(Oj) < fitness(Oprev) then
Oj ← Oprev

Pk ← O
return Pk

Figure 8: Pseudo-code for processing and sampling from a mixed subset with GAMBIT
for a cluster population Pk .

Table 5: Regression coefficients α for scalability of the differently build FOS structures

Function Learning Struct. Predetermined FOS Predetermined FOS
with Mixed Subsets

F1 1.6 1.5 -
F4 1.9 1.9 -
F5 2.5 2.2 1.9
F6 1.8 1.8 1.5

This is an important observation, as it suggests that if such dependences can be learned
dynamically, the improved performance of GAMBIT may carry over into the black-box
setting.

7.3 Runtime Results

In the previous section the benefits of using the proposed mixed dependences mecha-
nism with GAMBIT in terms of the number of evaluations needed to find the optimum
have been highlighted. This section considers the potential overhead and drawbacks
of the new GAMBIT mechanism in terms of execution time. Specifically, we look at the
runtime differences of the linkage tree learning approach versus the predetermined tree
approach. Additionally we examine the runtime costs of using the mixed subset pro-
cessing and sampling mechanism, which improved GAMBITs performance in terms of
evaluations needed on the benchmark problems. All experiments were conducted on
the same machine, with an Intel(R) Core(TM) i7-2760QM CPU dual 2.4GHz processor,
12 GB of RAM, running a 64-bit version of the Windows 10 operating system. Results
are averaged over 30 independent runs for each algorithm configuration.

Figure 10 summarizes the performance in runtime. While the results on the inde-
pendent F1 function are very similar in terms of runtime, results on the F4 function
show that a ”Predetermined Tree” configuration is faster. As the performance on F4 in
terms of the number of evaluations needed is very similar (see Figure 9), the runtime
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Figure 9: Problem size vs. number of evaluations needed for the differently crafted FOS
structures in problems F1, F4, F5 and F6.

difference can be attributed to the overhead needed to build a new linkage tree with ev-
ery generation in the ”Learned Tree” configuration. This overhead is also a key factor
in the F5 function.

Results on functions F5 and F6 show that the performance gain from the inclu-
sion and processing of mixed subsets outweighs the added time cost of the mixed
subset mechanism. The ”Mixed Subsets” configuration is similar or faster than both
the ”Predetermined Tree” and ”Learned Tree” configurations. This result implies that
the ability to competently acquire mixed dependence information can improve opti-
mization performance in terms of both required number of function evaluations and
runtime in case of problems where mixed dependencies are present and important.

8 Alternative Approaches

In this section we consider a selection of state-of-the-art algorithms for mixed-integer
optimization from research and industry, and examine their ability to solve problems
that exhibit different landscape features. Most of commercially available algorithms
are known for their ability to efficiently solve problems by exploiting the structure of
objective and constraint functions directly, i.e. taking a white-box approach. We wish
to examine if these alternative approaches are able to exploit the structure of problems
where dependences between problem variables are a consequence of the objective func-
tion, or constraints. We test the performance of a selection of Mixed Integer Nonlinear
Programming (MINLP) solvers from the GAMS framework. Additionally, we compare
our results with the Mixed-Integer Evolution Strategy (MIES) (Li et al. (2013)). Con-
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Figure 10: Problem size vs. runtime performance for the differently crafted FOS struc-
tures in problems F1, F4, F5 and F6.

strained Problems (F6 through F12) vary in problem size, as described in Table 3. The
remaining benchmarks were tested on a problem size 20 (largest size for which we
could test all the MINLP solvers in the GAMS framework), where half of the problem
variables are continuous and the other half are discrete.

8.1 Algorithms

The selection of the algorithms we tested is a part of the General Algebraic Modeling
System (GAMS) framework (Bussieck and Meeraus (2004)), which gathers many state-
of-the-art modern Mixed-Integer solvers. In this framework, we have tested algorithms
that have been designed for MINLP Problems:

• ALPHAECP: a MINLP solver based on the extended cutting plane method (ECP)
(Westerlund and Lundqvist (2001)).

• BONMIN: Basic Open-source Nonlinear Mixed Integer programming algorithm
by Bonami and Lee (2007), which makes use of branch-and-bound, branch-and-
cut, and outer approximation methods.

• COUENNE: Convex Over and Under Envelopes for Nonlinear Estimation algo-
rithm by Belotti (2009), using spatial branch-and-bound techniques.

• DICOPT: DIscrete and Continuous OPTimizer, based on the extensions of the
outer-approximation algorithm for the equality relaxation strategy (Grossmann
et al. (2002)).
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• KNITRO: A software package which makes use of interior-point and active-set
methods for solving MINLP problems by Byrd et al. (2006).

• LINDO and LINDOGLOBAL algorithms adapting branch-and-cut methods (Lin
and Schrage (2009)).

• LOCALSOLVER: This algorithm is based on a hybrid neighborhood search ap-
proach (Benoist et al. (2011)).

• SBB: Algorithm based on the Standard Branch and Bound approach (Bussieck and
Drud (2001)).

• SCIP: Solving Constraint Integer Programs by Achterberg (2009), based on the
branch-cut-and-price algorithm.

Additionally we compare our results with MIES, which extends the well-known
(µ+λ) evolution strategy (ES) for continuous problems to mixed-integer search spaces.
MIES generates solutions with the following procedure. The initial population is ran-
domly generated. Two random solutions from the population P (t) act as parent so-
lutions. A recombination operator is applied to the parent solutions, followed by a
mutation operator. These operators are defined differently for continuous, nominal
discrete and integer problem variables and feature self-adaptive step-sizes and/or mu-
tation probabilities. This procedure repeats until λ offspring solutions are created. The
best µ solutions from the union of the µ parent solutions and the λ offspring are carried
over into the new population P (t+ 1) (Li et al. (2013)).

8.2 Results

Table 6 summarizes the results of testing the algorithms mentioned above on all the
benchmarks problems. Almost without exception all of the algorithms have no trouble
solving any of the constrained problems. The objective function definition of this se-
lection of constrained benchmarks problems is relatively simple. Various equality and
inequality constraints contribute to the difficulty of these problems. The algorithms
in the GAMS framework are very well equipped to deal with such problems, as they
very efficiently exploit many different constraint handling mechanisms. MIES, using
the global competitive ranking introduced by Runarsson and Yao (2002) as means of
constraint handling, is also capable of solving F7 − F12 as explained in more detail by
Li et al. (2013). GAMBIT using a penalty method approach also solves the provided
constrained benchmarks.

The performance of the tested algorithms changes however, when the objective
function definition becomes more challenging, even in the absence of constraints.
Benchmarks F1, F2 and F3 are solved by most algorithms tested. The MIES version
provided by Li et al. (2013) does not solve F2 − F5. MIES’s inability to solve F2 can be
remedied by the inclusion of covariance information during the generation of continu-
ous variables. However, MIES cannot capture and exploit the Deceptive Trap function
structure, which prevents it from solving F3 − F5.

When strong dependences are introduced into the problem, the success rate of this
set of algorithms goes down drastically. The F4 problem, which contains discrete and
continuous dependences localized to the respective domains is unsolvable for six out of
the eleven tested algorithms. When cross-domain dependences combined with discrete
and continuous ones are featured, as in F5, only two algorithms succeed.
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In contrast, GAMBIT is capable of solving all of the problems in this benchmark set.
A commercial algorithm ALPHAECP is the only other algorithm tested by us which
also solved all the tested problems successfully. The runtimes of both algorithms were
comparable. However, commercial algorithms employ a very extensive analysis of the
constraint space. GAMBIT does not use complex constraint-handling techniques. In-
stead, it treats the constrained space as a black-box and utilizes the penalty function
method and the clustering mechanism to solve constrained problems.

9 Discussion

It is paramount to reiterate that, by design, GAMBIT aims to explore and exploit prob-
lem structure of multi-modal or otherwise challenging objective function landscapes
which may contain inter- and intra- variable dependences. Moreover, the design of
GAMBIT was done with a BBO setting in mind. The problem types which GAMBIT
aims to optimize differ from the problems usually tackled with the MINLP solvers in
the GAMS framework. Such solvers are exceptional in the optimization of highly con-
strained problems, usually with relatively simple objective functions. They explicitly
exploit linear constraints and do not treat the constraint space as a black-box. This
is demonstrated on problems F7-F12, where almost all GAMS solvers succeed on ev-
ery constrained problem. The performance of GAMBIT on these functions is meant to
illustrate GAMBITs ability to handle some constrained spaces despite treating the con-
straints as a black-box. However, highly constrained MINLP problems solvable by the
GAMS solvers remains out of reach for GAMBIT. Conversely, the results provided in
Table 6 on functions F1-F6 show that while GAMBIT succeeds, many state-of-the-art al-
gorithms struggle to solve even low dimensional problems when strong dependences
are present in the objective function between the discrete and continuous variables.
GAMBIT does not assume anything about the objective function, the constraints, or
about their structure. As such GAMBIT targets different types of problems under dif-
ferent assumptions making a direct comparison to GAMS solvers not straightforward.
This is not to say that GAMBIT can not be specialized to exploit known problem charac-
teristics such as linear constraints either directly or by hybridization with other solvers,
resulting in potentially vastly improved performance in such cases.

10 Conclusions and Future Work

This paper considers the design of model-based EAs for solving Mixed-Integer prob-
lems. In order to exploit a problem’s structure in a black-box setting, such structure
needs to be learned. Model-based EAs have previously proven to very efficient in learn-
ing and exploiting various types of structure for discrete and continuous optimization
problems, most notably linkage or dependency information. The Genetic Algorithm for
Model-Based mixed-Integer opTimization, GAMBIT, that we presented and extended
in this article combines the structure learning abilities of LTGA and iAMaLGaM from
the discrete and continuous domains respectively for use in the MI domain. In this arti-
cle we furthermore introduced specific model-building algorithms for the MI domain,
and showed that GAMBIT, due to its ability to properly balance discrete and continu-
ous model building and sampling outperforms straightforwardly applied single-model
based alternative approaches. Moreover, the proposed approach to exploiting mixed
dependencies was shown to improve performance substantially if such dependencies
are present and modeled sufficiently accurately. This calls for future work to focus on
methods to automatically detect these mixed dependencies accurately and reliably in
order to allow GAMBIT to be robust against mixed dependencies even in a BBO setting.
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Table 6: Ability of MINLP algorithms to solve benchmarks with different landscape
features.

Function: Unconstrained Constrained
Solver F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

ALPHAECP X X X X X X X X X X X X
BONMIN X X no no no no X X X X X X

COUENNE X X X X X X X X X X X no
DICOPT X X no no no X X X X X X X
KNITRO X X X no no X X X X X X X
LINDO X X X X no X X X X X X X

LINDOGLOBAL X X X X no X X X X X X X
LOCALSOLVER X X X no no X X X X X X X

SBB X X X no no X X X X X X X
SCIP X X X X no X X X X X X X
MIES X no no no no X X X X X X X

GAMBIT X X X X X X X X X X X X

Practicality is one of most important factors in real-world optimization. Many al-
gorithms produce good results only when correctly parameterized, which can be very
problematic especially in black-box settings. Determining an optimal, or even a good
population size parameter for an EA is not trivial. To address this, a Parameterless
scheme was added to GAMBIT. Even though removing the need to specify the pop-
ulation size and number of clusters parameters from GAMBIT creates an evaluation
overhead, the scalability of the algorithm is only a small constant factor larger than the
one using empirically optimized settings.

The performance of a collection of state-of-the-art MI solvers was compared with
GAMBIT. Our results showed that these solvers are very efficient on problems with
simpler objective functions, even in the presence of constraints. However, when faced
with non-convex objective landscapes, especially ones that contain strong intra-domain
or cross-domain dependences, most of the alternative approaches we considered can-
not solve even low dimensional cases. GAMBIT performs much more efficiently on
these benchmarks. Since real-world problems may exhibit difficult landscapes with
complex variable dependences, and may be complex to an extent that a BBO approach
is mandatory, our observations suggest that our model-based EA approach has poten-
tial to be successful in the MI domain, also for real-world problems.
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26 Evolutionary Computation Volume x, Number x


