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On Gradients and Hybrid Evolutionary Algorithms

for Real-Valued Multi-Objective Optimization
Peter A.N. Bosman

Abstract—Algorithms that make use of the gradient, i.e. the
direction of maximum improvement, to search for the optimum
of a single objective function have been around for decades. They
are commonly accepted to be important and have been applied
to tackle single-objective optimization problems in many fields.
For multi-objective optimization problems, much less is known
about the gradient and its algorithmic use. In this article we aim
to contribute to the understanding of gradients for numerical,
i.e. real-valued, multi-objective optimization. Specifically, we
provide an analytical parametric description of the set of all non-
dominated, i.e. most promising, directions in which a solution can
be moved such that the objective values either improve or remain
the same. This result completes previous work where this set is
described only for one particular case, namely when some of
the non-dominated directions have positive, i.e. non-improving,
components and the final set can be computed by taking the
subset of directions that are all non-positive. In addition we use
our result to assess the utility of using gradient information for
multi-objective optimization where the goal is to obtain a Pareto
set of solutions that approximates the optimal Pareto set. To this
end, we design and consider various multi-objective gradient-
based optimization algorithms. One of these algorithms uses the
description of the multi-objective gradient provided here. Also,
we hybridize an existing multi-objective evolutionary algorithm
(MOEA) with the various multi-objective gradient-based opti-
mization algorithms. During optimization, the performance of
the gradient-based optimization algorithms is monitored and the
available computational resources are redistributed to allow the
(currently) most effective algorithm to spend the most resources.
We perform an experimental analysis using a few well-known
benchmark problems to compare the performance of different
optimization methods. The results underline that the use of a
population of solutions that is characteristic of MOEAs is a
powerful concept if the goal is to obtain a good Pareto set,
i.e. instead of only a single solution. This makes it hard to increase
convergence speed in the initial phase using gradient information
to improve any single solution. However, in the longer run, the
use of gradient information does ultimately allow for better fine-
tuning of the results and thus better overall convergence.

Index Terms—Gradient methods, multi-objective optimization,
evolutionary algorithms, memetic algorithms, numerical opti-
mization

I. INTRODUCTION

IN many fields of society, people are called upon to solve

complex optimization problems. Because of the importance

of optimization, it has been a prominent research topic for

several decades. For a given optimization problem, it is a

challenging task to design algorithms that can find the optimal
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solution or, alternatively, to find a solution of acceptable

quality as fast as possible. One of the most commonly used

and well-studied concepts in numerical optimization (i.e. op-

timization in real-valued search spaces) is the gradient. The

gradient at any point in the design (or decision) space, i.e. a

solution, indicates the direction in the design space along

which the function to be optimized, improves the most. Hence,

this direction can be used in an algorithm to find local

optima of the function by iteratively moving a solution in a

direction that is derived from gradient information. For a single

objective function, many such algorithms exist, ranging from

straightforward ones such as gradient descent (see, e.g. [1])

to more advanced ones such as conjugate gradients [2]. Use

of methods like these is widely accepted. For instance, a

substantial part of the methods studied in the field of machine

learning is based on the principle of following the gradient

of a performance function [3], [4]. Also, gradients continue

to be an important topic in current and ongoing research in

novel areas of optimization as is for instance the case in

optimization under uncertainty, i.e. with stochastic objective

functions; which is a setting that is typically encountered when

dealing with complex simulations [5].

Multi-objective optimization [6], [7] is a particular type

of optimization that naturally arises in many real-world

situations. Multi-objective optimization differs from single-

objective optimization in that a multiple of objectives are

available that should be optimized simultaneously such that no

expression of weights is available that allows the objectives to

be combined in a single objective to be optimized. Typically,

these multiple objectives are conflicting, which gives rise to

a key characteristic of multi-objective optimization problems:

the existence of sets of solutions, called Pareto sets, that cannot

be ordered in terms of quality when only considering their

objective function values. The goal is to find a diverse and

representative subset of all optimal solutions instead of only a

single one. For single-objective optimization, it is commonly

accepted that the additional use of gradient information can be

beneficial. For multi-objective optimization, this is less well

established. One reason for this is that for a single objective,

gradients are well understood, both in theory and in practice.

The body of literature on theory and practice of gradients in

multi-objective optimization is relatively limited, both in size

and in scope. The majority of the literature focuses on finding a

single direction of improvement. Here, we broaden the scope

and take an in-depth look at the definition of the gradient

for multi-objective optimization problems. Our results provide

a more general picture through a fully analytical description

of the gradient for multi-objective optimization. This is also

the first and foremost goal of this article: to provide insight
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into the structure of the multi-objective gradient. As will

become clear, computing the multi-objective gradient is in

itself a multi-objective optimization problem. An important

contribution that we make in this article is that we provide

an analytical description of all Pareto-optimal solutions to the

latter problem, i.e. all Pareto-optimal improving directions.

This result as well as the insights obtained from deriving

the result may serve as a basis for better understanding the

use of gradients in multi-objective optimization, like it is now

understood for single-objective optimization.

Next to studying the theory and definition of gradients,

their algorithmic use is equally important for optimization.

Secondary goals in this article are therefore to design an

algorithm to compute the multi-objective gradient and to

design algorithms that use the the multi-objective gradient

for optimization. A contribution toward this secondary goal

is also provided in this article. The analytical derivation of the

multi-objective gradient naturally transforms into an algorithm

for its computation. We present this algorithm and analyze its

computational complexity. Then, we design an optimization

algorithm that uses the gradient by employing line search

(i.e. find a local optimum along the gradient) repeatedly. To

measure the quality of the performance of this optimization

algorithm, a comparison should be made with existing state-

of-the-art optimization algorithms. Evolutionary Algorithms

(EAs) belong to the state-of-the-art in multi-objective opti-

mization; its research field has seen explosive growth in recent

years [6], [7]. The main reason for this is that the most

commonly studied goal in multi-objective optimization is to

find an approximation set of multiple Pareto-optimal solutions.

The notion of searching a search space through maintaining a

set of solutions is a key characteristic of EAs, which makes

them natural candidates for multi-objective optimization. EAs

for multi-objective optimization are commonly called MOEAs

(multi-objective Evolutionary Algorithms).

Although EAs are a powerful optimization methodology and

an active area of research, hybridization of EAs is commonly

accepted to be important when tackling real-world problems

with EAs [8], [9]. An EA is called hybrid if a (usually single-

solution based) local optimization algorithm is integrated in

its procedure. Hybrid EAs are even often referred to under a

specific name: Memetic Algorithms [9], [10], [11]. Given this

premise, the design of a hybrid EA that integrates gradient-

based optimization algorithms for multi-objective optimization

is an interesting topic. However, while some problems may

benefit from the use of gradient information, in other problems

the additional cost required to calculate gradients is expected

not to weigh up to the benefits. This issue can be taken

into account simultaneously with the determination of the

utility of gradient-based optimization algorithms by varying

the probability of applying the algorithm during optimization.

Adaptively choosing the probability of using local search

algorithms has several advantages in addition to the poten-

tial improvements in efficiency. First, a practitioner wishing

to apply an algorithm that uses multiple local optimization

algorithms is relieved of the need to select and tune the

different probabilities. Furthermore, by leaving the choice of

the probabilities to the overall algorithm, a large part of the

optimization task is automated. Also, automatically adapting

the probabilities during optimization can render optimization

algorithms more robust, as unfavorable choices of parameters

may still be corrected during the course of optimization.

Finally, in our case, it provides insight into the utility of the

gradient-based optimization algorithms because if the proba-

bility of applying local optimization is consistently reduced to

0 there is no indication that the local optimization algorithm

contributes significantly to the overall optimization process.

We therefore employ such an adaptive hybridization scheme in

this article in addition to the different non-hybrid optimization

algorithms.

The remainder of this article is organized as follows. In

Section II we first discuss related literature to position the

work presented in this article. Then, in Section III we provide

the basic definitions and notation used throughout the article.

Gradients for the single-objective case are briefly recalled

in IV after which we present our derivations of the gradient and

an algorithm for its computation in the multi-objective case in

Section V. In Section VI we then run experiments. Specifically,

random-restart optimization algorithms that employ gradient

information to optimize a single point are presented in Sec-

tion VI-B. An adaptive hybridization of a MOEA with these

techniques is experimentally investigated in Section VI-C. We

close this article with a discussion of our results in Section VII

and a presentation of our conclusions in Section VIII.

II. RELATED WORK

A. Gradient information indirectly based on the objectives

Gradient information for multi-objective optimization is

used explicitly by Lahanas, Baltas and Giannouli [12]. How-

ever, they use weighted aggregation to construct a single

objective function which is subsequently optimized. Hence,

there is no guarantee that all objectives are optimized simulta-

neously. Instead of analytically deriving improving directions,

Goh, Ong and Tan recently tried evolving such directions

instead [13]. A third approach to exploiting gradient infor-

mation without directly considering the objective functions is

by Emmerich, Deutz and Beume [14]. In their approach they

follow the gradient of a one-dimensional metric of the Pareto-

front. Specifically, the well-known S-metric by Zitzler and

Thiele [15] is used. Although the both of the latter methods

were reported to be beneficial when used to hybridize MOEAs,

they do not provide any additional insight into the structure of

the multi-objective gradient as they do not consider the actual

objective functions.

B. Gradient information directly based on the objectives

Results on gradient information that is derived by con-

sidering the actual objective functions while ensuring all

objectives are improved upon simultaneously, also exist in the

literature. Fliege and Svaiter provide an analytic description of

a direction that has the specific property that it is the largest

direction of simultaneous improvement [16]. This direction is

referred to by the authors as the multi-objective gradient. A

similar derivation of a single direction of descent is originally

given by Mukai [17] and additionally by Schäffler, Schultz
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and Weinzierl [18]. If the objectives have different ranges,

the largest direction of simultaneous descent will be biased

towards the objective with the largest range. Harada, Sakuma

and Kobayashi define the multi-objective gradient as a single

direction in a similar way [19]. Their derivations however ad-

ditional allow to consider constraints on the problem variables

at the same time. Using linear programming techniques they

are able to find a Pareto descent direction for solutions inside

feasible regions.

It should be pointed out that, especially if the number of

objectives isn’t large, computing a descent direction following

the definitions of e.g. Fliege and Svaiter, isn’t very difficult.

For two objectives, it boils down to solving a quadratic

equation in a single variable. However, even if the objectives

are first similarly scaled, there are, as we shall show, still

multiple (typically infinitely many) directions of improvement

that do not dominate each other (e.g. improving objective 0

and leaving objective 1 unchanged versus improving objective

1 and leaving objective 0 unchanged). Our results analytically

describe all of these directions and are therefore more general

than the results listed above. It should however be noted that,

for the eventual use of our analytical results, a single, suitable,

direction still needs to be chosen from this set of directions.

In particular it should be noted that when choosing a random

direction, convergence toward the optimal Pareto front can not

be guaranteed, in contrast to the above listed methods.

Another way of using gradient information is to find all

solutions of similar quality, i.e. search for solutions along the

Pareto front. This can for instance be done using continuation

methods such as predictor-corrector methods, see e.g. [20]. In

the case of multi-objective optimization, given a point on the

Pareto front, a prediction is made using gradient information

of the individual objectives as to where another solution lies on

the Pareto front. Typically, that point is then off the manifold

that is the Pareto front and it is pushed back onto the Pareto

front by solving a single-objective optimization problem. Such

an approach has been taken by Hillermeier [21] and by

Schütze, Dell’Aere and Dellnitz [22]. Although this type of

gradient exploitation can be highly useful, it does not focus

on the actual definition of the multi-objective gradient, which

is what we are interested in studying more closely here.

C. Hybrid MOEAs

One of the best known publications regarding real-valued

multi-objective memetic algorithms (or hybrid MOEAs) is

the M-PAES [23]. However, the M-PAES does not explicitly

make use of gradient information. The analytic description by

Fliege and Svaiter mentioned earlier is used by Brown and

Smith in a hybrid EA [24]. The result of Schäffler, Schultz

and Weinzierl as mentioned earlier was used in a multilevel

subdivision technique that subdivides the search space to

perform local search in each subspace based by Dellnitz,

Schütze and Hestermeyer [25]. The result of Schäffler, Schultz

and Weinzierl was also later used to hybridize MOEAs by

Shukla [26]. Continuation methods are studied as a hybridiza-

tion of MOEAs by Harada et al. [27] and by Schütze et

al. [28]. Finally, a hill climbing method named HCS (Hill

Climber with Sidestep) was proposed by Lara et al. [29] that

uses gradient information and can be used to realize movement

both toward and along the Pareto set. In the same work, the

HCS was combined with the well-known MOEA SPEA2.

All of the memetic approaches mentioned above hybridize a

MOEA in a non-adaptive way. In other words, if the gradient

method is not useful for a specific optimization problem,

resources will still be spent on trying out the method. In this

article, we therefore use an adaptive method that is specialized

for use in multi-objective optimization [30]. We further point

out that most hybrid MOEAs are only tested on test problems

that have nice gradient properties, which are not expected to

be good practical test-cases. Here we use both test problems

that have nice gradient properties as well as a well-known

set of benchmark problems that have a higher dimensionality

and vary in difficulty [30], [31]. This will allow us to better

asses the true added value of exploiting gradient information

compared to the use of MOEAs.

D. New contributions

The most important difference between the existing liter-

ature and the work presented here is that we analytically

describe the complete set of non-dominated simultaneously

improving directions and thereby obtain insight into the ge-

ometric structure of the multi-objective gradient. Hence, we

consider the multi-objective gradient to be a set of directions

(specifically a m−1 dimensional manifold in a m-dimensional

space where m is the number of objectives).

In previous work [32], we gave a description of this set

under the assumption that the set of all Pareto-optimal di-

rections that improve at least one objective is larger and the

final result can therefore be computed by taking the subset of

all Pareto-optimal directions that improve all objectives. This

article completes this previous work by considering the case

in which the set of all Pareto-optimal directions that improve

at least one objective consists of only directions that improve

all objectives, i.e. it equals the desired result. Moreover, in this

article we provide the full picture by unifying the two cases.

III. DEFINITIONS

A. Notation

In the case of single-objective optimization, we write the

function to be optimized as f . Function f returns, given

a vector x of l real values, a single real value i.e. x =
(x0, x1, . . . , xl−1), x ∈ R

l, f(x) ∈ R.

In the case of multi-objective optimization, we assume

to have m real-valued objective functions. We denote these

objective functions by fi(x) where i ∈ {0, 1, . . . ,m − 1}.
We write the function to be optimized as f . Vector function

f returns, given a vector x of l real values, a vector of real

values i.e. f(x) = (f0(x), f1(x), . . . , fm−1(x)) ∈ R
m.

A solution x0 is said to (Pareto) dominate a solution x1

(denoted x0 ≻ x1) if and only if fi(x
0) ≤ fi(x

1) holds

for all i ∈ {0, 1, . . . ,m − 1} and fi(x
0) < fi(x

1) holds

for at least one i ∈ {0, 1, . . . ,m − 1}. A Pareto set of size

n then is a set of solutions xj , j ∈ {0, 1, . . . , n − 1} for

which no solution dominates any other solution, i.e. there are
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no j, k ∈ {0, 1, . . . , n − 1} such that xj ≻ xk holds. A

Pareto front corresponding to a Pareto set is the set of all

m-dimensional objective function values corresponding to the

solutions, i.e. the set of all f(xj), j ∈ {0, 1, . . . , n− 1}.
A solution x0 is said to be Pareto optimal if and only if there

is no other x1 such that x1 ≻ x0 holds. Further, the optimal

Pareto set is the set of all Pareto-optimal solutions and the

optimal Pareto front is the Pareto front that corresponds to the

optimal Pareto set. We denote the optimal Pareto set by PS

and the optimal Pareto front by PF .

B. Goal

Without loss of generality, we assume that the goal is to

minimize the objectives. Ultimately then, we are interested

in finding a direction u along which to move a given point

x, starting from that point, i.e. x ← x + δu. The specific

direction that we want to find is the one in which the rate

of change in the objective function(s), starting from a given

point x, is as negative as possible. We call the direction that

we are looking for the Direction Of Interest (DOI) and denote

it û
DOI(x). Directions do not have lengths, so we will use unit

vectors, i.e. vectors of unit lengths: û ∈ R
l, ‖û‖= 1.

IV. SINGLE-OBJECTIVE CASE

A. Derivation

The rate of change in f in a direction û is commonly called

the directional derivative and is denoted ∇û:

∇ûf(x) = lim
h→0

{

f(x + hû)− f(x)

h

}

(1)

To find the DOI, an optimization problem over unit vectors

û ∈ R
l must be solved:

û
DOI(x) = arg min

û

{∇ûf(x)} (2)

It can be shown [33] that the directional derivative is

∇ûf(x) = (∇f(x))
T
û (3)

where ∇f(x) is the gradient of f at point x. Recall that

the gradient of f at any point x is a vector of all l partial

derivatives ∂f(x)/∂xi, i ∈ {0, 1, . . . , l − 1} of f at point x:

∇f(x) =

(

∂f(x)

∂x0
,
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xl−1

)

(4)

Recall further that the partial derivative ∂f(x)/∂xi of f with

respect to a single variable xi is the rate of change in f ,

starting from point x, when only xi is varied, i.e. :

∂f(x)

∂xi

= lim
h→0

{

f(. . . , xi + h, . . .)− f(. . . , xi, . . .)

h

}

(5)

Using the equation for computing the angle θ between two

vectors a and b (i.e. cos(θ) = (aTb)/(‖a‖‖b‖)) the DOI can

be found from Equation 3:

û
DOI(x) = − ∇f(x)

‖∇f(x)‖ (6)

The result in Equation 6, i.e. the fact that the direction of

maximum increase in a function is given by the gradient of

that function and, due to symmetry, the direction of maximum

decrease is given by the negative gradient, is quite commonly

known.

B. Computation

Computing û
DOI(x) is rather straightforward in the single-

objective case. It requires an elementary normalization opera-

tion of the gradient to compute the final result in Equation 6.

To compute the gradient itself, the partial derivatives need to

be computed. To this end, a fixed value for h is often taken

for which Equation 5 is evaluated. This is commonly known

as the finite difference approximation. Computing the DOI

this way requires l + 1 evaluations and has a computational

complexity of Θ(lF ) where F is the complexity of a single

evaluation. Choosing the best value for h is not trivial. If h
is too large, the approximation can be bad because the actual

partial derivatives of f may change a lot inside the interval

indicated by h, causing f(. . . , xi +h, . . .) to be very different

from f(. . . , xi, . . .) + h∂f(x)
∂xi

, i.e. the value that is obtained

if the partial derivatives remain constant. If h is too small,

numerical instabilities can occur.

Evaluating the gradient using Equation 5 directly with a

small value for h is also known as the forward difference

method. Alternatively, backward differences can be used in

which the approximation is computed by subtracting h rather

than adding it to each parameter. Also, central differences can

be used by looking at the interval of length h with x as the cen-

tral point, i.e. using f(. . . , xi+
1
2h, . . .)−f(. . . , xi− 1

2h, . . .) as

the numerator. Depending on the size of h and the smoothness

of the objective function, these methods can give different

results, both in terms of the actual gradient computed and

in terms of numerical stability.

In some domains gradients can be obtained with little extra

cost compared to performing a function evaluation. Such is

the case for instance using so-called adjoint methods [34] in

the case that objective functions are computed using partial

differential equation (PDE) solvers (e.g. in computational

fluid dynamics). Finally, if formulations of the objectives are

known, it may be feasible to compute the gradient analytically.

This is preferable because it may greatly reduce the com-

putational burden as no additional evaluations are required.

It further typically reduces the risk of numerical instability

substantially.

C. Gradient-based optimization algorithms

Many classical optimization algorithms exist that use the

gradient to find a local minimum of a single-objective prob-

lem [35]. The most commonly known ones are variations of

gradient descent. Gradient descent is an iterative approach that

alters a point by moving it a short distance in the direction

of the gradient. Using line minimization, the distance that

is moved in the direction of the steepest descent, takes the

search to a point at which the gradient in that direction is 0.

A commonly adopted approach to perform line minimization

is Brent’s method [36]. In Brent’s method a bracket is used



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012 55

of three points where the outer points have a larger function

value than the interior point. A one-dimensional parabola is

fit to the bracket. A minimum along the search direction is

found by iteratively finding the minimum of the parabola and

using it to update the bracket accordingly.

Following the direction of steepest descent in each sub-

sequent line minimization is in general not optimal. The

reason for this is that each subsequent search direction is

orthogonal to the previous one. This can cause the search to

oscillate around the optimal direction towards the optimum.

The conjugate-gradients algorithm [2] overcomes this prob-

lem. In this algorithm, each subsequent search direction is

conjugate with the previous one. This means that the new

direction is chosen so that the component of the gradient in

the direction of the previous line minimization remains zero

along the new direction, resulting in much more efficient local

optimization. Specifically, any quadratic optimization function

of dimensionality l can be minimized using at most l line

minimizations.

V. MULTI-OBJECTIVE CASE

In this Section we will illustrate the derivations and algo-

rithms using a generalization of the MED (Multiple Euclidean

Distances) problems [19]. We refer to this adaptation as

GenMED. GenMED is a class of problems parameterized by

a parameter d. The i-th objective of GenMED is

fi(x, d) =

(‖x− ci‖√
2

)d

=

∣

∣

∣

∣

∣

∣

∣

∣

1

2

(

x− ci
)

∣

∣

∣

∣

∣

∣

∣

∣

d

(7)

where ci is a l-dimensional unit vector for which (ci)i = 1
and (ci)j = 0, j 6= i. For d > 1 the optimal Pareto front is

convex whereas for d < 1 the optimal Pareto front is concave.

Typical values are d = 2 for the convex case and d = 1/2 for

the concave case. In two dimensions, for any value of d, the

optimal Pareto front is given by (td, (1 − t)d) for t ∈ [0, 1].
GenMED is a smooth function with equally scaled objectives

and without any locally optimal Pareto fronts.

A. Derivation

In the multi-objective case, we define the directional deriva-

tive in direction û at point x as the vector of real values

that indicates the change in each objective separately. In other

words, ∇ûf(x) is a m-dimensional vector of the directional

derivatives of the individual objectives:

∇ûf(x) = (∇ûf0(x),∇ûf1(x), . . . ,∇ûfl−1(x)) (8)

The definition of the DOI in the multi-objective case is quite

similar to the definition in the single-objective case. The only

difference is that in Equation 2 f is replaced with f , i.e. :

û
DOI(x) = arg min

û

{∇ûf(x)} (9)

Equation 9 now however is a multi-objective optimization

problem. This means that in general, there will be more than

one Pareto-optimal DOI. In the remainder of this Subsection,

we derive equations that allow us to describe the complete

set of DOI. In the next Subsection we summarize how these

equations can be used to actually compute the DOI.

The derivations below are structured as follows. First, we

list the assumptions that we make for the derivations to

hold. We then start by showing that the set of all multi-

objective directional derivatives (i.e. Equation 8 for all possible

unit directions û) form the surface and interior of an m-

dimensional hyperellipsoid. The optimal solution to Equation 9

is given by all directions that map to a multi-objective direc-

tional derivative that is all negative and non-dominated. This

implies that the optimal solution is part of the surface of the

hyperellipsoid. To obtain an analytical description of these

directions, we first use the non-domination criterion to find

the non-dominated part of the surface of the hyperellipsoid.

We then intersect this set with the negative hypercube to keep

only the directions that correspond to improvement (i.e. all-

negative directions). The main derivations are illustrated in

Figure 3.

1) Assumptions: We assume to have at least as many

problem variables as objectives, i.e. l ≥ m. In practice, this

is only a minor restriction as in most cases the number of

problem variables is typically large.

We further assume that the individual objectives are differ-

entiable and that their gradients at x are linearly independent.

If they are linearly dependent, this means, following Equa-

tion 9, that some of the objectives in the particular multi-

objective optimization problem that we have to solve are

linearly dependent. In that case, at least one of the objectives

is redundant [37] and the computations can be done with

a subset of the objectives, or rather the gradients, that are

linearly independent without affecting the optimality of the

final outcome.

2) Pareto-optimal hyperellipsoid surface: The set of all

directions û is the set of all l-dimensional unit vectors.

Therefore, they form the surface of a unit hypersphere in l
dimensions, centered at (0, 0, . . . , 0). The directional deriva-

tive ∇ûf(x) in Equation 8 maps this l-dimensional unit

hypersphere into an m-dimensional space by means of a linear

transformation. This transformation can be written in matrix

notation by defining an m× l matrix G. This matrix contains

the gradients of the objective functions in its rows, i.e. :

G=













(∇f0(x))
T

(∇f1(x))
T

...

(∇fm−1(x))
T













=















∂f0(x)
∂x0

∂f0(x)
∂x1

. . . ∂f0(x)
∂xl−1

∂f1(x)
∂x0

∂f1(x)
∂x1

. . . ∂f1(x)
∂xl−1

...
...

. . .
...

∂fm−1(x)
∂x0

∂fm−1(x)
∂x1

. . .∂fm−1(x)
∂xl−1















(10)

Equation 8 can now be written as:

∇̂uf(x) = Gû (11)

In the following, by the exterior, or the surface, of a convex

shape we mean the convex shape itself. By the interior we

mean all points that lie inside this convex shape, i.e. all points

that can be obtained by taking an arbitrary convex combination

of exterior points. For the hypersphere in l dimensions for
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instance this means that the exterior is defined by all u such

that ‖u‖= 1, i.e. by all û, and the interior is defined by all u

such that ‖u‖< 1.

The linear transformation Gû transforms the surface of the

l-dimensional hypersphere into the surface and interior of an

m-dimensional hyperellipsoid, centered at (0, 0, . . . , 0). To see

why this is the case, consider the Singular Value Decomposi-

tion (SVD) of matrix G. The SVD exists for any matrix [38]

and decomposes the matrix into three matrices. Using SVD

we may write G = UDV T where U has dimensions m×m,

D has dimensions m × l and matrix V T has dimensions

l × l. Moreover, matrices U and V T are orthonormal and

matrix D is diagonal. Now, any orthonormal matrix is a

combination of rotations and reflections [39]. Hence, V T û

is still the surface of an l-dimensional hypersphere. Since

D is diagonal, it can be written as D = SP where S

has dimensions m × m and P has dimensions m × l and

both are diagonal, specifically Sii = Dii and P ii = 1.

Matrix P is a projection matrix that drops all components

j ≥ m from a l-dimensional vector. It therefore collapses the

l-dimensional hypersphere onto the exterior, and interior of

an m-dimensional hypersphere. Multiplication with matrix S

scales the axes independently. Hence, DV T û = SPV T û

is the surface and interior of a hyperellipsoid that is aligned

with all major axes. The final multiplication with matrix U ,

i.e. Gû = UDV T û, finally unalignes the hyperellipsoid with

the main axes through rotations and reflections.

We are interested in the non-dominated part of the hy-

perellipsoid that is made up of the directional derivatives.

There are m extreme directional derivatives of interest to

this non-dominated part. These extreme points are minimal

in one of the objectives, i.e. one of the m one-dimensional

directional derivatives is minimal. To find the unit directions

that correspond to these extreme directional derivatives, the

following minimization problem must be solved for each

i ∈ {0, 1, . . . ,m− 1}:

arg min
û

{∇ûfi(x)} (12)

Because Equation 12 is in fact similar to Equation 2, we

can use the result in Equation 6 to find that the set of unit

vectors û
Extr-elli,i, i ∈ {0, 1, . . . ,m−1} that, using the directional

derivative, map to the negative extrema of the hyperellipsoid

are given by:

û
Extr-elli,i = − ∇fi(x)

‖∇fi(x)‖ (13)

To find the set of directions that map to entire surface of the

hyperellipsoid (i.e. not the interior), take another look at the

decomposition G = USPV T . Multiplication with US only

scales and subsequently rotates and reflects the m-dimensional

hypersphere. Hence, directions û that map to the surface of the

m-dimensional hyperellipsoid must already map to the surface

of the m-dimensional hypersphere after multiplication with

PV T . In other words, û maps to the hyperellipsoid surface if

and only if ‖PV T û‖= 1 holds. Because V T is orthonormal,

‖V T û‖= 1 automatically holds for any û. Now, since P is

a simple projection from the l-dimensional space to the m-

dimensional space that drops all components j ≥ m from a

vector, we have:

‖PV T û‖= 1⇔
(

V T û
)

(m,m+1,...,l−1)
= (0, 0, . . . , 0) (14)

Now we take linear combinations of the negative extrema

û
Extr-elli,i

. To ensure they are again unit vectors, we normalize

them. We denote the resulting set U
Elli:

U
Elli =

{

∑m−1
i=0 aiû

Extr-elli,i

‖∑m−1
i=0 aiû

Extr-elli,i ‖

∣

∣

∣

∣

∣

ai ∈ R

}

(15)

From the definition of P and Equation 15 it follows for any

û
Elli ∈ U

Elli that:

‖PV T û
Elli‖=‖

(

V T û
Elli

)

(0,1,...,m−1)
‖= (16)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑m−1
i=0 ai

(

V T û
Extr-elli,i

)

(0,1,...,m−1)

‖∑m−1
i=0 aiû

Extr-elli,i ‖

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

We know for certain that ‖PV T û
Extr-elli,i ‖ = 1 for all

i ∈ {0, 1, . . . ,m − 1} because those are the directions that

map to the extreme points of the hyperellipsoid and thus lie

on the surface. Equation 14 tells us that for these directions,

the components j > m are all zero after multiplication with

V T . Hence, for the computation of the length of the vector

in Equation 16 we can drop the vector cropping and replace

(V T û
Extr-elli,i)(0,1,...,m−1) with V T û

Extr-elli,i
, i.e. :

‖PV T û
Elli‖=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

V T

∑m−1
i=0 aiû

Extr-elli,i

‖∑m−1
i=0 aiû

Extr-elli,i ‖

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(17)

Since V T is an orthonormal matrix, it doesn’t change vector

lengths and hence it can be dropped from the righthandside

of Equation 17. Clearly, the righthandside then evaluates to 1,

giving ‖PV T û
Elli‖= 1. And thus, as noted earlier, this means

that û
Elli

maps to the hyperellipsoid surface.

Each direction in U
Elli thus maps to the hyperellipsoid

surface. To be sure that the entire hyperellipsoid surface is

reached, for any m-dimensional unit vector v̂ there must be

at least one direction û in U
Elli for which Gû points in the

same direction as v̂. To see that this is indeed the case, we

first define an m × l matrix U Extr-elli. This matrix contains the

û
Extr-elli,i

in its rows, i.e. :

U Extr-elli =











û
Extr-elli,0,T

û
Extr-elli,1,T

...

û
Extr-elli,m−1,T











(18)

We can then rewrite Equation 15 as:

U
Elli =

{

U Extr-elli,Ta

‖U Extr-elli,Ta‖

∣

∣

∣

∣

ai ∈ R

}

(19)

It suffices to show that a vector a ∈ R
m exists for which
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G
U Extr-elli,Ta

‖U Extr-elli,Ta‖ = cv̂ (20)

holds for some c ∈ R. Since GU Extr-elli,T is a square matrix

with dimensions m×m, we find that a = (GU Extr-elli,T )−1v̂ is

a solution. For this solution the equality in Equation 20 holds

with c = 1/ ‖U Extr-elli,Ta ‖. This solution cannot be computed

if GU Extr-elli,T is not invertible. However, linear dependence of

the rows or columns in this product implies linear dependence

of the gradients, which we specifically assumed not to be the

case.

Ultimately, we are only interested in the non-dominated

part of the hyperellipsoid surface. The particular subset of

U
Elli that we are interested in is obtained by taking only

convex combinations instead of linear combinations. The

reason for taking only convex combinations of the extremal

directional derivatives is that these extrema are boundary

points of the non-dominated part of the hyperellipsoid surface.

At the directional-derivative transformation into the objective

space of the normalized convex hull defined by the boundary

directions, the hyperellipsoid curves away from (or into) the

non-dominated region. The interior of the convex hull (i.e. the

entirety of the convex combination) therefore maps to the non-

dominated area that we are interested in. We denote this subset

by U
Extr-elli:

U
Extr-elli =

{

U Extr-elli,Tα

‖U Extr-elli,Tα‖

∣

∣

∣

∣

αi ≥ 0, i∈{0, 1, . . . ,m−1},
∑m−1

i=0 αi = 1

}

(21)

The main derivations above are illustrated in Figure 3.

3) Intersection with negative hypercube: Although the non-

dominated part of the hyperellipsoid is important and in-

teresting, it may contain directions that map to directional

derivatives that are not all-negative. An example of such a

case for 2 objectives can seen in Figure 3 (first column,

bottom row). To find those directions, we need to intersect

U
Extr-elli with the negative hypercube in the m-dimensional

objective space. The negative hypercube clearly is also a

convex combination. To ensure that the negative hypercube

is large enough to contain the entire hyperellipsoid, these

vertices need to be placed sufficiently far. An illustration of the

negative hypercube and its intersection with the hyperellipsoid

is given in Figure 1.

To find the unit directions that map to the intersection of

the negative hypercube in m dimensions and U
Extr-elli it suffices

to compute the intersection of the negative hypercube and the

linear mapping of the non-normalized convex combination of

the negative extrema Gû
Extr-elli,i

, i ∈ {0, 1, . . . ,m−1} (i.e. U
Elli

(Equation 21) without the normalization factor ‖U Extr-elli,Tα‖),
and then normalize the intersection points. The reason is

that the convex combination
∑m−1

i=0 αiû
Extr-elli,i

describes ori-

entations. Normalization doesn’t change the orientation. Nei-

ther does it change the orientation of G(
∑m−1

i=0 αiû
Extr-elli,i).

So, a normalized vector maps to the negative hypercube

if and only if the non-normalized version of that vector

does. The non-normalized vector is a convex combination.

After multiplication with matrix G it is still a convex com-

bination, but it is a convex combination of the mapped
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Fig. 1. Intersection of the hyperellipsoid of directional derivatives and the
negative hypercube in objective space for the convex GenMED with two
objectives (left) and three objectives (right) for x = ( 1

2
, 1

2
, . . . , 1

2
) and

l = 10. The surface of the hyperellipsoid and its negative subset are depicted
using randomly drawn samples.

vertices because matrix multiplication is a linear transfor-

mation, i.e. G(
∑m−1

i=0 αiû
Extr-elli,i) =

∑m−1
i=0 αi(Gû

Extr-elli,i) =
GU Extr-elli,Tα. Now, the intersection of convex combinations is

again a convex combination [40]. So, we can compute the

intersection of the non-normalized convex combination of the

mapped vertices, i.e.
∑m−1

i=0 αi(Gû
Extr-elli,i), and the negative

hypercube. The directions û that map, i.e. Gû, to the vertices

of this intersection define the convex combination that we

ultimately want.

The vertices of the intersection of two convex combinations

A and B consist of all vertices of A that are in B, all vertices

of B that are in A, the intersection points of all boundary

line-segments of A with B and the intersection points of all

boundary line-segments of B with A.

a) Vertices of the negative hypercube: The vertices of the

negative hypercube can never be in the convex combination

of the Gû
Extr-elli,i

. The points on the main axes in the m-

dimensional space can be chosen sufficiently far so that the

negative part of the hyperellipsoid is completely contained

in the negative hypercube. The only vertex of the negative

hypercube that is then not outside the negative part of the

hyperellipsoid is the origin. The origin is also never contained

in the convex combination of the Gû
Extr-elli,i

because the hy-

perellipsoid is centered there.

b) Vertices of the negative-extrema convex combination:

The vertices of the linearly transformed convex combination

of the negative-extrema directions, i.e. the Gû
Extr-elli,i

for i ∈
{0, 1, . . . ,m−1}, may be contained in the negative hypercube.

Testing for this is simple, just test whether Gû
Extr-elli,i

is all

non-positive.

c) Line-segments of the negative hypercube: The only

line-segments of the negative-hypercube that can intersect with

the convex combination of the Gû
Extr-elli,i

are the m negative

axes. To see this, again the negative hypercube can be made

as big as desired, completely containing the entire negative

part of the hyperellipsoid. The only vertex of the negative

hypercube that is then inside the hyperellipsoid is the origin.
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All other vertices are outside. The lines connecting these

vertices either move completely outside the hyperellipsoid or

connect to the origin, intersecting the hyperellipsoid. Possibly

this intersection lies in the subset U
Extr-elli.

To compute the m intersection points with the hyperel-

lipsoid, let ê
i

be an m-dimensional unit vector such that

ê
i
i = 1, êi

j = 0, i, j ∈ {0, 1, . . . ,m−1}, i 6= j. Let λi ≥ 0. We

know that the hyperellipsoid surface is defined by Equation 19.

The intersection of the hyperellipsoid surface with the negative

part of i-th coordinate axis is therefore given by an ai ∈ R
m

in Equation 19 for which the following holds:

GU Extr-elli,Tai

‖U Extr-elli,Tai ‖ = −λiê
i

(22)

Such an ai is given by −(GU Extr-elli,T )−1ê
i
, for which we

have λi = 1/ ‖U Extr-elli,Tai ‖. We now define a matrix V of

dimensions l ×m as follows:

V = U Extr-elli,T
(

GU Extr-elli,T
)−1

(23)

The unit directions û
Cube-elli,i, i ∈ {0, 1, . . . ,m− 1} that map

to the desired intersection points, i.e. Gû
Cube-elli,i = −λiê

i
, can

now be written as:

û
Cube-elli,i = − V ê

i

‖V ê
i‖

(24)

We must still construct a test to see whether û
Cube-elli,j

is

in the final intersection. For û
Cube-elli,j

to be in U
Extr-elli, û

Cube-elli,j

must be a normalized version of some convex combination of

the û
Extr-elli,i, i ∈ {0, 1, . . . ,m − 1}. In other words, for αi ≥

0, i ∈ {0, 1, . . . ,m− 1}, ∑m−1
i=0 αi = 1 and some λ > 0, we

require:

U Extr-elli,Tα = λû
Cube-elli,j = −λ

V ê
j

‖V ê
j‖

(25)

We now define a matrix W of dimensionality m×m such

that V = U Extr-elli,T W , i.e. :

W =
(

GU Extr-elli,T
)−1

(26)

Combining Equations 25 and Equation 26 and multiplying

both sides in Equation 25 from the left by G now gives:

GU Extr-elli,Tα = GU Extr-elli,T Wê
j

(

− λ

‖V ê
j‖

)

(27)

By letting γ = −λ/ ‖V ê
j‖ we find:

α = γWê
j

(28)

Because of the convexity constraint
∑m−1

i=0 αi = 1 we have

γ = 1/
∑m−1

i=0 (Wê
j)i. Now α is uniquely determined. Since

λ = −γ ‖V ê
j ‖ and ‖V ê

j ‖ ≥ 0, requiring that λ > 0 is

equivalent to requiring γ < 0. Hence, to see whether û
Cube-elli,j

is in the intersection it suffices to check that γ < 0 and αi ≥
0, i ∈ {0, 1, . . . ,m− 1}.

d) Line-segments of negative-extrema convex combina-

tion: All line-segments between combinations of all vertices

of the convex combination GU Extr-elli,Tα are boundary line-

segments of that convex combination. In other words, there are

no line-segments between vertices that pass through the inte-

rior of the convex polytope GU Extr-elli,Tα. The reason for this

is that the convex polytope has m vertices in m dimensions.

Hence, in two dimensions it is a line, in three dimensions it

is a triangle, in four dimensions it is a prism, and so on.

To compute the intersection of the line-segment between

Gû
Extr-elli,i

and Gû
Extr-elli,j

, i, j ∈ {0, 1, . . . ,m−1}, j > i and the

boundary of the negative hypercube, note that the only parts of

the boundary of the negative-hypercube that can be intersected

are the m subspaces obtained by forcing one of the coordinates

to be 0. The other subspaces that define boundaries of the

negative hypercube only bound the hyperellipsoid, assuming

that we make the hypercube large enough.

Let λk
k = 0, k ∈ {0, 1, . . . ,m − 1} and λk

q ∈ R,

k, q ∈ {0, 1, . . . ,m − 1}, k 6= q. Moreover, let λk =
(λk

0 , λk
1 , . . . , λk

m−1) and bk
ij ∈ R, i, j, k ∈ {0, 1, . . . ,m − 1}.

The intersection point of the line between Gû
Extr-elli,i

and

Gû
Extr-elli,j

and the subspace of the negative hypercube that

excludes axis k is given by solving:

G
(

û
Extr-elli,i + bk

ij

(

û
Extr-elli,j − û

Extr-elli,i
))

= λk (29)

Because of the special form of λk, this boils down to only

a single equality:

(∇fk(x))
T
(

û
Extr-elli,i + bk

ij

(

û
Extr-elli,j − û

Extr-elli,i
))

= 0 (30)

The solution to Equation 30 is given by:

bk
ij = − (∇fk(x))

T
û

Extr-elli,i

(∇fk(x))
T
(

û
Extr-elli,j − û

Extr-elli,i
) (31)

Hence, the 1
2 (m3 − m2) candidate vertices (i, j, k ∈

{0, 1, . . . ,m− 1}, j > i) are:

û
can =

û
Extr-elli,i + bk

ij

(

û
Extr-elli,j − û

Extr-elli,i
)

∣

∣

∣

∣

∣

∣
û

Extr-elli,i + bk
ij

(

û
Extr-elli,j − û

Extr-elli,i
)∣

∣

∣

∣

∣

∣

(32)

Moreover, a candidate vertex is on the line-segment between

Gû
Extr-elli,i

and Gû
Extr-elli,j

(and thus in U
Extr-elli) if and only if

0 ≤ bk
ij ≤ 1. Finally, a candidate vertex maps to the negative-

hypercube if and only if all components of Gû
can

are non-

positive.

The main derivations above are illustrated in Figure 3. In the

following Section, we describe, in the form of an algorithm,

how the derivations can be used to actually compute the

final result, i.e. the set of all non-dominated simultaneously

improving directions. To this end, as we will see, the most

important equations are Equation 13, Equation 24 and Equa-

tion 32. These equations, as well as the algorithm in which

these equations are used, can be seen as a summary of the

most important results so far.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012 59

B. Computation

The results in the previous Subsection now allow us to

formulate an algorithm that computes the complete set of unit

directions that we are ultimately interested in. This set of unit

directions is described by the normalized convex combination

of the unit directions that map to the intersection points as

described above. The unit directions that are positively tested

to be in the intersection of the non-dominated part of the

hyperellipsoid and the negative hypercube make up a matrix

U⋆ of dimensions n× l where n is the number of vertices in

the convex intersection1:

U
⋆ =

{

U⋆,Tβ

‖U⋆,Tβ‖

∣

∣

∣

∣

βi ≥ 0, i∈{0, 1, . . . ,m−1},
∑m−1

i=0 βi = 1

}

(33)

A direction vector for which the directional derivative is

non-dominated and all-negative can now be sampled by sam-

pling a vector β such that
∑m−1

i=0 βi = 1, computing U⋆,Tβ

and normalizing the resulting vector. To sample β uniformly,

the following approach can be used [41]. First, draw m
uniformly distributed samples xi, i ∈ {0, 1, . . . ,m− 1} from

the uniform distribution over ]0, 1]. Then, set yi = −ln(xi).
Finally, the βi are given by βi = yi/

∑m−1
j=0 yj .

Pseudo-code for the algorithm that determines U⋆ is given

in Figure 2. A set T is maintained to which unit directions

are added that are found to be in the intersection of the

non-dominated set and the negative-hypercube set. First, the

vertices of the non-dominated set are tested (i.e. Equation 13).

Then the intersections of the line-segments of the negative

hypercube with the non-dominated set are checked (i.e. Equa-

tion 24). Finally, the intersections of the line-segments of

the negative-extrema convex combination with the negative

hypercube are checked (i.e. Equation 32).

Line 1 costs O(1). Line 2 costs O(mlF +m2l+m2 +ml).
Line 3 costs O(ml). Line 4 costs O(m2l + m3). Line 5 costs

O(m2l). Line 6 costs O(ml + m2 + m2 + m2 + m2 + ml).
Line 7 costs O(m3l + m3l + m4l + m4 + m3l). Line 8 costs

O(m3l) (there are O(m3) candidate directions). Hence, the

overall computational complexity of the algorithm isO(mlF+
m4l) and it requires m(l + 1) function evaluations.

Illustrations of the application of the algorithm in Figure 2

and the main involved derivations are given in Figure 3 on the

convex variant of the GenMED problem with two objectives

and three objectives and different starting points. For the

two-objective case, the different starting points correspond to

different orientations of the hyperellipsoid. Previous work [32]

considered only the bottom case where the DOI is equal

to the negative surface of the hyperellipsoid which, in turn,

is a subset of the Pareto-optimal search directions in this

case. The top illustration for two objectives shows that if

the hyperellipsoid is oriented differently, the negative part

of the hyperellipsoid surface contains also dominated search

directions. The DOI in that case is equal to the Pareto-optimal

search directions which, in turn, now is a subset of the negative

part of the hyperellipsoid surface. The algorithm presented in

this article succeeds in finding the correct subset in both cases.

1The only reason for using β for the mixing components instead of α is
to avoid confusion with Equation 21.

1 T ← ∅
2 for i ∈ {0, 1, . . . ,m− 1} do

2.1 û
Extr-elli,i ← − ∇fi(x)

‖∇fi(x)‖

2.2 v ← Gû
Extr-elli,i

2.3 if ∀q ∈ {0, 1, . . . ,m− 1} : vq ≤ 0 then

2.3.1 T ← T ∪ û
Extr-elli,i

3 U Extr-elli,T ←
[

û
Extr-elli,0

û
Extr-elli,1 . . . û

Extr-elli,m−1]

4 W ←
(

GU Extr-elli,T
)−1

5 V ← U Extr-elli,T W

6 for i ∈ {0, 1, . . . ,m− 1} do

6.1 û
Cube-elli,i ← − V ê

i

‖V êi‖

6.2 v ←Wê
i

6.3 γ ← 1
Pm−1

j=0
vj

6.4 α← γv

6.5 if γ < 0 and ∀q ∈ {0, 1, . . . ,m− 1} : αq ≥ 0 then

6.5.1 T ← T ∪ û
Cube-elli,i

7 for i ∈ {0, 1, . . . ,m− 1} do

7.1 for j ∈ {i + 1, i + 2, . . . ,m− 1} do

7.1.1 for k ∈ {0, 1, . . . ,m− 1} do

7.1.1.1 bk
ij ← − (∇fk(x))T

û
Extr-elli,i

(∇fk(x))T(ûExtr-elli,j−ûExtr-elli,i)

7.1.1.2 û
can ← û

Extr-elli,i+bk
ij(û

Extr-elli,j−û
Extr-elli,i)

‖ûExtr-elli,i+bk
ij(ûExtr-elli,j−ûExtr-elli,i)‖

7.1.1.3 v ← Gû
can

7.1.1.4 if 0 ≤ bk
ij ≤ 1 and

∀q ∈ {0, 1, . . . ,m− 1} : vq ≤ 0 then

7.1.1.4.1 T ← T ∪ û
can

8 Construct matrix U⋆ by using the vectors in T as rows.

Fig. 2. Algorithm for computing matrix U⋆ containing the direction vectors
that constitute the convex combination of direction vectors for which the
multi-objective directional derivative is non-dominated and all-negative.

In three dimensions there is a third possibility for the DOI.

It can then be the case that neither the negative part of the

hyperellipsoid surface is a subset of the Pareto-optimal part nor

the other way around. The first two illustrations for the three-

objective case in Figure 3 show cases where the two sets are,

similar to the two-objective cases, subsets of each other. The

final illustration shows a case when these sets overlap. In this

case, the DOI contains only a single point from the original

two sets. The algorithm in this article finds the required five

intersection points that define the DOI.

C. Gradient-based optimization algorithms

Although in the above we have extensively investigated the

structure of the gradient in the multi-objective case, single-

objective optimization algorithms can still be used to perform

multi-objective optimization. In the following we define two

of such algorithms (ROCG and AORL) as well as a method

that uses the DOI for the multi-objective case as computed by

the algorithm in Figure 2.

1) Random-Objective Conjugate Gradients (ROCG): In

this straightforward approach the conjugate-gradients algo-

rithm is applied to a randomly chosen objective. It depends

on the correlation between the objectives whether the best

local improvement in a single objective also leads to an

improvement in the other objectives.
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Gû
Extr-elli,i

Gû
Cube-elli,i

Gû
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Fig. 3. Illustration of the most important equations that contribute to the DOI for the multi-objective case. Shown are samplings of the complete hyperellipsoid
of directional derivatives (Gû, only for the case of 2 objectives), the hyperellipsoid surface (GU

Elli), the boundary points of the Pareto-optimal region
(Gû

Extr-elli,i), their convex combinations (GU
Extr-elli), the intersection points with the negative hypercube (Gû

Cube-elli,i), the negative part of the hyperellipsoid
(Gû∩

`

R
−

´m
), the points contributing to the DOI (Gû

⋆,i) and the entire set of DOI (GU
⋆). The first column shows the convex GenMED problem with

two objectives for points (0, 1, 1

2
, 1

2
, . . . , 1

2
) (top) and (0, 1

2
, 0, 0, . . . , 0) (bottom). The other columns show the GenMED problem with three objectives

where the bottom plot is a zoomed version showing only the negative subspace, rotated for the best view. The corresponding points are (0, 1, 1

2
, 1

2
, . . . , 1

2
)

(column 2), (0, 1

2
, 0, 0, . . . , 0) (column 3) and (0, 1

2
,− 1

4
, 0, 0, . . . , 0) (column 4). For all problems, l = 10.

2) Alternating-Objective Repeated Line search (AORL):

To reduce the probability of improving a single objective

while making the objective value in the other objective worse,

the objective that is searched locally can be altered during

optimization. In AORL, a single line search in the direction of

the negative gradient of that objective is performed in a single,

alternatingly chosen objective. This process is repeated until

a multi-objective local minimum is found.

3) Combined-Objectives Repeated Line search (CORL):

To use the DOI and follow the gradient in the multi-objective

case, the single-objective and single-dimensional Brent’s min-

imization method mentioned earlier in Section IV-C can be

used on a specially designed function to perform a line search.

After a line search terminates, a new line search can be

executed after computing the DOI at the new location. This

can be repeated until a maximum of iterations is reached or

until no further improvements are found.

To perform a single line search, we use the negative scaled

Euclidean distance in the objective space to the point x from

where Brent’s method is to start. The scaling is required to

obtain invariance to different scales of objective functions.

Scaling is done by dividing the distance in each objective

by the observed range of objective values for that objective.

This is a quite natural generalization of the single-objective

case where the distance is just the difference in function value

between the starting point and the local minimum. The further

we travel in objective space while improving upon the point

where we started from, the better. If a point x+aû
DOI(x) along
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Fig. 4. Shape of the g(x, a) function to be optimized with Brent’s method in
the multi-objective case. A random search direction is chosen from the DOI
for the two-objective and three-objective GenMED problem (both the convex
and concave variant) for starting point x = ( 1

2
, 1

2
, . . . , 1

2
) and l = 10.

a Pareto-optimal search direction û
DOI(x) does not dominate

x in objective space, then we define the distance to be infinity.

In other words, let ri be the range observed for objective i,
then we use Brent’s method to minimize (a ≥ 0):

g(x, a)=







−d(f(x),f(x + aû
DOI(x))) if f(x + aû

DOI(x))
≺ f(x)

∞ otherwise
(34)

where

d(y,z) =

√

√

√

√

m−1
∑

i=0

(

yi − zi

ri

)2

(35)

Function g(x, a) is illustrated in Figure 4 for the GenMED

problem with two objectives and three objectives, a randomly

chosen DOI and the same starting point. The functions clearly

have a well-defined minimum. Moving too far away from the

starting point leads to solutions that don’t dominate the starting

point, which is where the curves in Figure 4 disappear.

VI. EXPERIMENTS

In this section we experimentally investigate the perfor-

mance of various gradient-based optimization algorithms on

a set of well-known multi-objective optimization problems.

Because MOEAs are known to be good at finding a represen-

tative subset of the Pareto front, we study the performance of

gradient-based optimization algorithms both in a standalone

manner as well as in conjunction with the use of a MOEA

to see whether gradient-based optimization algorithms are of

additional value. Specifically, a random-restart optimization

algorithms that restarts the algorithms in Section V-C to

optimize a single point are presented in Section VI-B. An

adaptive hybridization of a MOEA with the same algorithms

is presented in Section VI-C. In the next Section we first

describe the optimization problems we consider and how we

will measure an algorithm’s performance.

A. Optimization problems and measuring performance

1) Multi-objective optimization problem test suite: The

definitions of the problems in our multi-objective optimization

problem test suite are presented in Table I.

The first two problems we use are the most simple ones.

They are the convex and concave GenMED problems from

Section V. Each objective of GenMED is similarly scaled.

There are furthermore no constraints and no local Pareto

fronts, making the problem relatively simple in a way that is

comparable to the simplicity of the sphere function in single-

objective real-valued optimization. The domain of [−1; 1] for

each variable is only used for initialization, it is not a hard

constraint. In the following we refer to the convex version

of GenMED as GM1 and the concave version as GM2. The

optimal Pareto front for GM1 is described parametrically by

(t2, (1−t)2) with t ∈ [0; 1]. For GM2 a parametric description

of the optimal Pareto front is given by (
√

t,
√

1− t) with

t ∈ [0; 1]
We also used the well-known problems2 ECi, i ∈
{1, 2, 3, 4, 6}. As these problems are well-known in MOEA

literature, we only very briefly discuss these problems here and

refer the interested reader for more details about these func-

tions to the literature [42], [31]. The box-boundary constraints

on all ECi problems are to be considered rigid. The reason

for this is that otherwise some objectives can not always be

evaluated. Such rigid constraints can be hard for a numerical

optimizer. EC1 and EC2 are continuous and do not have any

local fronts. EC1 has a convex Pareto front whereas EC2

has a concave Pareto front. The problems differ from the

GenMED problems in that the objectives are not similarly

defined and not similarly scaled. EC3 is similar to EC1 but

has a discontinuous Pareto front. EC4 has many locally optimal

Pareto fronts. Finally, the Pareto front of EC6 is non-uniformly

distributed. The optimal Pareto front for EC1 is described

parametrically by (t, 1 −
√

t) with t ∈ [0; 1]. For EC2 it is

defined by (t, 1− t2) with t ∈ [0; 1]. The description for EC3

is (t, 1.0−
√

t−tsin(10πt)) with t ∈ [0; 1]. However, it is only

the non-dominated parts of this parametric curve that make up

the optimal Pareto front for EC3. The optimal Pareto front for

EC4 is described parametrically by (t, 1−
√

t) with t ∈ [0; 1].
For EC6 it is defined by (t, 1− t2) with t ∈ [1− e−

1

3 ; 1].
We have taken two more problems from more recent lit-

erature on numerical multi-objective optimization [30]. These

problems are labeled BDi, i ∈ {1, 2}. These problems were

introduced to remedy a shortcoming in the range of problem-

difficulties presented by the ECi problems. Both problems

make use of Rosenbrock’s function. Premature convergence

on this function is likely without proper induction of the

structure of the search space. Function BD2 is harder than

BD1 in the sense that the objective functions overlap in all

variables instead of only in the first one. Further, the domain

of x0 in function BD1 is rigid. Finally, we have scaled the

objectives of BD2 to ensure that the optimum of all problems is

in approximately the same range. By doing so, using the same

value-to-reach for the DPF →S indicator (which is explained

in the next Section) on all problems corresponds to a similar

2These problems are also known as ZDTi.
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front-quality on all problems. The optimal Pareto front for

BD1 is described parametrically by (t, 1 − t) with t ∈ [0; 1].
For BD2 we do not have a parametric description available.

Name Objectives Domain

GM1

f0 =
˛

˛

˛

˛

1

2

`

x− c0
´

˛

˛

˛

˛

d
, f1 =

˛

˛

˛

˛

1

2

`

x− c1
´

˛

˛

˛

˛

d

c0 = (1, 0, 0, . . .), c1 = (0, 1, 0, 0, . . .), d = 2

[−1; 1]10

(l = 10)

GM2

f0 =
˛

˛

˛

˛

1

2

`

x− c0
´

˛

˛

˛

˛

d
, f1 =

˛

˛

˛

˛

1

2

`

x− c1
´

˛

˛

˛

˛

d

c0 = (1, 0, 0, . . .), c1 = (0, 1, 0, 0, . . .), d = 1

2

[−1; 1]10

(l = 10)

EC1

f0 = x0, f1 = γ
“

1 −
p

f0/γ
”

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”

[0; 1]30

(l = 30)

EC2

f0 = x0, f1 = γ
`

1 − (f0/γ)2
´

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”

[0; 1]30

(l = 30)

EC3

f0 = x0

f1 = γ
“

1 −
p

f0/γ − (f0/γ)sin(10πf0)
”

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”

[0; 1]30

(l = 30)

EC4

f0 = x0, f1 = γ
“

1 −
p

f0/γ
”

γ = 1 + 10(l − 1) +
Pl−1

i=1

`

x2
i − 10cos(4πxi)

´

[−1; 1]×
[−5; 5]9

(l = 10)

EC6

f0 = 1 − e−4x0 sin6(6πx0)

f1 = γ
`

1 − (f0/γ)2
´

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”0.25

[0; 1]10

(l = 10)

BD1

f0 = x0

f1 = 1 − x0 + γ

γ =
Pl−2

i=1

`

100(xi+1 − x2
i )2 + (1 − xi)

2)
´

[0; 1]×
[−5.12; 5.12]9

(l = 10)

BDs
2

f0 = 1

l

Pl−1

i=0
x2

i

f1 = 1

l−1

Pl−2

i=0

`

100(xi+1 − x2
i )2 + (1 − xi)

2)
´

[−5.12; 5.12]10

(l = 10)

TABLE I
THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM TEST SUITE.

It is important to note that all variables have a bounded

domain. For the ECi problems and for x0 in function BD1,

this domain is rigid, i.e. a constraint. If these variables move

outside of their domain, some objective values can become

non-existent. It is therefore important to keep these variables

within their domains. However, a simple repair mechanism that

changes a variable to its boundary value if it has exceeded this

boundary value gives artifacts that may lead us to draw false

conclusions about the performance of the tested algorithms. If

for instance the search on problem EC6 probes a solution that

has a negative value for each of the variables xi with i ≥ 1,

then the repair mechanism sets all these variables to 0. This

is especially well possible during a gradient-search procedure

because the gradient with respect to the second objective points

in the direction of all negative values for variables xi with

i ≥ 1. It is not hard to see that the solution that results after

boundary repair lies on the Pareto front. We have therefore

adapted the gradient-based optimization algorithms such that

a solution is never changed into one outside of the problem

range. Similarly, the variation procedure of the MOEA is

changed to prevent generating solutions that are out of bounds.

Finally, we note that it was shown by Mukai [17] that it is

possible to derive directions that improve all objectives and

preserve the feasibility of the solution by taking into account

constraint information. This result has however not been

extended to the description of all Pareto-optimal improving

directions that we use here.

2) Measuring performance: To measure performance we

only consider the subset of all non-dominated solutions in

the population upon termination. We call such a subset an

approximation set and denote it by S. A performance indicator

is a function of approximation sets S and returns a real

value that indicates the quality of S in some aspect. More

detailed information regarding the importance of using good

performance indicators may be found in literature [43], [44],

[45].

Here we use a performance indicator that uses knowledge

of the optimum, i.e. the optimal Pareto front. We define the

distance d(x0,x1) between two multi-objective solutions x0

and x1 to be the Euclidean distance between their objective

values f(x0) and f(x1). The performance indicator we use

computes the average distance to the closest solution in an

approximation set S over all solutions in the optimal Pareto

set PS . We denote this indicator by DPF →S and refer to it as

the distance from the optimal Pareto front to an approximation

set. This indicator was first used by Van Veldhuizen and was

called the inverted generational distance [46]. A smaller value

for this performance indicator is preferable and a value of

0 is obtained if and only if the approximation set and the

optimal Pareto front are identical. This indicator is useful for

evaluating performance if the optimum is known because it

describes how well the optimal Pareto front is covered and

thereby represents an intuitive trade-off between the diversity

of the approximation set and its proximity (i.e. closeness to the

optimal Pareto front). Even if all points in the approximation

set are on the optimal Pareto front the indicator is not

minimized unless the solutions in the approximation set are

spread out perfectly.

Because the optimal Pareto front may be continuous, there

are infinitely many solutions possible on the optimal Pareto

front. Therefore, a uniformly sampled set of many solutions

along the optimal Pareto front can be computed to use in the

discretized version of PF instead as an approximation of the

continuous version. We have used this approach with 5000

uniformly sampled points. The performance indicator now is

defined as follows:

DPF →S(S) =
1

|PS |
∑

x1∈PS

min
x0∈S
{d(x0,x1)} (36)

To obtain the 5000 points on the optimal Pareto fronts, we

used the parametric descriptions that we provided when we

described the test suite. A uniform sampling in the parametric

parameter t was performed and the corresponding parametric

description was computed. This process is repeated until

5000 non-dominated solutions have been found. Note that

on problem EC3 the parametric description also includes

dominated solutions, i.e. parts that do not belong to the

optimal Pareto front. For this reason, we need to continue

sampling until 5000 non-dominated solutions are found instead

of merely sampling 5000 times. Finally, because we do not

have a parametric description for the optimal Pareto front

for BDs
2, we used a different approach here. Values for f0

were uniformly sampled, i.e. t2 for t ∈ [0; 1], after which a
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single-objective optimization algorithm was used to minimize

f1(x) + p(x) where p(x) is the difference of the sampled

value for f0 and f0(x) if that difference is positive, and 100
otherwise, i.e. if t2 > f0(x) then p(x) = t2−f0(x), otherwise

p(x) = 100. The single-objective optimization algorithm used

is AMaLGaM [47] and is capable of reliably solving this

problem with a very high precision. On problems such as the

sphere function (i.e. f0 in BDs
2) and Rosenbrock’s function

(i.e. f1 in BDs
2), approximations of the optimum are easily

achieved within a precision of 10−30.

For the problems in our test-suite, given the ranges of the

objectives for the optimal Pareto front configurations, a value

of 0.01 for the DPF →S indicator corresponds to fronts that

are quite close to the optimal Pareto front. Fronts that have a

DPF →S value of 0.01 are presented in Figure 7 for all ECi

and BDi problems.

B. Random restart gradient-based optimization

1) Approach: Traditional single-point gradient-based opti-

mization algorithms use a random-restart scheme. That is, a

random point is generated and gradient-based optimization is

used to improve the point. When the search terminates, a new

point is randomly generated and the search is restarted from

that point. We used this traditional scheme in combination

with each of the three different ways of exploiting gradient

information described in Section IV-C, i.e. ROCG, AORL and

CORL.

We assume a black-box setting in which we do not know the

objective functions and therefore compute gradient informa-

tion using finite differences, i.e. we approximated Equation 5

using a small value for h. Specifically, we used h = 10−13.

Note that using finite differences has numerical drawbacks and

requires l + 1 evaluations to approximate the gradient at a

single point.

We allowed the conjugate-gradients algorithm in ROCG

to run for at most 10 iterations each time it was called,

i.e. for each starting point. Furthermore, we have used the

Polak-Ribiere variant of the conjugate-gradients algorithm [1].

One iteration terminates only if 1) the conjugate-gradient

computations return a zero gradient, 2) no improvements could

be found anymore or 3) if the overall maximum number of

evaluations happens to have been reached. There are no further

bounds on precision. Similarly, we allowed for at most 10

consecutive line-searches in AORL and CORL. For AORL

we additionally terminated the algorithm if after a single line

search the solution has worsened, i.e. become dominated. The

changes in the solution resulting from the last line-search are

then rejected.

2) Results: For a first impression of the performance of

the three different gradient-based optimization algorithms,

for each problem and each algorithm, we sample solutions

randomly in the domain and then start the algorithm from

there. The results on both the convex and the concave Gen-

MED problems with 2 and 3 objectives are shown in Fig-

ure 5. Because the GenMED problems are relatively simple,

all algorithms are capable of finding points on the Pareto

front. However, only CORL is able to find points other than
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Fig. 5. Application of the ROCG, AORL and CORL gradient-based
optimization algorithms to the convex (top row) and concave (bottom row)
GenMED problems with two objectives (left column) and three objectives
(right column). Starting points (10 for two objectives and 30 for three
objectives) are randomly chosen in [−1, 1]l, l = 10. Improvement lines are
only shown for the two-objective case.

the extremes. This holds both for the 2-dimensional and

3-dimensional case. Because CORL considers all possible

directions of improvement and randomly picks one, restarting

CORL can find points across the entire optimal Pareto front

of GenMED, regardless of whether it is convex or concave.

In Figure 8 the convergence of the method in terms of the

DPF →S metric is shown, averaged over 100 independent runs.

Indeed, of all gradient-based optimization algorithms tested,

only CORL is able to find a satisfactory approximation of the

Pareto front.

Although the benefits of CORL compared to the other

gradient-based optimization algorithms are overly clear for

the GenMED problems, the nice and smooth properties of

GenMED are not likely to hold in general. The EC4 problem

for instance has local Pareto fronts. This translates to local

optima also in the function to be optimized when performing

line search in CORL, i.e. using Brent’s method, as shown

in Figure 6. These local optima correspond to points where

the Kuhn-Tucker conditions (i.e. conditions under which a

point is a (Pareto-)local optimum) hold. It is known that these

conditions hold exclusively for the globally Pareto-optimal

points only if the problem is convex or concave [48], [49].

One of the reasons local optima are typically difficult to cope

with for gradient-based optimization algorithms is because

line-search algorithms such as Brent’s method are not well-

equipped to deal with local optima. An important question now
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is whether under increased problem difficulty, such as local

fronts, the application of CORL remains equally beneficial

compared to ROCG and AORL and whether gradient-based

optimization algorithms are still valuable to use at all.

Figure 7 shows results for the application of all gradient-

based optimization algorithms to random starting points on all

other optimization problems. From these results it becomes

immediately clear that the performance of all gradient-based

optimization algorithms on the remaining problems is far infe-

rior compared to the performance on the GenMED problems.

None of the algorithms is able to find points on the Pareto

Front except on BDs
2, but there the distribution across the

Pareto front is nowhere near uniform. It is clear that none

of the algorithms in a random-restart fashion is capable of

finding a satisfactory approximation to the Pareto front with

the maximum number of evaluations that was allowed.

Regarding relative performance of the various gradient-

based optimization algorithms, CORL is clearly still capable

of finding improvements in various directions in the objective

space whereas the diversity in directions found by ROCG

and AORL is limited. However, the overall performance in

terms of uniform convergence onto the Pareto front is virtually

indistinguishable on ECi, i ∈ {1, 2, 3, 4, 6} as can be seen

in Figure 8 where convergence of the DPF →S metric is

shown. Moreover, because of the major difference in difficulty

and scale between the two objectives in BD1, CORL is

outperformed by the ROCG and AORL methods that have the

ability to explicitly focus on a single objective. This can also

clearly be seen in Figure 8. Note that for the convergence

on the GenMED problems, we chose to only focus on 2

objectives. The reason for this is that from Figure 5 it is clear

that the methods work similarly for 2 and 3 objectives and

that for 2 objectives the DPF →S is easier to compute.

From our results, we conclude that the use of gradient-based

search algorithms alone is not likely to provide a satisfactory

approximation of the optimal Pareto front. Also, even though

the various algorithms find improvements along different di-

rections in the objective space, their overall performance in

terms of convergence to the Pareto front is similar unless

the problem at hand has smoothness properties the likes of
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GenMED problems. Still, all algorithms are capable of finding

improvements in a local manner, i.e. moving a single solution

towards the nearest suboptimum. Therefore, the combination

of such local-search properties with the more global-search

properties of evolutionary algorithms may still result in an

application of gradient-based optimization algorithms that is

beneficial. For this reason we look at such a hybridization

next.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012 65

C. Hybrid evolutionary optimization

1) Approach: While optimization of some problems may

benefit from the use of gradient information, for other prob-

lems the additional cost required to calculate gradients may

not weigh up to the benefits. Given a black-box scenario, it

is impossible to determine beforehand whether the additional

use of gradient information will be advantageous. Even if we

did have a notion of such a possible advantage, it is not clear

whether the use of gradient-based optimization algorithms will

be advantageous during the course of running the MOEA. In

other words, a fixed ratio of the number of evaluations used

by the MOEA compared to the number of evaluations used

by the gradient-based optimization algorithms is generally not

optimal. If one gradient-based optimization algorithm is at a

certain point during optimization clearly superior to another

one for a particular problem, it is more efficient to allow the

superior algorithm to spend more search effort. An intuitively

more favorable integration of gradient-based search algorithms

with a MOEA is thus one in which the most effective gradient-

based optimization algorithm is assigned the largest probabil-

ity. Or, if no gradient-based optimization algorithm is efficient

compared to the base MOEA, to reduce the use of the gradient-

based optimization algorithms to a minimum. This amounts to

the adaptive allocation of resources [50].

To perform resource allocation adaptively, the utility of

using gradient-based search algorithms will have to be de-

termined online, i.e. during the course of a run of the MOEA.

If the true utilities of the gradient-based optimization algo-

rithms can be determined properly, this information can be

used to vary the probabilities of applying the gradient-based

optimization algorithms in the course of running the MOEA.

Adaptive resource allocation has several advantages in

addition to the potential improvements in efficiency. First,

a practitioner is relieved of the need to select and tune

the different probabilities. Second, by leaving the choice of

the probabilities to the optimization algorithm, a large part

of the optimization task is automated. Third, adapting the

probabilities of the operators can render optimization methods

more robust, as unfavorable choices of parameters can be

corrected during the course of the run.

Here we use an adaptive resource-allocation scheme from

the literature that was previously shown to be very effec-

tive [30]. To get a better idea of the added performance

of gradient-based optimization algorithms, we combine the

scheme with a recently introduced MOEA [51] that is more

efficient than the one used in the work that introduced the

scheme. For an in-depth description of the scheme and the

base MOEA we refer the interested reader to the indicated

literature. In the remainder of this section we shall provide

only brief descriptions.

a) Adaptive resource allocation scheme: In every gen-

eration of the MOEA, the utility of each algorithm is esti-

mated anew. The algorithms considered are the base MOEA

itself and the three different gradient-based search algorithms,

i.e. ROCG, AORL and CORL. Because the three gradient-

based search algorithms all exploit gradient information dif-

ferently and the adaptive resource allocation scheme will

determine for itself which operator is the most beneficial

to use at which point, we consider all three gradient-based

optimization algorithms at the same time.

To determine the utilities, the number of improvements is

counted that each algorithm was able to obtain in the last

generation. For the base MOEA, i.e. the variation operator, im-

provements are offspring solutions that are not dominated by

any solution in the set of selected solutions. For the gradient-

based optimization algorithms improvements are solutions that

after running the algorithm resulted in a solution that is not

dominated by any solution in the population. This notion

of improvement is not strict in the sense that we it is not

required that new solutions must also dominate the solution(s)

they were created from. This allows the search to perform

“sideway” steps in addition to “forward” or “domination”

steps, thereby stimulating the search along the Pareto front to

obtain a diverse front during the search and also to ensure that

the front may be expanded sideways once the search gets near

the optimal Pareto front. It should be noted however that such

sideway steps cannot be obtained by CORL. The proposed

use of Brent’s method only considers points that dominate

the starting point. Non-dominating points can be achieved by

ROCG and AORL. Moreover, given that the latter two methods

are not explicitly designed to find dominating solutions, al-

lowing them to also generate non-dominated solutions greatly

increases their rate of successful application.

The utility of an algorithm is obtained by dividing the

number of improvements by the number of evaluations that

were required by each algorithm to obtain those improvements.

The total number of evaluations is then proportionally re-

distributed among the algorithms for use in the next gener-

ation.

b) Base MOEA: The base MOEA we use is the

SDR-AVS-MIDEA [51]. This MOEA is an Estimation-of-

Distribution Algorithm (EDA [52]) specifically designed for

multi-objective optimization.

In SDR-AVS-MIDEA, a population of size n is maintained.

In each generation, a subset of this population of size ⌊τn⌋,
τ ∈ [ 1

n
; 1[, is selected to perform variation with. By means of

variation n−⌊τn⌋ new solutions are generated which replace

the solutions in the population that were not selected.

Selection is performed using a diversity-preserving selection

operator. Since the goal in multi-objective optimization is both

to get close to the optimal Pareto front and to get a good

diverse representation of that front, a good selection operator

must exert selection pressure with respect to both aspects. The

selection operator in the SDR-AVS-MIDEA does this by using

truncation selection on the basis of domination count (i.e. the

number of times a solution is dominated). If the number of

non-dominated solutions exceeds the targeted selection size

⌊τn⌋, a nearest-neighbour heuristic in the objective space is

used to ensure that a well-spread, representative subset of all

non-dominated solutions is chosen.

The variation operator is geometrical in nature and is specif-

ically designed to provide an advantage in multi-objective

optimization compared to traditional variation operators. The

selected solutions are first clustered in the objective space.

Subsequently, the actual variation takes place only between
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individuals in the same cluster, i.e. a mating restriction is

employed. The rationale is that variation inside each cluster

can process specific information about the different regions

along the Pareto front. Such a parallel exploration automat-

ically gives a better probability of obtaining a well-spread

set of offspring solutions. To further stimulate diversity along

the Pareto front each new offspring solution is constructed

from a randomly chosen cluster. New solutions are generated

according to the EDA principle, i.e. the estimation of a

probability distribution and the subsequent re-sampling of new

solutions from this estimated distribution. In each separate

cluster a Bayesian-factorized normal distribution is estimated.

The estimated covariance matrix of each normal distribution is

subsequently separately adaptively scaled to prevent premature

convergence. Specifically, this means that if improvements

are found more than one standard deviation away from the

estimated mean of the distribution, then the covariance matrix

of the estimated distribution is scaled up to increase the area of

exploration. If, however, the improvements are obtained near

the mean of the estimated distribution, then the covariance ma-

trix is scaled down. This mechanism of preventing premature

convergence is the main difference with the base MOEA used

in the experiments of the work that introduced the adaptive

resource allocation scheme [30].

As in [51], an elitist archive is maintained that is updated

in a fashion similar to ε-dominance [53]. Without a technique

such as ε-dominance archiving, true convergence to the Pareto-

optimal front may not occur. As soon as selection based on

diversity is required to prune non-dominated solutions because

there are too many of them in the population, it is possible that,

over multiple generations, solutions end up in the population

that are dominated by solutions that were pruned earlier.

Hence, only maintaining the best solutions of the current

generation doesn’t lead to true elitism. The same is true for the

use of the gradient-based optimization algorithms because we

allow sideway steps to be performed by ROCG and AORL. As

a result of sideway steps, a solution x0 may be changed into

another solution x1 that doesn’t dominate x0. Starting a new

gradient-based algorithm from that solution however may then

result in a solution x2 that doesn’t dominate x1, but because

no direct comparison is made to x0 it could be the case that

x0 dominates x2, meaning we end up with a worse solution

than the one from which we started. Without the use of an

elitist archive, x0 would have been lost and the outcome of

the algorithm could indeed be worse if it is run longer.

The settings of the parameters in SDR-AVS-MIDEA are

based on the guidelines reported in [47] and the best results

reported in [51]. The percentile for truncation selection set to

τ = 0.3 and k = 10 clusters. The cluster size is set to 50,

making the overall population size n = 500. The variance

multiplier decreaser of the adaptive variance scaling mech-

anism equals 0.9 and the standard-deviation ratio threshold

is set to 1.0. For the elitist archive, the objective space is

discretized in each objective with a discretization length of

10−3. This provides sufficient granularity for the final Pareto-

front approximations. In our experiments, we set the maximum

number of evaluations to 1·106, where one evaluation involves

computing the values of both objectives.

2) Results: Convergence graphs of the DPF →S metric

for all tested algorithms and all problems are presented in

Figure 8. From this Figure, the power of MOEAs is imme-

diately clear when comparing the convergence results of the

MOEA and the hybrid MOEA with the convergence results

of the individual random-restart gradient-based optimization

algorithms. All gradient-based optimization algorithms have

a probability of 0 of reaching the target value of 0.01 for

the DPF →S metric, with the exception of CORL on the

GenMED problems, for which the probability is 1. Both the

MOEA and the hybrid MOEA on the other hand reach the

target vale of 0.01 for the DPF →S metric on all problems

with probability 1, with the exception of problem EC4, for

which both the base MOEA and the hybrid MOEA have

a probability of 0 of reaching the target value within the

predefined budget of evaluations. Although the target value

of 0.01 was never obtained within the maximum number

of evaluations, the convergence graph indicates the hybrid

MOEA however continues to improve the Pareto front at the

function-evaluation limit, whereas the pure MOEA clearly

converges prematurely in some runs. Overall, in the long run

the performance of the hybrid MOEA is never worse than the

performance of the pure MOEA on the problems in our test

suite. However, it may take many evaluations before this added

advantage becomes clear.

In most cases, the adaptive resource allocation scheme is

capable of detecting when it is not fruitful to use gradient-

based optimization algorithms. Also, the adaptive resource

allocation scheme exploits the gradient-search optimization

algorithms to obtain faster convergence on two other problems,

i.e. on EC4 and BDs
2. However, on EC6 and BD1, a slower

convergence is obtained compared to when only the MOEA is

used. In the work in which the adaptive resource scheme was

proposed [30], this situation was not encountered. One reason

for this is that the base MOEA used here is more efficient.

Another reason is that the length of the improvements is not

taken into account. Although the gradient-based operators may

be able to obtain improvements, they may be small, leading

to an over-estimate of the number of times a gradient-based

operator should be applied.

A more detailed image of the resource division among the

different gradient-based optimization algorithms is depicted

in Figure 9. The number of evaluations that the adaptive

resource allocation scheme allows each of the gradient-based

optimization algorithms to use, is different for each problem.

Overall, CORL can be said to be the most useful as it is always

among the most frequently used algorithms. On the GenMED

problems and BDs
2 it is even used substantially more often.

With the exception of the GenMED problems and AORL

on the BDs
2 problem and ROCG on the BD1 problem, all

gradient-based optimization algorithms are found to be quite

equally beneficial to use by the adaptive resource allocation

scheme. This supports the use of a portfolio of local search al-

gorithms, in this case gradient-based optimization algorithms,

together with an adaptive resource allocation scheme for multi-

objective optimization. It also underlines the difficulty in

multi-objective gradient exploitation for optimization when

searching for a good approximation of the optimal Pareto front.
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Fig. 8. Convergence of the DPF →S metric for all tested algorithms and
all problems, averaged over 100 independent runs. Horizontal axis: number
of evaluations (both objectives per evaluation). Vertical axis: DPF →S .

There are multiple ways in which gradient information can be

exploited and our experiments indicate that it is a priori not

clear which way is going to be the most rewarding.

VII. DISCUSSION

In single-objective optimization, direct use of the gradient

is representative of only the simplest approaches, e.g. gradient

descent. More efficient and more advanced algorithms that

use second order gradient information or combinations of

gradients have long been known. Gradients for multi-objective

optimization have a much shorter history. It is for this reason

that only recently first steps have been reported in the literature

of going beyond direct use of gradient information only. For

instance, an algorithm that uses second-order derivative infor-

mation in multi-objective optimization was recently studied

by Shukla [54], both separately and in combination with EAs.

Similarly, Fliege, Graña Drummond and Svaiter [55] proposed

an algorithm to exploit second-order information in multi-

objective optimization. This algorithm was subsequently used

to hybridize MOEAs with by Koch et al [56]. Promising

results are reported, showing improvements over the use of the

MOEA alone on all tested problems. However, in that study,

gradient information was determined analytically instead of

using finite differences as is done in the work presented

here. The use of analytical gradients substantially reduces the

number of required function evaluations, making the use of

gradient-based optimization algorithms much more efficient if

only the number of function evaluations is counted.

The work presented here contributes to the understanding of

gradient information in multi-objective optimization by con-

sidering not a single optimal direction as the gradient, but by

considering all optimal improving directions simultaneously.

This paves the way for different interpretations of advanced

uses of gradient information such as second-order gradients.

This, in turn, may lead to new algorithms and an even more in-

depth understanding of numerical multi-objective optimization

problems. One interesting and important direction of research

along this line is to study the notion of conjugated gradients

for the multi-objective case, either taking a single optimal

improving direction to be the gradient, or considering all

optimal improving directions simultaneously, i.e. based on the

equations provided here.

VIII. CONCLUSION

We have presented a parameterized, analytical description

of the set of all non-dominated improving directions for any

point in the parameter space of a multi-objective optimization

problem. This description and its derivation provides insights

into the structure of the multi-objective gradient as well as

a solid basis for exploiting gradient information in numerical

multi-objective optimization. We have used this description

in a gradient-based optimization algorithm that we named

CORL (Combined-Objectives Repeated Line search). We have

investigated the use of CORL and two other gradient-based

optimization algorithms for numerical multi-objective opti-

mization separately and in combination with a MOEA.
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optimization algorithm.

Although CORL considers all optimal improving directions,

the direct application of CORL has upon application not

always been found to be superior. Superior performance has

only been observed on smooth functions, analogous to the case

of unimodal smooth functions in single-objective optimization.

In that case, upon repeated application, CORL was able to

find a spread-out approximation of the optimal Pareto front,

making the true practical value of CORL problem-specific.

The added use of gradient-based optimization algorithms in

a MOEA is only useful if the relative contributions made to the

overall improvement are at least as big as the relative amount

of resources it is allowed to spend. For multi-objective opti-

mization this criterion is harder to achieve because MOEAs

have the ability to advance multiple solutions simultaneously

towards different regions of the optimal Pareto front through

variation, giving it a bigger relative advantage than in the

single-objective case. For this reason, we believe a good

adaptive resource allocation mechanism for hybridization is

very important in multi-objective optimization. Given such a

mechanism, we found that gradient-based optimization algo-

rithms can indeed provide improvements compared to using a

non-hybrid MOEA, even if the gradients are estimated using

costly finite-difference approximations.
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