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Abstract. A key characteristic of Mixed-Integer (MI) problems is the presence
of both continuous and discrete problem variables. These variables can interact
in various ways, resulting in challenging optimization problems. In this paper,
we study the design of an algorithm that combines the strengths of LTGA and
iAMaLGaM: state-of-the-art model-building EAs designed for discrete and con-
tinuous search spaces, respectively. We examine and discuss issues which emerge
when trying to integrate those two algorithms into the MI setting. Our consider-
ations lead to a design of a new algorithm for solving MI problems, which we
motivate and compare with alternative approaches.

1 Introduction

Mixed-Integer (MI) optimization problems arise in many real-world application do-
mains. A key characteristic of MI problems is the presence of both continuous and
discrete problem variables. Many studies exist on dealing with either continuous or
discrete search spaces only. We are interested in studying if and how approaches origi-
nally designed for real or discrete domains only can be integrated for the mixed-integer
landscapes.

More specifically, we consider two state-of-the-art model building EAs: LTGA [7]
and iAMaLGaM [1]. Both were previously shown to exhibit excellent polynomial scale-
up behavior on various well-known black-box benchmark problems. We wish to study
if making use of the model building and learning abilities of both these algorithms can
be applied to MI problems while retaining some of the excellent scale-up behavior.
The model-building nature of these algorithms allows us to consider black-box prob-
lems where no prior information about a problem structure is known. Some research on
solving MI problems with EDAs has been discussed in [4], but was limited in terms of
possible variable dependencies.

We introduce an integrated implementation which relies on interleaving the model-
building capabilities of both EAs. Integrative dependency processing is the holy grail
of an approach using model-building algorithms to solve MI problems. It is important
to first understand the capacity and limitations of an approach that interleaves existing
individual models, as it allows us to better understand the requirements for integrative
dependency processing. A crucial aspect of designing such algorithm is determining a
way of maintaining a proper balance between structure learning and offspring creation
done by the two independent models. Obtaining such balance is a difficult task, as many
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challenges arise when dealing with MI landscapes, which do not exist in only discrete
or continuous spaces. Because of the nature of MI landscapes, performing independent
learning with different models for the continuous and discrete variables can easily lead
to premature convergence when some variables are not sufficiently explored, or to over-
exploration when too much focus is given to some variables. How difficult is it to achieve
a proper evaluation balance and adequate scalability as the problem size increases? Is it
even possible to solve dependent problems where continuous variables interact with the
discrete ones, while using integrated but independently learning models?

In order to answer these and other questions, we design and study mixed-integer
landscapes with different levels of variable interactions: no interactions, binary and/or
continuous interactions only, and interactions between both types of variables. We iden-
tify various problematic issues, and design methodologies to counteract those issues.
We also examine the performance of the existing Mixed-Integer Evolution Strategy
(MIES) [3] [5] on our benchmark set.

2 Background

Our approach to solving Mixed-Integer problems focuses on bringing together two
model-building algorithms, LTGA and iAMal.GaM, and carefully integrating them.

2.1 LTGA

The Linkage Tree Genetic Algorithm (LTGA) is a state-of-the-art model building GA
designed for solving discrete problems [7] [8]. It makes use of a hierarchical clus-
tering algorithm in each generation in order to learn variable dependencies, which are
represented via a linkage tree. In this model, each node of the linkage tree is a subset
between one and [; — 1 problem variables which form an important building block for
the solution.

During each generation, LTGA iterates over all solutions in the population in an
attempt to improve them: For each solution the linkage tree is traversed and each subset
of the tree is used as a crossover mask between a donor and the parent solution. A
donor is selected randomly from the population for each subset mask. In other words,
the values of variables clustered together at a given node of the linkage tree are copied
from a donor onto the parent solution. A result of each such crossover is immediately
evaluated. If the resulting offspring solution is better or equal than its parent, it instantly
replaces the parent. Otherwise, the offspring is discarded. This process is repeated until
all the linkage tree nodes are processed. This algorithm has been shown to work very
efficiently for various discrete problems [8].

2.2 iAMaLGaM

Incremental Adapted Maximum-Likelihood Gaussian Model Iterated Density Estima-
tion Evolutionary Algorithm (iAMalLGaM) is a state-of-the-art EDA for real-valued
black-box optimization (BBO) [1]. Following the general EDA paradigm, iAMalLGaM
estimates a probability distribution every generation from the selected solutions and
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generates new solutions by sampling the estimated distribution. The probability distri-
bution used in iAMalLLGaM is the Gaussian distribution. The mean vector and covari-
ance matrix are estimated incrementally using memory decay on maximum-likelihood
estimates. Risk of premature convergence is counteracted by a mechanism which scales
up the co-variance matrix when needed. Finally, Anticipated Mean Shift procedure is
implemented to improve the algorithm behavior in slope-like regions of the search
space. All these factors contribute to iAMalL.GaM achieving very good scale-up and
rotation-invariant behavior on many well known BBO benchmarks [2].

3 Integrated Algorithm

A solution to a mixed problem with a total problem length [ = [; + [., where 4 and [,
are the number of discrete and continuous variables respectively, is of the form:

X = XdXC = dO“-dld—l cp.--Cl.—1

where d; € {0,1},¢; € R and X4, X, are the sets of all discrete and continuous
variables, respectively.

Our integrated algorithm builds models over the two subspaces independently. Mod-
els can be build and exploited in various ways. A balance between the rates at which
this happens is likely to play an important role in the convergence properties of the al-
gorithm. The models in question have some common properties, which we can use as a
backbone for integration. Both models attempt to improve and generate new offspring
for each solution in the population during one generation, and learn a new model at the
beginning of a next generation. However, after a new model is generated, iAMaLGaM
creates the new continuous solutions by sampling from the new model. Once all the
offspring solutions are created, the generation ends. This means that for a population of
size n, iIAMalL.GaM performs n function evaluations within one generation.This differs
from the generational procedure of LTGA. The linkage tree contains 2{; — 1 nodes. Fol-
lowing the variation procedure of LTGA, a solution may need to be evaluated 2[5 — 1
times, giving the upper bound of n x (2l — 1) evaluations overall during one entire
generation. A straightforward approach of directly merging these models by keeping
their generations synchronized might not work well, as depending on the ratio of dis-
crete to continuous variables in a MI setting, one model could dominate the other by
exploring some areas of the problem too heavily, while leaving other regions potentially
not explored enough. This could lead to premature convergence or unnecessary over-
exploration of the search space. To address this potential imbalance, we introduce the
integrated EA in Figure 1. In this algorithm, the generational progress of the different
models is not the same, and takes into account the proportions between the number of
discrete and continuous problem variables. The continuous model is re-learned after
every solution in the population has been sampled. The discrete model however is only
re-learned after all of the 2l; — 1 nodes of the linkage tree have been processed for all
solutions. This balances the discrete and continuous evaluations much better regardless
of the ratio between those types of variables.

The algorithm generates the initial population randomly. Each solution P; in the pop-
ulation consists of a continuous component P;_ as well as a discrete component P;,. X;
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is the offspring solution. The core of the algorithm has two nested loops, which iterate
over each linkage tree subset, and additionally iterate over every solution for each of
the subsets. The continuous model is learned after a given subset was applied to each
solution. The discrete model, however, is learned only after all the subsets have been
tried on all solutions. This process continues until a termination condition is reached.
New solution acceptance criteria also differ. The continuous model is learned from the
top 7 = 0.35 fraction of the population, following iAMaLGaM. When continuous vari-
ables are sampled, they are always accepted without any other restrictions. The discrete
model is built from the entire population. To generate selection pressure, when a mask
is applied, the resulting solution is only accepted if it improves, or is equal to the solu-
tion following LTGA.

Mixed-Integer Hybrid EA GENERATECONTINUOUSPART(P;)
fori e {0,1,...,n—1} do X. < SAMPLECONTINUOUSMODEL()
P; + CREATERANDOMSOLUTION() X — X UP;y,
EVALUATEFITNESS(P;) EVALUATEFITNESS(X)
return X
while “TERMINATIONCRITERIONSATISFIED do GENERATEDISCRETEPART(j, X, P)
LEARNDISCRETEMODEL(P) Xprev < Xi
foriec {0,1,...,2l4— 1} do donor <~ GETRANDOMSOL(P)
S < TRUNCATIONSELECTION(P, T) X4 < COPYSUBSET (j, donor, X;)
LEARNCONTINUOUSMODEL(S) X+ X, UXy
for j € {0,1,...,n—1} do EVALUATEFITNESS(X)
X; < GENERATECONTINUOUSPART(P;) if fitness(X') > fitness(Xprev) then
X; < GENERATEDISCRETEPART(j, X;, P) return X
P+ X else

return Xprev

Fig. 1. Pseudo-code for generating solutions for mixed integer problems with the integrated ver-
sion of the LTGA and iAMal.GaM Learning Models

4 Experimental Results

4.1 Benchmark Problems

To design the MI benchmarks we use some well-established benchmark problems and
adapt them into the MI setting. In all problems, minimization is assumed. Definitions
of the well-established benchmark functions can be found in Table 1. Note that due to
minimization, zero is the optimal value for all our functions.

The Sphere function is a very simple continuous function, where all variables are
completely independent. Rotated Ellipsoid is a stretched version of the Sphere func-
tion. The R matrix rotates all variables by 45 degrees, creating dependencies between
all continuous variables. In the discrete domain, Onemax is arguably the simplest dis-
crete function, with no parameter dependencies. A Deceptive Trap function is a depen-
dent discrete function. The DTS5 function we use here is a non-overlapping, additively
decomposable composition of the well-known deceptive trap function, with order k=5.
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Table 1. Continuous and Discrete functions which are used to define our MI benchmarks

Function Name Domain Definition

Sphere Continuous Fsphere(Xe) = Sokete?

=0
Rotated Ellipsoid Continuous Fr.guip. (Xc) = Fruip. (R * Xc) , where

Feuip.(Xe) = Zlf—l 1064/ Ue=1) 4 (2

Onemax Discrete  Fonemaz(Xda) = Zld d;
Deceptive Trap  Discrete  Fprs(Xa) = Zld/k Ly S”in k(ZfH;j Yd; i)
where
sub 0 : Zf u=k
fTrap k= y
1—(k—=1-u)/k :otherwise

Independently Mixed Benchmarks. We consider all combinations of discrete and
continuous problems where the contributions of the discrete and continuous parts are
kept independent through addition, see Table 2. Variables in F; are fully independent.
Only continuous variables are dependent in F5. Only discrete variables are dependent
in F3. In F; both sub-spaces are dependent.

Table 2. 'y — F,: Domain Independent MI Benchmarks

ID Function name Definition
Fi OnemaxSphere Fi(Xg4, X,

F> Rotated Ellipsoid Fa (X4, Xc
F3  DT5Sphere  F5(Xg4, Xc
F, DT5Elipsoid Fi(Xg, Xe

Fonemaz(Xa) + Fsphere(Xec)
Fonemaz(Xa) + Fr.guip. (Xec)
Fprs(Xa) + Fsphere(Xe)
Fprs(Xa) + Fr.euip. (Xe)

¢) =
)
)
)

Cross-Domain Dependence Benchmark. The first four of our proposed benchmark
problems keep the dependencies within either continuous, discrete or both parameter
sub-spaces. The Fy benchmark includes cross-domain dependencies between the con-
tinuous and discrete variables. It is a specific combination of the previously defined
Fprs function with the rotated ellipsoid. It is additively decomposable and consists of
sub-functions pertaining to blocks of & discrete and & continuous variables.

More specifically, for a trap function with k = 5, there are 2¢ = 32 different binary
combinations per block. A differently translated rotated ellipsoid function corresponds
with each of those combinations (the origin of each function was randomly generated
in [-5,5]). This way, the continuous function which is being optimized depends on the
binary counterpart, introducing dependencies between the discrete and continuous vari-
ables that pertain to the same subset. In this benchmark the number of discrete variables
is the same as continuous variables: lg = . = [/2.

0.5!/k— a rtra ki+k— su oc oc
Fs (Xd’X) ZZ 50/ 1(1+10 ffubp(zj;;fi ldj)) (1+fEllbzpse(D?l kaczbl k))’

block ; block
D; C;

where is a block of five discrete variables, and are the corresponding five
real var1ables. The D block variables determine which of the 2 different ellipsoid func-
tions need to optimized, while the C block provides the values of the ellipsoid function
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variables. The a value acts as a scaling factor, changing the scale of contribution from
the trap function to the overall fitness. In order to solve this benchmark, the algorithm
needs to not only solve the trap function, but also optimize the correct rotated ellipsoid
function.

4.2 Results on Domain Independent Problems

Heat Maps. We compute the population size that corresponds to the minimal total
evaluations needed to solve a problem. The results shown are based on the population
sizes for which each problem was solved with the precision of 10710 at least 29/30
times with least evaluations. The results were obtained via bisection.

For the heat maps and scalability analysis of I} — F}; , we consider different problem
lengths: 40, 80, 120 and 160 total variables. For each of these problem sizes, we con-
sider different proportions of variables used with 5, .25(, .5, .75] and [ — 5 continuous
variables (and [ — [, corresponding discrete variables).

The heat maps in Figure 2 show how the proportions of variable types (discrete or
continuous) affects algorithmic efficiency in terms of population sizes and evaluations
required to solve the problem.
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Fig.2. Heat Maps representing the population sizes (top row) and evaluations (bottom row)
needed for different variable compositions. Horizontal axis represents the problem length, the
vertical axis is the fraction of continuous variables (I /(I + l4)) in the problem.

Intuitively F should be the simplest problem for the algorithm to handle, as it contains
no parameter dependencies. As the problem composition shifts towards more continuous
landscape, the algorithm requires more evaluations. The required population sizing is less
affected by the problem composition for Fj then for the remaining benchmarks. This can
be explained by the simplicity and independence of all problem variables.

The effects of changing the problem composition strengthen when partial dependen-
cies are introduced into the problem landscape. As with F}, for the remaining bench-
marks more evaluations are also required for the same problem sizes as the composition
of the problem shifts towards larger numbers of continuous variables. Moreover, as ex-
pected, benchmarks which contain dependencies within the continuous sub-space, F>
and Fy, require larger number of evaluations than F} or F3.
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Population sizes are also affected by the problem composition. In F3 and F; we
observe much larger population size requirements, as the landscape of these functions
includes discrete variable dependencies.

This shows that in addition to problem length, the composition of the problem and
variable dependencies are a big factor for efficiency in terms of evaluations and popu-
lation sizes.

Scalability. Figure 3 demonstrates changes in scalability of population size and evalua-
tions over benchmarks F; — Fy when the proportions of discrete to continuous variables
is changed. Results are shown on a log-log scale. This means that polynomial scalabil-
ity is indicated by straight lines. From the scalability graphs it is clear that factors such
as variable ratios and dependencies can strongly affect the behavior of our algorithm.
As expected, the results exhibit polynomial scalability on the tested MI problems.
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Fig. 3. Scalability of population size and evaluations required for benchmarks F, — Fj. Fraction
f represents the fraction of continuous variables in the problem with length [.

Table 3 shows linear least squares regressions on log-log-scaled data for minimal
average number of evaluations e and corresponding population sizes n depending on
the problem length [ and error term € as follows:

log(n) = log(1*) + ¢ and log(e) = log(1®) + e.

Table 3 shows that population sizes scale sub-linearly. It also shows that performance in
terms of evaluations scales more favorably as the problem shifts towards more discrete
variable composition.

The use of incremental estimates of iAMal.GaM is crucial in keeping small population
sizes. Maintaining evaluation balance and asynchronous model learning, as described in
the earlier section, leads to preventing over-exploration or premature convergence much
more efficiently than learning the continuous and discrete models synchronously. Graphs
(a) and (b) in Figure 4 verify these observations by showing the improved scalability on
F, over an approach using the original AMalLGaM and with the generations of both
models advancing simultaneously.
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Table 3. Regression coefficients for scalability

I Fia Foa Fsa Faa F18 F28 F3f8 Fup
5/15 0.3089 0.1621 0.4458 0.3840 1.1420 1.0663 1.4376 1.4132
0.251/0.751 0.1286 0.5216 0.2815 0.3146 1.6284 1.8432 1.4017 1.4876
0.51/0.51 0.1952 0.9152 0.3089 0.1370 1.6972 1.8940 1.5187 1.6252
0.751/0.251 0.4218 0.4557 0.3021 0.0727 1.7456 1.9291 1.7572 1.8815
I-55/5  0.3307 0.3307 0.2620 0.0539 1.8381 2.0427 1.8566 1.9880

Some overhead still exists, however. By simply combining a continuous problem
with a discrete one into one population and treating it as one MI problem, evaluation
overhead is introduced into the algorithm. In graph (b) of Fig. 4, the ”Separate” label
demonstrates what happens if the discrete and continuous sub-domains are solved sep-
arately. This separate approach is more efficient because the optimal population sizes
can be chosen individually. Additionally, the fitness function is not affected by the other
sub-domain. Of course this separate approach is not possible if cross-domain dependen-
cies are present in the problem.

We also consider an alternative approach based on Evolution Strategies (ES). MIES
[5] is an ES which extends (1 + A)-ES for continuous problems to the mixed-integer
search spaces. This approach applies a recombination operator, followed by a muta-
tion operator for every solution. Those operators are defined differently for continuous,
nominal discrete and integer problem variables. This procedure repeats until A offspring
solutions are created. Best u solutions from the union of the i parent solutions and the A
offspring are selected and carried over into the population P(t+1) [6].The MIES algo-
rithm has already been shown to work efficiently on some specific industrial problems
as well as a set of general MI benchmarks [5]. In graph (c) of Figure 4 we show the per-
formance of MIES on the F} benchmark. While it shows good scalability on this simple
benchmark, MIES was not able to solve the remaining F» — F; benchmarks within our
experimental limits. We conclude that due to existing variable dependencies in Fy — F)
MIES is not able to solve them efficiently, and requires additional mechanisms in order
to handle such MI problems.
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Fig.4. Importance of (a) incremental estimates and (b) evaluation balancing on Fy. (c¢) MIES
performance on F.
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4.3 Results on the Dependent Problem

Experimental results on F5 show that the hybrid algorithm we propose, which integrates
two independent models is in fact capable of solving this fully dependent benchmark,
however not without encountering another important obstacle which is unique to MI
problems, and which did not manifest itself as strongly in the other benchmarks. In this
problem, blocks of discrete variables control which continuous function needs to be
optimized with counterpart continuous variables. The discrete variables, as well as con-
tinuous variables, contribute to the overall fitness. This means that in order to find the
global optimum, the best discrete variable assignment has to be found, and the contin-
uous function mapped to this assignment must be optimized. The problem arises in the
actual numerical values of fitness contributions from either the discrete or continuous
sides. The cumulative fitness value of F5 can be very deceiving depending on the ac-
tual differences in scale of fitness contributions. In a regular, strictly discrete Deceptive
Trap function the actual fitness values are irrelevant - as long as the function remains
deceptive. This is no longer the case in a mixed-integer setting, where the total fitness
relies on the contribution from the continuous domain as well. If the trap values are
very small in comparison with the continuous variables fitness contributions it becomes
more difficult to optimize the discrete variables as they only appear as irrelevant noise
to the evaluation function. On the other hand, if the trap values are significantly larger
than ones from the continuous subspace, the problem becomes simpler. This behavior
is illustrated in Figure 5.

As shown in the definition of F5, a controls the scaling of the actual values of the trap
function. The larger a, the larger the fitness contribution of the deceptive trap values.
In essence, the larger a, the more important it is for the algorithm to solve the trap
function of F5. Figure 5 demonstrates how much impact this factor has on the success
of the algorithm. We were not able to consistently solve Fy for a values <1.1. For
these values, the trap function fitness contributions are initially very small, resulting
in the algorithm prematurely converging on sub-optimal solutions. As a increases, the
problem becomes simpler and requires smaller population sizes and less evaluations.

F5 Population Size Scalability F!
1000 T 1e+006 5

=
S
o
m
<
S
@
v
18
8
o
=4
=

it

1e+005F

00: -—

| o
G
Evaluations

Population Size
i

1
4

1e+004,
20

10 . .
20 40 60 40 60

Problem Size Problem Size

Fig. 5. Scalability on F5 for different values of a

5 Discussion and Conclusions

Mixed-Integer problems introduce many optimization challenges which do not arise
in purely real or discrete optimization problems. With the use of carefully designed
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benchmarks, we were able to identify some of such challenges. Obtaining a proper
balance in exploration of model information for different types of variables, varying
variable ratios and additional overhead or fitness contribution scaling are some of the
important issues which should be taken into account when solving MI problems. We
made use of two algorithms: LTGA and iAMalLGaM, which are state-of-the-art model-
based EAs for problems in discrete and continuous spaces respectively. By extracting
key features from these algorithms and carefully integrating the two different models,
we were able to study and solve mixed integer benchmarks with varying degrees of
variable dependencies. The resulting algorithm achieved polynomial scale-up behavior
on the tested benchmarks. We showed that a well-balanced algorithm can solve even
very dependent mixed-integer problems, despite having independent model learning
methods for the discrete and continuous sub-spaces. The results provide a good founda-
tion and motivation for further work in mixed-integer landscapes with model building
EAs. The existing MI EA known as MIES was not able to solve most of our benchmark
problems.

While it is very interesting to see that an independent learning approach is capable
of solving strongly dependent MI problems, we also learned that this approach has
its limitations. Problems with dependencies between the continuous and discrete sub-
spaces can be troublesome to an approach using independent learning models. This
was shown on the F5 where for some values of a the algorithm did not succeed. This
motivates further work into fully integrating the discrete and continuous models in order
to allow learning of cross-domain dependencies, making it possible to solve a greater
range of dependent problems.
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