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Purpose: The purpose of this study is to improve upon a recently introduced bi-objective treat-
ment planning method for prostate high-dose-rate (HDR) brachytherapy (BT), both in terms of
resulting plan quality and runtime requirements, to the extent that its execution time is clinically
acceptable.
Methods: Bi-objective treatment planning is done using a state-of-the-art multiobjective evolution-
ary algorithm, which produces a large number of potential treatment plans with different trade-offs
between coverage of the target volumes and sparing organs at risk. A graphics processing unit (GPU)
is used for large-scale parallelization of dose calculations and the calculation of the dose-volume
(DV) indices of potential treatment plans. Moreover, the objectives of the previously used bi-objec-
tive optimization model are modified to produce better results.
Results: We applied the GPU-accelerated bi-objective treatment planning method to a set of 18
patients, resulting in a set containing a few hundred potential treatment plans with different trade-offs
for each of these patients. Due to accelerations introduced in this article, results previously achieved
after 1 hour are now achieved within 30 seconds of optimization. We found plans satisfying the clini-
cal protocol for 15 of 18 patients, whereas this was the case for only 4 of 18 clinical plans. Higher
quality treatment plans are obtained when the accuracy of DV index calculation is increased using
more dose calculation points, requiring still no more than 3 minutes of optimization for 100 000
points.
Conclusions: Large sets of high-quality treatment plans that trade-off coverage and sparing are now
achievable within 30 seconds, due to the GPU-acceleration of a previously introduced bi-objective
treatment planning method for prostate HDR brachytherapy. Higher quality plans can be achieved
when optimizing for 3 minutes, which we still consider to be clinically acceptable. This allows for
more insightful treatment plan selection in a clinical setting. © 2019 American Association of Physi-
cists in Medicine [https://doi.org/10.1002/mp.13681]
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1. INTRODUCTION

Treatment planning for prostate high-dose-rate (HDR)
brachytherapy (BT)1 consists of finding a specific dwell time
for each dwell position, such that a desirable dose distribution
is achieved. The main difficulty of treatment planning comes
from the fact that the target volume(s) should receive suffi-
cient dose, while the surrounding organs at risk (OARs)
should receive as little dose as possible. For this reason, some
form of automated optimization is often used to find a set of
dwell times such that all clinical criteria are satisfied, or are
as close as possible to being satisfied. Such clinical criteria

are generally defined in terms of dose-volume (DV) planning
criteria (see Section 2.C).

Despite the fact that a treatment plan is often evaluated
based on its DV indices, inverse planning methods frequently
used in clinical practice do not directly optimize the DV
indices.2,3 Instead, for the purpose of efficiency, a penalty-
based approach is used, which aims to minimize the sum of
penalty values of all dose calculation (DC) points, with a pen-
alty value assigned to a DC point when the dose at that point
is outside the range of acceptable dose values. This reformu-
lated problem is then optimized using, for example, simulated
annealing,3 linear programming,4 or the Broyden–Fletcher–
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Goldfarb–Shanno (BFGS) algorithm.2 It was previously
shown that such a penalty-based problem formulation weakly
correlates with the quality of DV indices.5 The optimal solu-
tion to a penalty-based problem formulation may not satisfy
all clinical criteria, even if such a treatment plan does exist
for the respective patient. Furthermore, finding optimal
patient-specific weights for a penalty-based problem formula-
tion is an arguably unintuitive and labor-intensive process.

Several studies have looked into directly optimizing DV
indices using linear programming,6 mixed-integer linear pro-
gramming,5 simulated annealing,7 or evolutionary algo-
rithms.8 These approaches generally solve a relaxed version
of the problem, or use a small number of dose calculation
points, because solving plans to optimality directly using DV
indices is known to take far too long for clinical practice,7

necessitating state-of-the-art modern heuristics.
A core aspect of the difficulty of brachytherapy planning

is caused by the inherent trade-off between tumor coverage
and organ sparing, that is, any increase in dose to the target
volumes also leads to an increase in dose to the OARs.

In order to gain more insight into the trade-off between
coverage and sparing, a bi-objective treatment planning
model and optimization method was previously introduced.8

Multi-Objective Evolutionary Algorithms (MOEAs) are
known to be among the state of the art when dealing with
problems involving two or three conflicting objectives.9

MOEAs are capable of finding large sets of potential solu-
tions, with each solution having a different trade-off between
the objectives of interest, that is, tumor coverage and organ
sparing in this scenario. The optimization of a set of treat-
ment plans allows for more insightful treatment plan selec-
tion, as it is directly clear how much sparing needs to be
sacrificed in order to improve the tumor coverage by a certain
amount. This can be especially useful in cases where it is not
possible to satisfy all criteria defined in the clinical protocol,
for example, due to suboptimal catheter placement, making it
more difficult to find a desirable trade-off between coverage
and sparing.

The aforementioned bi-objective treatment planning
method uses a novel MOEA, named MO-RV-GOMEA,10 as it
performed better than other state-of-the-art MOEAs.8 More-
over, in a recent observer study for 18 prostate cancer patients
with three physicians as observers, plans resulting from this
approach were found to be preferable compared to plans result-
ing from the current clinical workflow at our clinic.11 However,
this treatment planning method requires approximately 1 hour
of computation time on a single CPU core, exceeding the
acceptable amount of computation time in clinical practice.

In this article, we improve the quality of plans found by
the previously introduced bi-objective treatment planning
method8 by improving the optimization model and method,
and we accelerate the method to the extent that its execution
time is clinically acceptable. Specifically, we apply large-
scale parallelization on a graphics processing unit (GPU). By
doing so, the method is sped up so much that it can even be
used to intrinsically improve the approach by increasing the
number of so-called dose calculation points used for

calculating the DV indices, decreasing the effect of overfitting
and increasing the quality of treatment plans.

2. MATERIALS AND METHODS

2.A. Data

A dataset of 18 patients with intermediate- and high-risk
prostate cancer, previously treated at the Amsterdam UMC in
Amsterdam, the Netherlands, is used for all experiments in
this article. These patients were treated between February
2015 and April 2017 with external beam radiotherapy on the
prostate and base of the seminal vesicles to a dose of 44 Gy
in daily fractions of 2.2 Gy followed by a single dose of
13 Gy HDR brachytherapy on the prostate. A median of 16
(range: 14–20) catheters were implanted, resulting in a med-
ian of 413 (range: 250–668) dwell positions. Catheter recon-
struction and contouring of Regions Of Interest (ROIs) were
done on three orthogonal pelvic T2-weighted turbo spin echo
MRI (Ingenia 3 T Philips Healthcare, Best, the Netherlands)
scans with a resolution of 0.52 9 0.52 mm, and a slice thick-
ness of 3.0 mm with a 0.3 mm gap. Three interpolated con-
tours were added between each contoured slice of each ROI.
The clinical plans that these patients were treated with were
obtained through optimization with IPSA3 or HIPO2 using a
standard set of objectives, followed by graphical optimization.

2.B. Clinical protocol

In clinical practice, the quality of a treatment plan is often
assessed in terms of the DV histogram or a set of DV indices,
and a visual inspection of the dose distribution. At the Amster-
dam UMC in Amsterdam, the Netherlands, treatment plans
were evaluated based on a clinical protocol consisting of a set
of aspiration values for various DV indices. A dose index Do

v
defines the dose received by the most irradiated subvolume v
of ROI o. A volume index Vo

d defines the subvolume of ROI o
receiving a dose of at least d. Any amount of dose is expressed
as a percentage of the prescription dose (PD). The clinical pro-
tocol for HDR prostate BT at the AMC is given in Table I.

2.C. DV index estimation

DV indices are generally estimated using a randomly gen-
erated (Monte Carlo-sampling) or a regularly distributed set
of DC points.12 When using Monte Carlo-sampling, ROIs are

TABLE I. Clinical protocol for HDR prostate BT at the AMC. Aspiration val-
ues are defined as a percentage of the prescription dose of 13 Gy

Prostate Bladder Rectum Urethra
Seminal
vesicles

V100 [ 95% D1cm3\86% D1cm3\78% D0:1cm3\110% V80 [ 95%

V150\50% D2cm3\74% D2cm3\74%

V200\20%

D90 [ 100%
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represented by a large set of DC points d, with di describing
the total dose received by the DC point with index i. The sub-
set of DC points in an ROI o is defined as do. In this work, an
equal number of DC points is sampled in each ROI.

A volume index Vo
d is estimated by calculating the fraction

of DC points in ROI o that receives at least a dose d, that is,

Vo
d ¼ jfdi 2 dojdi � dgj

jdj :

A dose index Do
v is estimated by first selecting the subset

of DC points in o that receives the highest dose, such that the
equivalent volume of this set of points is equal to v. The value
of Do

v is then equal to the minimum dose received by any DC
point in this set. Given the sequence ds;o, describing the
sequence do in descending order, Do

v is defined as

Do
v ¼

ds;obv=voc
PD

:

For an accurate estimation of DV indices, using a suffi-
ciently large set of DC points is necessary.12 This is especially
important when DV indices are directly optimized using auto-
mated treatment planning, as this approach is prone to over-
fitting. This means that DV indices optimized using a certain
set of DC points will always become worse when recalculated
using a larger, more representative, set of DC points. The lar-
ger the set of DC points used for optimization, the more accu-
rate the DV index calculation, and the smaller the effect of
overfitting. Using a larger set of DC points does however
increase the computational effort to estimate DV indices,
making the optimization procedure more time consuming.
Since the dose in all DC points can be calculated indepen-
dently, the efficiency of DV index estimation can be greatly
increased by the use of a GPU.

In this article, the reported DV indices of any optimized
plan are recalculated after optimization on a set of 500 000
independently sampled DC points, identical to the standard
setting in Oncentra Brachy (version 4.5, Elekta AB, Stock-
holm, Sweden).

In Section 3.A, we show how the number of DC points
affects treatment plan quality of the automated treatment
planning method used in this article.

2.D. Bi-objective treatment planning model

Previously, we proposed a bi-objective optimization
approach8,13 using two objectives that are directly defined in
terms of the DV indices of a treatment plan. Dwell times of
all activated dwell positions, those within a target volume
plus 5 mm margin and outside of the urethra plus 1 mm mar-
gin, are optimized. This optimization approach was previ-
ously validated in a retrospective observer study,11 showing
that plans produced by solving this bi-objective model with
the multiobjective evolutionary algorithm GOMEA10 were
preferred over the clinically used plan in all cases.

The two objectives of the bi-objective optimization model,
the least coverage index (LCI) and least sparing index (LSI),

quantify how much the DV indices of a treatment plan devi-
ate from the aspiration values specified in the clinical proto-
col, with regard to tumor coverage and organ sparing,
respectively. Positive values for either LCI or LSI indicate
that the clinical protocol has been satisfied with regard to
coverage or sparing, respectively.

Given the protocol in Table I, the LCI and LSI of a treat-
ment plan t are defined as

LCIðtÞ ¼minfdcðVprostate
100 Þ; dcðVvesicles

80 Þg;
LSIðtÞ ¼minfdsðDbladder

1cm3 Þ; dsðDbladder
2cm3 Þ; dsðDrectum

1cm3 Þ;
dsðDrectum

2cm3 Þ; dsðDurethra
0:1cm3Þg;

dcðVo
d Þ ¼ Vo

d � Vo;min
d ;

dsðDo
vÞ ¼ Do;max

v � Do
v ;

where Vo;min
d , and Do;max

v are aspiration values defined by the
clinical protocol. We further refer to values of dc and ds as
DV delta values.

The aspiration values for Vprostate
150 and Vprostate

200 are excluded
from the LSI, as is done in previous work,8 because these
volume indices have a different unit than the remaining dose
indices in the LSI, making them difficult to be compared to
each other. Instead, the aspiration values for these volume
indices are included as hard constraints, meaning that any
plan produced by the optimization procedure must satisfy
these aspiration values. Furthermore, the clinical criterion
Dprostate

90 [ 100% is not included in the LCI, because this cri-
terion is always satisfied when Vprostate

100 [ 95% is satisfied.
A benefit of optimizing the LCI and LSI is that their out-

come strictly depends on the most violated DV index, which
is the DV index with the lowest corresponding DV delta. All
optimization effort is therefore spent on trying to optimize
the most violated DV index. However, this means that any
small improvement of the most violated DV index will be
preferred over a much larger improvement of a different
index, as long as this does not change which DV index is the
most violated. Furthermore, optimization of remaining DV
indices is no longer possible if the most violated DV index
has reached its optimal value. Intuitively, it is desirable to
spend some optimization effort on DV indices that are not the
most violated, especially in the aforementioned cases. For
this reason, we define adaptively weighted variations of LCI
and LSI, denoted LCIw and LSIw.

To compute the LCIw, the required DV deltas are first
sorted in descending (DESC) order to find the order of DV
indices from least to most violated. For the LCIw, the sorted
list of DV deltas is defined as

Ds
c ¼ sortDESCð½dcðVprostate

100 Þ; dcðVvesicles
80 Þ�Þ:

Similarly, for the LSIw, the sorted list of DV deltas is defined
as

Ds
s ¼ sortDESCð½dsðDbladder

1cm3 Þ; dsðDbladder
2cm3 Þ; dsðDrectum

1cm3 Þ;
dsðDrectum

2cm3 Þ; dsðDurethra
0:1cm3Þ�Þ:
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Given the sorted list of DV deltas, the LCIw and LSIw are
then defined as a weighted sum of DV deltas, where the DV
delta with the highest value, that is, corresponding to the least
violated DV index, receives a weight of 1 and consecutive
weights increase exponentially by a factor of k = 10. All
weights are then normalized to the range between 0 and 1.
Note that the weights associated with individual DV deltas
are dynamic throughout optimization, because the sorted
order may change, and are not set by a user.

LCIw and LSIw are defined as

LCIwðtÞ ¼ wcðdcðVprostate
100 ÞÞ þ wcðdcðVvesicles

80 ÞÞ;
LSIwðtÞ ¼ wsðdsðDbladder

1cm3 ÞÞ þ wsðdsðDbladder
2cm3 ÞÞ

þ wsðdsðDrectum
1cm3 ÞÞ þ wsðdsðDrectum

2cm3 ÞÞ
þ wsðdsðDurethra

0:1cm3ÞÞ;

wcðdÞ ¼ kr�1

PjDs
cj

i¼1 k
i�1

d with r s.t. Ds
c½r� ¼ d;

wsðdÞ ¼ kr�1

PjDs
sj

i¼1 k
i�1

d with r s.t. Ds
s½r� ¼ d;

where rank r is a one-based index that indicates the position
of the respective DV index in the sorted list of indices.

For k = 1, LCIw and LSIw define equally weighted linear
combinations of their respective DV deltas. This would result
in a loss of focus on the most violated DV index, making it
more difficult to find solutions satisfying all clinical criteria.
As k increases, the importance of the most violated DV index
is increased. For k approaching infinity, LCIw and LSIw are
identical to the LCI and LSI. The value of k = 10 was empiri-
cally determined to produce equally good solutions in terms
of LCI and LSI as the previously used bi-objective model,8

while increasing the quality of DV indices that are not the
most violated.

In this article, we use MO-RV-GOMEA with the LCIw
and LSIw as optimization objectives, unless stated otherwise.
Note that the LCIw and LSIw no longer have the property that
a positive value indicates that all clinical criteria have been
satisfied. For this reason, we generally report LCI and LSI in
Section 3, even when LCIw and LSIw were used as optimiza-
tion objectives.

In Section 3.B, we analyze how the results of the opti-
mization are affected by using the LCIw and LSIw as opti-
mization objectives, compared to the LCI and LSI.

2.E. Multiobjective evolutionary algorithm

Evolutionary Algorithms (EAs)14 are computational
heuristics that can be distinguished by the fact that a set,
called the population, of potential solutions is maintained,
rather than a single solution. In our case, a population of 96
solutions is used, where each solution represents a treatment
plan. The fitness of a solution, in this case defined in terms of
LCI and LSI, defines its relative quality. During each genera-
tion of an EA, variation is applied in order to generate a set of
new potential solutions, called the offspring. By applying

selection, the solutions with the best fitness from the com-
bined population and offspring form the population of the fol-
lowing generation, and non-selected solutions are discarded.

EAs are known to be among the state of the art in the field
of multi-objective optimization.9 The result of a multi-objec-
tive EA is a set of solutions that each have a different trade-
off with regard to the objectives. In this article, we specifi-
cally use the Multi-Objective Real-Valued Gene-pool Opti-
mal Mixing Evolutionary Algorithm (MO-RV-GOMEA),10

as it was shown to achieve the best performance among a set
of state-of-the-art multiobjective EAs on bi-objective treat-
ment planning for prostate HDR BT.8 MO-RV-GOMEA uses
an archive with a maximum capacity of 1250 to store all
plans for which no better plan was previously found. In this
context, we consider a plan to be better when it Pareto-domi-
nates the other plan in terms of LCI and LSI, that is, it has a
better LCI value and an LSI value that is at least as good, or
vice versa. This archive is constantly updated whenever new
plans are found. At the end of an optimization run, all plans
in the archive are presented as the results of the optimization.

We refer the interested reader to Section S-A of the Sup-
porting Information for detailed parameter settings of MO-
RV-GOMEA.

2.F. GPU-accelerated bi-objective treatment
planning

GPUs are widely used for the purpose of high-perfor-
mance computing, both within the field of medical physics,15

for example, for dose calculation,16–19 and in the field of evo-
lutionary computation.20–23 Because the design of GPUs is
particularly suited for specific forms of large-scale parallel
computation, they are very suitable for high-performance
dose calculation, as the dose in all DC points can be calcu-
lated in parallel.

By far the most time-consuming procedures of the bi-ob-
jective treatment planning method are the dose calculation
and the calculation of the DV indices of the treatment plans
in the population. Due to the use of an EA, these procedures
are always performed on the entire population, further
increasing the potential for parallelization. We therefore use a
GPU to improve the performance of the population-wide
dose and DV index calculation. Specifically, the GPU that is
used in this work is an NVIDIA Titan Xp, and all program-
ming for the GPU is done in CUDA.24 Using an NVIDIA
Titan Xp GPU, our treatment planning method currently sup-
ports the optimization of sets up to 500 000 DC points.

We use a parallel dose calculation method that we previ-
ously introduced.25 In this method, the dwell times of all
treatment plans in the population are stored in a matrix T,
where each row describes the set of dwell times of one treat-
ment plan. The dose in all DC points is then calculated
through the matrix–matrix multiplication D ¼ TRT , where R
is a dose-rate matrix according to the TG-43 model.26 Ele-
ment R[i,j] describes the dose contribution in Gy/s of the
source at dwell position with index i to the DC point with
index j. Each row of D describes the dose in each DC point
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of one potential treatment plan in the population. The number
of rows of D is therefore equal to the population size, and the
number of columns is equal to the number of DC points.

The used optimization algorithm, MO-RV-GOMEA,10

often finds new potential treatment plans by modifying a
small number of dwell times of a potential treatment plan cur-
rently existing in the population. When this is the case, the
dose distribution D0 of the modified treatment plan is calcu-
lated more efficiently through D0 ¼ Dþ DTRT , with DT the
matrix of differences in dwell times.25 Matrix DT has few col-
umns with non-zero elements, equal to the number of dwell
times that have been modified. Only these columns with non-
zero elements are considered for the calculation of D0.

The estimation of dose indices requires sorting the dose in
the DC points of each ROI for which a dose index must be
calculated, for each potential treatment plan. For this pur-
pose, each DC point di is assigned an identifier IDi, such that
DC points in the same ROI of the same treatment plan are
assigned an identical ID. A list L of dose/ID pairs is then cre-
ated, that is, L ¼ ½ðd0; ID0Þ; ðd1; ID1Þ; . . .�. The Thrust
library,27 which contains a large number of CUDA utility
functions, is then used to sort L by dose value in ascending
order. This is followed by the Thrust stable sort procedure,
sorting L by ID in ascending order. The stable sort procedure
sorts L by ID, but maintains the relative order of items with
an identical ID. As the dose values of L were previously
sorted, this means that L will be sorted by ID, but dose values
with the same ID remain sorted. The above two sorting pro-
cedures therefore result in a list of DC points that are firstly
sorted by key, and secondly sorted by dose. A dose index is
then calculated according to Section 2.C.

The estimation of volume indices requires counting the
number of DC points that receive at least a certain dose. For
this purpose, all required DC points are first compared to
their respective aspiration value in parallel, resulting in a
large array of Boolean values. Thrust is then used to compute
a cumulative sum of this array, after which the number of
points achieving their respective aspiration value can be triv-
ially computed for any subsequence of this array. A volume
index is then calculated according to Section 2.C.

The sampling of DC points and the creation of the dose-
rate matrix are not included in the optimization times pre-
sented in this article. Dose points are sampled using four
CPU cores in parallel, and the dose-rate matrix is calculated
on a single CPU core and then copied to the GPU memory.
For a set of 100 000 DC points, this takes approximately
2 seconds on average.

In Section 3.C, we compare treatment plans optimized
with the GPU-accelerated bi-objective treatment planning to
the set of clinical plans.

3. RESULTS

In Section 3.A, we show how the outcome of optimization
in terms of LCI and LSI depends on the number of DC
points. Section 3.B then shows the effect of the introduction

of the LCIw and LSIw on the optimization. Finally, the quality
of the results achieved by our bi-objective treatment planning
method is shown in Section 3.C.

3.A. DV index estimation

In Fig. 1, we illustrate the impact of the number of DC
points on the optimization results. This figure shows the
treatment plans found after completing 30 runs of the opti-
mization with a time limit of 10 minutes on a set of 5000,
10 000, 20 000, 50 000, 100 000, and 200 000 DC points,
respectively. A time limit of 10 minutes was used for all set-
tings, as this time limit was found to be sufficient to obtain
the maximum achievable performance for each of the tested
number of DC points.

Figure 1(a) shows the perceived LCI and LSI, calculated
using sets of 5000, 10 000, and 20 000 DC points used for
optimization. The perceived LCI and LSI values, that is, as
computed by the optimization algorithm, suggest that better
treatment plans can be found when smaller numbers of DC
points are used. However, Fig. 1(b) shows a substantially
more accurate calculation of the LCI and LSI values of the
identical set of plans, using a set of 500 000 independently
sampled DC points. Because Fig. 1(b) shows a reduction in
LCI and LSI compared to Fig. 1(a), this indicates that the
quality of the resulting plans is substantially worse than per-
ceived during optimization. This is caused by the fact that too
small sets of DC points are not a good representation of their
respective ROI. Due to this effect, no plan satisfying all clini-
cal criteria was found for 8 of 30 runs when 5000 DC points
were used for optimization. This was still the case for 2 of 30
runs when 10 000 DC points were used for optimization.

Figures 1(c) and 1(d) show that the difference between per-
ceived and accurate LCI and LSI are much smaller when sets
of at least 50 000 DC points are used for optimization. Further-
more, comparing Figs. 1(b) and 1(d) shows that the actual LCI
and LSI obtained when solving for up to 20 000 DC points are
clearly worse than the optimization algorithm perceives,
whereas the difference between perceived and accurate LCI
and LSI is much smaller for the set of 100 000 DC points.

As Fig. 1(d) shows a negligible difference between opti-
mization outcomes for 100 000 and 200 000 DC points, a set
of 100 000 DC points seems sufficiently large for a reliable
calculation of the LCI and LSI during optimization.

3.B. Bi-objective treatment planning model

Figure 2 shows how the use of LCIw and LSIw as opti-
mization objectives, shown in the bottom row, affect opti-
mization results, compared to the use of LCI and LSI, shown
in the top row. In the middle plots, all DV indices of each
treatment plan are displayed in a separate color. Each treat-
ment plan is therefore represented by five different data
points in different colors (online version only), by definition
aligned vertically, as each plan is defined by a single value
for its LCI. In the rightmost plots, the coverage of the prostate
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and seminal vesicles are shown for each treatment plan. Each
treatment plan is represented by two data points in different
colors (online version only), aligned horizontally.

The leftmost two figures show no perceivable difference
of the LCI and LSI between weighted and nonweighted LCI
and LSI. This means that both approaches find very similar
values for the most violated DV indices in terms of coverage
and sparing. However, the remaining subfigures show that
optimizing the LCIw and LSIw results in better values for the
DV indices that are not the most violated.

The middle subfigure of Fig. 2 shows slight improve-
ments for Dbladder

1cm3 , Dbladder
2cm3 , Drectum

1cm3 , and Drectum
2cm3 in case of

using LCIw and LSIw instead of LCI and LSI. In addition,
much better values are found for the Vvesicles

80 , showing that,
for this patient, satisfying the clinical criterion for this
index is possible regardless of the achieved LSI. Note that
this is not the case for each patient, as shown in Figs. S1–
S4, because this depends on the patient anatomy and cathe-
ter placement. As shown in Fig. 4, it is still difficult to
achieve good vesicle coverage for patient 1, and for various
other patients for which results are shown in Figs. S1–S4
of the Supporting Information. Overall, however, the results
indicate that optimizing the LCIw and LSIw leads to better
results in terms of individual DV indices than optimizing
the LCI and LSI.

3.C. GPU-accelerated bi-objective treatment
planning

We now show more detailed results obtained by optimiz-
ing for sets of 20 000 and 100 000 DC points, as the former
setting was used when our bi-objective approach was intro-
duced and validated,8,11 and the latter setting is one we
decided upon in Section 3.A. Results obtained by optimizing
for sets of 5000, 10 000, 50 000, and 200 000 DC points are
included in Table SI of the Supporting Information. Further-
more, Table SII of the Supporting Information contains
results for 20 000 and 100 000 DC points using time limits
of 30, 60, 180, and 300 seconds. In Fig. 3, we show the

results of 30 optimization runs, each with a newly sampled
set of DC points, for patients 1, 2, and 3, optimized on
20 000 and 100 000 DC points.

The optimization with 20 000 DC points resulted in a set
of 461 treatment plans on average. After reevaluation using
500 000 DC points, 236 plans remained on average, as any
plan was removed from the set of results when it was Pareto-
dominated by a different plan. The optimization with
100 000 DC points resulted in a set of 658 treatment plans
on average. After reevaluation using 500 000 DC points, 428
plans remained on average.

When 20 000 DC points are used for the optimization,
results obtained after 30 seconds are similar to those
obtained after 10 minutes. Furthermore, variation in LCI
and LSI can be fairly large for this number of DC points.
When 100 000 DC points are used, a clear increase in LCI
and LSI is observed for time limits up to 180 seconds. Most
importantly, there is little variation in the 30 different runs
using 100 000 DC points, meaning that this number of DC
points more reliably results in a set of high-quality treatment
plans. Although there is still a minor difference between
optimizing for 180 or 600 seconds, we argue that this differ-
ence can be considered irrelevant. Optimizing for 300 or
600 seconds could be considered depending on the strict-
ness of clinical time constraints.

Table II shows, for each patient used in this study, the clini-
cal plan along with two plans selected from the result of the
optimization on 20 000 DC points and 100 000 DC points. A
time limit of 30 seconds was used for the optimization on
20 000 DC points, and 3 minutes for the optimization on
100 000 DC points. For both settings of the number of DC
points, the optimization was performed 30 times per patient.
The selected plan is the plan with the maximum achieved LCI
that satisfied all sparing criteria, that is, achieved an LSI larger
than 0. This plan is selected to show how much coverage can
be achieved while all sparing criteria are satisfied. Although
we show only one plan from each optimization run in Table II,
each optimization run produced many plans with different
trade-offs between coverage and sparing, as shown in Fig. 4.

(a) (b) (c) (d)

FIG. 1. Treatment plans found after 10 minutes for patient 1, shown in different colors (online version only) pertaining to the number of DC points used for opti-
mization. All figures show the combined results of 30 independent runs (to show the degree of variance in outcomes) for each setting of the number of DC
points. Perceived LCI and LSI ((a) and (c)) indicate the LCI and LSI values as calculated by the optimization algorithm on the given set of DC points. More accu-
rate LCI and LSI values ((b) and (d)) are calculated using a set of 500 000 independently sampled DC points. The clinical plan is shown as a red square.
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Only 4 of 18 clinical plans satisfied all clinical criteria,
whereas the optimization consistently (30 of 30 runs) found
plans satisfying all clinical criteria for 15 of 18 patients. No
plans satisfying the clinical protocol were found for the
remaining three patients due to suboptimal catheter place-
ment. The value of optimizing on a large number of DC
points is mostly shown for patient 7, as all runs optimized on
100 000 DC points found a plan satisfying all clinical crite-
ria, whereas this was not the case when optimizing 20 000
DC points.

A common characteristic of the clinical plans is that the
urethra received a relatively large amount of dose, as the clin-
ical criterion for the Durethra

0:1cm3 was satisfied for only 5 of 18
clinical plans. Compared to the clinical plans, some sparing
of the rectum was sacrificed in many cases of the bi-objec-
tively optimized plans. On average, the Drectum

1cm3 increased by
0.46 Gy, and the Drectum

2cm3 increased by 0.43 Gy. However, the
Durethra

0:1cm3 was reduced by 0.68 Gy on average.
Figure 4 shows the combined results of 30 optimiza-

tion runs for patient 1, compared to the clinical plan. All
30 runs are displayed in this figure to show the variance
of the resulting treatment plans, caused by the stochastic
nature of the optimization, and of random sampling of
DC points. The variance of a DV index also depends on
the difficulty of satisfying the corresponding criterion

defined in the clinical protocol, because DV indices that
are more difficult to satisfy are assigned a larger weight
in the LCIw and LSIw. Similar to Fig. 2, all DV indices
of each treatment plan are displayed in a separate color
according to the legend, and the clinical plan is displayed
as a square. For each value of the LCI and LSI, Fig. 4
shows the corresponding values for all DV indices. Plots
for all remaining patients are included in the supplemen-
tary material.

4. DISCUSSION

In this article, we introduced a GPU-based acceleration of
a previously introduced bi-objective evolutionary optimiza-
tion approach for treatment planning for HDR prostate
brachytherapy. This bi-objective treatment planning method
directly optimizes DV indices, whereas conventional treat-
ment planning methods, for example, IPSA3 or HIPO,2 use a
penalty-based optimization model that weakly correlates with
the quality of DV indices.5

In contrast to a more recently introduced multicrite-
ria optimization approach28 that requires pretrained
regression models to guide the optimization toward clin-
ically acceptable plans, our bi-objective evolutionary
optimization approach requires no prior training,

FIG. 2. Results for patient 2. The top row shows results found when the LCI and LSI are used as optimization objectives. The bottom row shows results found
when the LCIw and LSIw are used as optimization objectives. Subfigures show all plans found by 30 independent optimization runs, to show variation, using a
set of 100 000 DC points, and a time limit of 3 minutes. DV indices of the clinical plan are displayed as squares with identical colors (online version only) to the
optimized treatment plans. In all subfigures, the (non-weighted) LCI and LSI are displayed, calculated using a set of 500 000 DC points.
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because it directly calculates all relevant DV indices
throughout optimization. As our bi-objective evolution-
ary optimization approach requires between 30 and
300 seconds, we have shown that it is indeed possible
to approximate a surface of trade-off plans within a
clinically acceptable time frame.

Increasing the accuracy of DV-index calculation by
increasing the number of DC points further improves the DV
indices achieved by the bi-objective optimization approach,
with very good results obtainable in 3 minutes on 100 000
DC points. Even this more time-consuming approach is

arguably still within the time limit of clinical practice,
because planning in our clinic currently takes 30–60 minutes,
which is mainly spent on graphical optimization.11 Increasing
the number of DC points beyond 100 000 would further
increase the required computation time for a negligible
increase in plan quality.

From Section 3.A, we conclude that a sufficient number
of DC points should be used to prevent the optimization from
overfitting and thus to make sure the most benefit is achieved
from using inverse planning. For sets of at least 100 000 DC
points, the effect of overfitting was found to be negligible.

FIG. 3. Bi-objectively optimized plans for patients 1, 2, and 3, obtained after optimizing for the specified number of seconds, with 20 000 or 100 000 DC
points. Results shown here are reevaluated on 500 000 DC points. To show the joint variation of the optimization and sampling of DC points, all treatment plans
from 30 independent optimization runs are shown. The clinical plan is displayed as a red square.

FIG. 4. Combined results of 30 optimization runs for patient 1, optimized for 3 minutes on 100 000 DC points with LCIw and LSIw as objectives, showing cor-
responding values of all DV indices for each value of the LCI and LSI.
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These results were found using points that were sampled uni-
formly at random in each ROI, because random sampling was
previously found to be a better estimator of DV indices than
sampling on a regular grid.29 Other sampling techniques have
previously been used,6,3 which could prove to require a smal-
ler number of DC points for the accurate calculation of cer-
tain DV indices.

In this article, an equal number of DC points was sampled
in each ROI, regardless of ROI volume. Preliminary experi-
ments showed that distributing the DC points according to
ROI volume resulted in plans with visibly worse LCI and LSI
values. This is caused by the fact that LCIw and LSIw values
mostly depend on the most violated DV index, and hence the
number of DC points in the corresponding ROI. It is therefore
valuable to have a relatively high number of DC points in the
corresponding ROI of the most violated DV index. However,
the ROI with the most violated DV index changes dynami-
cally throughout optimization, and depends on many factors,
including patient anatomy and clinical aspiration values. Fur-
ther research is required to find a better distribution of DC
points among ROIs, while avoiding a loss of obtained plan
quality. The efficiency of the calculation of the values of the
DV indices could also be improved by only using DC points
in the rectum and bladder that are closest to the dwell posi-
tions, as these points are likely to receive the highest dose.6

As the use of multi-objective EAs results in a set of trade-
off solutions, this inevitably leads to a decision-making pro-
cess where a clinician must still decide which of the provided
treatment plans is most suitable to actually use. Plots as in
Fig. 4 can prove to be an aid for this decision-making pro-
cess, as these plots help to visualize the trade-offs between all
criteria of the clinical protocol, which should be comple-
mented by the inspection of the dose distribution and dose-
volume histograms for the evaluation of single plans. The
plot showing only LCI and LSI can only give a rough indica-
tion of the trade-off between coverage and sparing, while the
remaining plots tell the exact values of each DV index for a
given LCI or LSI. Moreover, interactive software could fur-
ther increase the intuitiveness of these plots by highlighting a
selected treatment plan in all three plots. Note that the plots
displayed in Fig. 4 display the combined results of 30 runs,
for the sake of displaying the variation in the results of the
optimization and the sampling of DC points, whereas a deci-
sion-maker would only see the results of one optimization
run. Each run however covers the entire range of possible
trade-offs shown in Fig. 4.

Based on previous work8 and the results in Section 3, we
conclude that MO-RV-GOMEA is an algorithm that is excel-
lently suited for direct DV-index based bi-objective treatment
plan optimization. The best results were found when the opti-
mization objectives were the LCIw and the LSIw, and a set of
100 000 DC points, that is, 20 000 DC points per ROI, was
used. For this configuration, up to 3 minutes were required
for the optimization, as no substantial improvements were
found for time limits up to 10 minutes.

Topics of future research include generalization to opti-
mization on different clinical protocols, for example, the

American Brachytherapy Society consensus guidelines,30 as
the LCI and LSI could be constructed based on any clinical
protocol consisting of a set of DV criteria. This also includes
the addition of the Vprostate

150 and Vprostate
200 to the LSI, because

these indices are currently included as hard constraints.

5. CONCLUSIONS

In general, bi-objective treatment planning provides a clin-
ician with intuitive insight into the treatment planning process
by being able to inspect a wide range of potential treatment
plans having different trade-offs between coverage of the tar-
get organs and sparing of the OARs. We have developed a
GPU-based parallel version of a previously introduced bi-ob-
jective treatment planning method8 that optimizes for the
worst target and sparing criterion. Furthermore, the optimiza-
tion model has been adjusted to provide better results, particu-
larly improving values of DV indices that are not the worst
criterion. This bi-objective treatment planning method is now
capable of producing a set of high-quality solutions, each with
a different trade-off between the coverage of the target organs
and sparing of the OARs, optimized for 100 000 DC points,
in approximately 3 minutes, making it efficient enough to be
used in a time-constrained clinical setting.
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the Supporting Information section at the end of the article.

Data S1: The Supporting Information consists of more
extensive results for the complete set of 18 patients, as well
as results for different time limits and different numbers of
DC points.
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