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ABSTRACT

We derive limit theorems for di�usion processes that have a �nite speed measure. First we prove a number of

asymptotic properties of the density �t = d�t=d� of the empirical measure �t with respect to the normalized

speed measure �. These results are then used to derive �nite dimensional and uniform central limit theorems

for integrals of the form
p
t
R
(�t � 1) d�, where � is an arbitrary �nite, signed measure on the state space of

the di�usion. We also consider a number of interesting special cases, such as uniform central limit theorems for

Lebesgue integrals and functional weak convergence of the empirical distribution function.

2000 Mathematics Subject Classi�cation: 60J60, 62F99.

Keywords and Phrases: Regular di�usions, �nite speed measure, limit theorems.

Note: Work carried out under project PNA3.3 `Stochastic Processes and Applications'.

1 Introduction

In this paper we present some new contributions to the theory of one-dimensional di�usion
processes. For a recent treatment of this subject, see for instance Rogers and Williams (1987),
Revuz and Yor (1991) or Kallenberg (1997). The most important de�nitions and basic results
will be recalled in the next section. We consider a regular di�usion process X on an interval
I � R. The state space I may be closed, open or half-open, bounded or unbounded. We denote
the speed measure of the di�usion by m. The basic assumption is that m has �nite total mass.

We will �rst be interested in the relation between the probability measure � = m=m(I) and
the empirical measures �t of the process, de�ned by (2.4). Using the occupation measure formula
for di�usions, it is easily seen that �t � � almost surely. Moreover, the density �t = d�t=d�
can be expressed in terms of local time processes (see theorem 2.3 below). Using the well-known
fact that a di�usion in natural scale is a time-changed Brownian motion and a simple scaling
property of Brownian local time (see lemma 3.1), this expression for �t allows us to prove several
asymptotic properties.

In section 4 we �rst prove that the sup-norms k�tk1 of the �t are asymptotically tight for
t! 1 (see theorem 4.1). We then show that in probability, the random functions �t converge
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to 1, uniformly on compact intervals (see theorem 4.2). Using these two results we derive that
for every �nite measure � on I and 0 < p < 1, the Lp(I; �)-norm of �t � 1 converges to 0 in
probability (theorem 4.4). A `weak law of large numbers' follows easily from this result (see
corollary 4.5 and the remarks thereafter).

The observation that we have proved this weak law without assuming recurrence leads us
to an interesting consequence, formulated below as corollary 4.6. It turns out that a di�usion
with �nite speed measure is necessarily recurrent. This then also implies ergodicity, since it is
well-known that a recurrent di�usion with �nite speed measure is ergodic. The measure � is the
unique invariant probability measure of the di�usion.

In section 5 we give an alternative expression for the random densities. We write �t(x)� 1
as a stochastic integral plus a remainder term of lower order (see lemma 5.1). If the state space
I is an open interval, so that there are no re
ecting boundary points (there can be no absorbing
boundary points, since the speed measure is �nite), the stochastic integrals are local martingales
(see the remarks in the beginning of section 6). This fact allows us to prove a number of central
limit theorems in sections 6 and 7. The results of section 4 are important ingredients in the
proofs of these theorems.

In section 6 we prove a central limit theorem for random vectors of the form

p
t

�Z
(�t � 1) d�1; : : : ;

Z
(�t � 1) d�n

�
;

where the �i are arbitrary �nite, signed measures on the state space I (see theorem 6.1). If we
take the �i for instance equal to Dirac measures, we �nd that the random vectors

p
t(�t(x1) �

1; : : : ; �t(xn) � 1) are asymptotically normal, provided that the invariant measure � satis�es a
tail condition (see corollary 6.2). The choice d�i = fi d� (for functions fi 2 L1(�)) yields the
well-known central limit theorem for Lebesgue integrals (see corollary 6.3).

The last section of the paper, section 7, is devoted to the proof of uniform central limit
theorems. We consider an indexed collection f��g�2� of �nite, signed measures on I. Theorem
7.1 gives conditions under which for every countable �� � �, the random maps

� 7!
p
t

Z
(�t � 1) d��

have a weak limit in the space `1(��) of bounded functions on ��. The theorem says that it
suÆces to have a metric d on the set � such that the entropy condition (7.3) is satis�ed and the
map

(�; d) 3 � 7! ��(l; �]� F (�)��(I) 2 L2(I; s)

is Lipschitz, where l is the left endpoint of the interval I, F is the distribution function of
the invariant measure � and s is the scale function of the di�usion. If � is �nite, the result
reduces to the central limit theorem of section 6. We close section 7 with a number of interesting
corollaries of theorem 7.1. Corollaries 7.2 and 7.5 state that under the tail condition (6.2), we
have functional weak convergence of the random maps

p
t(�t � 1) and

p
t(Ft � F ), where Ft

is the empirical distribution function. Corollary 7.4 gives a uniform central limit theorem for
random maps of the form

� 7! 1p
t

Z t

0
f�(Xu) du;
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under the assumption that the functions f�(x) depend di�erentiably on a Euclidean parameter
�.

Some of the results that are presented in this paper are already known in special cases,
in particular for ergodic solutions of stochastic di�erential equations. For such di�usions, the
empirical measures �t and the invariant measure � have densities ft and f with respect to the
Lebesgue measure on the state space. We then have �t = ft=f and the results of this paper
give a number of asymptotic properties of the ratio ft=f . Such limit theorems for the so-called
empirical densities ft have proven to be useful tools for the asymptotic analysis of nonparametric
estimators (see for instance Kutoyants (1998) and Van Zanten (2000c, 2000d)). Theorem 4.2 and
corollary 7.2 extend results of Kutoyants (1998), Van Zanten (2000b) and Van Zanten (2000c).
In connection with corollary 7.5 we mention Negri (1998), who studied the functional weak
convergence of the empirical distribution function for a certain class of stochastic di�erential
equations (see also remark 7.6). The central limit theorem for Lebesgue integrals (theorem
6.3) was already proved by Mandl (1968), using the strong Markov property and the central
limit theorem for i.i.d. random variables. For the special case of ergodic solutions of stochastic
di�erential equations, Florens-Zmirou (1984) proved it by using the central limit theorem for
continuous martingales.

2 Regular di�usions with �nite speed measure

We consider a di�usion on some interval I � R. The state space I may be closed, open or half-
open, bounded or unbounded. By 
 = C(R+ ; I) we denote the space of continuous functions
on R

+ taking values in I. The canonical process on 
 is denoted by X, so Xt(!) = !(t) for
all ! 2 
. On 
 we have the canonical �ltration Ft = �(Xu : u � t) and the �-algebra
F = �(Xu : u � 0). The family fPz : z 2 Ig of probability measures on (
;F) is supposed
to constitute a (canonical) di�usion on I. This means that the following three properties are
supposed to be satis�ed: (i) under Pz, the process X starts in z, i.e. Pz(X0 = z) = 1 for every
z 2 I, (ii) for every B 2 B(I), the function z 7! Pz(B) is measurable, (iii) the strong Markov
property holds, i.e. for every optional time � , measurable function f on 
 and z 2 I it holds that
Ez(f(X�+�) j F� ) = EX� f(X�). As general references for di�usion theory we mention Kallenberg
(1997), Revuz and Yor (1991) and Rogers and Williams (1987). In this section we recall some
elements of the theory that we need in this paper.

We assume that the di�usion is regular, i.e. for every z in the interior of I and x 2 I it
holds that Pz(Tx <1) > 0, where Tx denotes the �rst hitting time of x. Under this condition,
there exists a continuous, strictly increasing function s on I such that for all z; a; b 2 I with
a � z � b it holds that

Pz(Tb < Ta) =
s(z)� s(a)

s(b)� s(a)
: (2.1)

The function s is called the scale function of the di�usion. It is not unique, but determined up
to an aÆne transformation. If the function s(x) = x is a scale function, the di�usion is said to
be in natural scale. Using (2.1) it is easily seen that the di�usion Y = s(X) on s(I) is in natural
scale.

With a regular di�usion in natural scale we can associate a unique measure m on I, called
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the speed measure. It can be introduced via the following theorem, which states that a regular
di�usion in natural scale is in fact a time-changed Brownian motion. The speed measure m
determines the time change. See for instance Rogers and Williams (1987), theorem V.47.1.

Theorem 2.1. Suppose that X is in natural scale. There exists a unique measure m on I such

that for every z 2 I, there exists an extension of the probability space (
;F ; Pz), supporting

a Brownian motion W that starts in z, such that Xt = W�t , where � is the right-continuous

inverse of the process A de�ned by

At =

Z
I
LWt (x)m(dx):

Here LW is the local time process of W .

The di�usion X may not be in natural scale, but we just noted that Y = s(X) always is.
If mY denotes the speed measure of Y on s(I), determined by the preceding theorem, we de�ne
the speed measure m of X by

m = mY Æ s: (2.2)

Note that the speed measure of X thus depends on the choice of the scale function. De�nition
(2.2) allows us to generalize theorem 2.1 as follows.

Corollary 2.2. For every z 2 I, there exists an extension of the probability space (
;F ; Pz),
supporting a Brownian motion W that starts in z, such that s(Xt) =W�t , where � is the right-

continuous inverse of the process A de�ned by

At =

Z
I
LWt (s(x))m(dx):

Here LW is the local time process of W .

Proof. Since Y = s(X) is in natural scale, theorem 2.1 implies that s(Xt) = Yt = W�t , where
� is the right-continuous inverse of the process A de�ned by

At =

Z
s(I)

LWt (x)mY (dx):

Apply (2.2) and a change of variables to see that this process A is equal to the process mentioned
in the statement of the theorem.

We will study the case that the speed measure m of the di�usion has �nite total mass. The
process A of corollary 2.2 is then continuous in t. Since A1 =1 it therefore holds that

A�t = t (2.3)

for all t � 0, since � is the right-continuous inverse of A. The �niteness of m allows us to de�ne
the probability measure � = m=m(I). Note that it follows from (2.2) that the speed measure of
X is �nite if and only if the speed measure of Y = s(X) is �nite. If the di�usion is recurrent,
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then the �niteness of the speed measure implies that it is also �-ergodic (see Kallenberg (1997),
lemma 20.19). This means that for every z 2 I

Xt
Pz=) �:

as t!1 (
Pz=) denotes weak convergence under Pz). The measure � is then the unique invariant

probability measure of the process. (We will see later that �niteness of the speed measure in
fact implies recurrence, see corollary 4.6 below).

The empirical measures of the di�usion are denoted by �t. So for every t > 0 and B 2 B(I)
we de�ne

�t(B) =
1

t

Z t

0
1B(Xu) du: (2.4)

The following theorem states that for every t > 0, the empirical measure �t is absolutely
continuous with respect to the invariant probability measure �. Moreover, the random density
�t = d�t=d� is expressed in terms of the local time LY of Y = s(X) and the local time LW

of the Brownian motion W appearing in corollary 2.2. (Note that since Y is a time-changed
Brownian motion, it is a continuous semimartingale, so its local time is well-de�ned.)

Theorem 2.3. Let z 2 I be �xed and let W and �t be as in corollary 2.2. Under Pz, we almost

surely have �t � � for all t > 0. Moreover, it holds that �t(dx) = �t(x)�(dx), where

�t(x) = m(I)
1

t
LYt (s(x)) (2.5)

= m(I)
1

t
LW�t (s(x)) (2.6)

for every x 2 I and t > 0.

Proof. In view of (2.3), we can use exactly the same arguments as in the proof of theorem
V.49.1 of Rogers and Williams (1987).

Remark 2.4. Since Brownian local time and the scale function s are continuous, expression
(2.6) implies that under every Pz, the random densities �t are almost surely continuous functions
on I. From the continuity of the Brownian sample paths it follows that the random functions
x 7! LW�t (x) almost surely have compact support. Since s is continuous, the functions �t have
the same property. So under each Pz , the functions �t are continuous, compactly supported
functions on I. In particular, they are uniformly bounded.

3 A scaling property of Brownian local time

The following lemma gives a simple, but very useful property of Brownian motion. We will use
it in several proofs.

Lemma 3.1. Let W be a Brownian motion starting in z. For every c > 0 we haven
1
cL

W
c2t(x) : x 2 R; t � 0

o
d
=
n
LBt

�
x� z

c

�
: x 2 R; t � 0

o
;

where B is a standard Brownian motion, i.e. B0 = 0.
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Proof. Put B = W � z and de�ne the process B0 by B0
t = Bc2t=c. Since W starts in z, the

process B is a standard Brownian motion. By the scaling property of Brownian motion, the
same holds for B0. Now �x t � 0 and take an arbitrary measurable function f on R that is
bounded and nonnegative. Using two times a basic property of local time and a change of
variables we see thatZ

R

f(x)1cL
B
c2t(x) dx = 1

c

Z c2t

0
f(Bu) du = c

Z t

0
f(Bc2v) dv

= c

Z t

0
f(cB0

v) dv = c

Z
R

f(cx)LB
0

t (x) dx =

Z
R

f(y)LB
0

t

�y
c

�
dy:

Since f is arbitrary and Brownian local time is continuous, it follows that

1
cL

B
c2t(x) = LB

0

t

�x
c

�
for all t � 0 and x 2 R. From the de�nition of B we have that LWt (x) = LBt (x� z) for all t � 0
and x 2 R. Consequently, we have

1
cL

W
c2t(x) = LB

0

t

�
x� z

c

�
for all t � 0 and x 2 R. This completes the proof of the lemma, sinceB0 has the same distribution
as B.

The �rst application of lemma 3.1 is a weak convergence theorem for the time-change �t of
corollary 2.2.

Theorem 3.2. For every z 2 I we have

�t
t2

Pz=) 1

m2(I)�2
;

where, as usual, �2 denotes the distribution of the square of a standard normal random variable.

Proof. Consider the Brownian motion W and the process A of corollary 2.2. Using lemma 3.1
we see that under Pz

1p
t
At =

Z
I

1p
t
LWt (s(x))m(dx)

d
=

Z
I
LB1

�
s(x)� zp

t

�
m(dx);

where B is a standard Brownian motion. By the �niteness of m, the integral on the right hand
side converges almost surely to m(I)LB1 (0). It follows that

1p
t
At

Pz=)m(I)LB1 (0): (3.1)

The process � is the right-continuous inverse of A, so for every t; T � 0 it holds that �t < T if
and only if AT > t. Using (3.1) we see that for every x 2 R

Pz(�t=t
2 < x) = Pz(At2x > t) = Pz

�
1
t
p
x
At2x >

1p
x

�
! Pz

�
m(I)LB1 (0) >

1p
x
)
�
= Pz

�
1

m2(I)(LB1 (0))
2
< x

�
:

Use the well-known fact that (LB1 (0))
2 has a �2-distribution to complete the proof.
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4 Asymptotic properties of the random densities

In this section we derive a number of asymptotic properties of the densities �t. The random
densities are uniformly bounded on I (see remark 2.4). We will prove that the sup-norms

k�tk1 = sup
x2I

j�t(x)j

are asymptotically tight under each Pz , i.e. for every " > 0 there exists an a > 0 such that

lim sup
t!1

Pz(k�tk1 > a) < ":

As usual, we abbreviate this by writing k�tk1 = OPz(1).

Theorem 4.1. For every z 2 I we have k�tk1 = OPz (1).

Proof. Let W and � be as in corollary 2.2. By relation (2.6) of theorem 2.3 we have for all
a; b > 0

Pz(k�tk1 > a) � Pz

�
sup
x2R

1
tL

W
t2

�t
t2
(x) > a=m(I)

�

� Pz

 
sup

x2R ; u�b
1
tL

W
t2u(x) > a=m(I)

!
+ Pz

��t
t2
> b
�
:

By lemma 3.1 we have a standard Brownian motion B such that under Pz

sup
x2R ; u�b

1
tL

W
t2u(x)

d
= sup

x2R ; u�b
LBu

�
x� z

t

�
= sup

x2R
LBb (x):

We thus �nd that

Pz(k�tk1 > a) � Pz

�
sup
x2R

LBb (x) > a=m(I)

�
+ Pz

��t
t2
> b
�

(4.1)

Now �x " > 0. By theorem 3.2 the ratio �t=t
2 has a weak limit. In particular, it is asymptotically

tight. As a consequence, we can choose b so large that

lim sup
t!1

Pz

��t
t2
> b
�
< 1

2": (4.2)

By continuity of the Brownian sample paths the random function x 7! LBb (x) has compact
support. Since Brownian local time is continuous, it follows that x 7! LBb (x) is uniformly
bounded, almost surely. Therefore, we can choose a so large that

Pz

�
sup
x2R

LBb (x) > a=m(I)

�
< 1

2": (4.3)

Combine relations (4.1), (4.2) and (4.3) to �nd that

lim sup
t!1

Pz(k�tk1 > a) < ":

This concludes the proof.
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We have the following result regarding the uniform convergence of the densities.

Theorem 4.2. For every z 2 I and compact J � I we have

sup
x2J

j�t(x)� 1j Pz�! 0:

Proof. Let W , A and � be as in corollary 2.2 and recall that we have (2.3). So by relation (2.6)
of theorem 2.3 we have for every x 2 J and t > 0

�t(x) = m(I)
LW�t (s(x))

A�t
= Zt(�t=t

2; x);

where the random map Zt : R
+ � J ! R is de�ned by

Zt(u; x) = m(I)
LWt2u(s(x))

At2u
:

Lemma 3.1 implies that under Pz it holds that Zt
d
= Z 0t, where Z 0t is de�ned by

Z 0t(u; x) =
LBu

�
s(x)�z

t

�
R
I L

B
u

�
s(y)�z

t

�
�(dy)

and B is a standard Brownian motion. For every a � 0 we have

sup
u�a;x2J

����LBu
�
s(x)� z

t

�
� LBu (0)

���� = sup
u�a;x2 1

t
(s(J)�z)

��LBu (x)� LBu (0)
�� as! 0;

by the joint continuity of Brownian local time. Using the dominated convergence theorem we
see in particular that

sup
u�a

����
Z
I
LBu

�
s(y)� z

t

�
�(dy)� LBu (0)

���� as! 0:

Combine the last three displays to conclude that for every a � 0 we have

sup
u�a;x2J

jZ 0t(u; x)� 1j as! 0: (4.4)

Now �x "; � > 0. Note that for every a � 0 we have

Pz

�
sup
x2J

j�t(x)� 1j > "

�

= Pz

�
sup
x2J

jZt(�t=t2; x)� 1j > "

�

� Pz

 
sup

x2J;u�a
jZt(u; x) � 1j > "

!
+ Pz

�
�t=t

2 > a
�

= Pz

 
sup

x2J;u�a
jZ 0t(u; x) � 1j > "

!
+ Pz

�
�t=t

2 > a
�
:
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By theorem 3.2 the ratio �t=t
2 has a weak limit, in particular it is asymptotically tight. We can

thus choose a so large that

lim sup
t!1

Pz

��t
t2
> a
�
< 1

2�:

By (4.4) it holds that
Pz( sup

x2J;u�a
jZ 0t(u; x)� 1j > ") < 1

2�

for all t large enough. Consequently, we have

lim sup
t!1

Pz(j�t(x)� 1j > ") < �:

To complete the proof, let � # 0.
Remark 4.3. If I is not compact, the support of the function �t is a true subset of I (see
remark 2.4). In that case, we almost surely have

sup
x2I

j�t(x)� 1j � 1:

So the convergence of �t to 1 can only be uniform on the entire state space I if I is compact.

By theorem 4.2 and remark 4.3 we have k�t � 1k1 P! 0 if and only if the state space
I is compact. The following theorem shows that for convergence of Lp-norms with p < 1,
compactness of I is not necessary.

Theorem 4.4. Let � be a �nite measure on I. Then for all z 2 I and 0 < p <1

k�t � 1kLp(I;�)
Pz�! 0:

Proof. For every interval J � I we haveZ
I
j�t(x)� 1jp �(dx) =

Z
J
j�t(x)� 1jp �(dx) +

Z
Jc
j�t(x)� 1jp �(dx)

� �(I)

�
sup
x2J

j�t(x)� 1j
�p

+ �(Jc) k�t � 1kp1:

Hence, for every " > 0,

Pz

�
k�t � 1kpLp(I;�) > "

�
� Pz

 
sup
x2J

j�t(x)� 1j >
�

"

2�(I)

�1=p
!

+ Pz

 
k�t � 1k1 >

�
"

2�(Jc)

�1=p
!
:

Now let "; � > 0 be arbitrary. Since � has �nite total mass, the number ("=2�(Jc))1=p can be
made arbitrarily large by choosing a suÆciently large compact interval J � I. By theorem 4.1,
we thus choose a compact interval J � I such that

lim sup
t!1

Pz

 
k�t � 1k1 >

�
"

2�(Jc)

�1=p
!
� �:
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For this particular compact interval J , theorem 4.2 implies that

lim
t!1Pz

 
sup
x2J

j�t(x)� 1j >
�

"

2�(I)

�1=p
!
= 0:

By combining the last three displays we �nd that

lim sup
t!1

Pz

�
k�t � 1kpLp(I;�) > "

�
� �:

To complete the proof, let � # 0.
The following result is a simple consequence of theorem 4.4.

Corollary 4.5. Let � be a measure on I and suppose that f 2 L1(I; �). Then for all z 2 IZ
I
f�t d�

Pz�!
Z
I
f d�:

Proof. Since f is �-integrable, the measure � 0 given by d� 0 = jf j d� is �nite. Obviously,����
Z
I
f�t d� �

Z
I
f d�

���� �
Z
I
j�t � 1jjf j d� = k�t � 1kL1(I;�0):

Now apply theorem 4.4.

If we take � = � in corollary 4.5, we get the weak law of numbers for Lebegue integrals:
for all z 2 I and f 2 L1(�) we have

1

t

Z t

0
f(Xu) du

Pz�!
Z
I
f d�:

The fact that we did not have to assume recurrence to get this result allows us to prove the
following interesting corollary.

Corollary 4.6. A regular di�usion with �nite speed measure m is recurrent and therefore er-

godic. The measure � = m=m(I) is the unique invariant probability measure.

Proof. Since X is recurrent on I if and only if Y = s(X) is recurrent on s(I), we can restrict
ourselves to di�usions that are in natural scale. By theorem 20.15 of Kallenberg (1997), two
things can happen if the speed measure is �nite. Either the di�usion is recurrent and ergodic, or
it converges almost surely to a boundary point of the state space I. We prove that the second
situation can not occur. Suppose on the contrary that it does and take a compact subset J in
the interior of I. Then almost surely, the di�usion X is outside J from a certain �nite time on,
so

1

t

Z t

0
1J(Xu) du

as! 0:

But on the other hand, the weak law of large numbers for Lebesgue integrals implies that

1

t

Z t

0
1J (Xu) du

P! �(J):

Since the speed measure gives positive mass to compact intervals in the interior of I (see for
instance Kallenberg (1997), theorem 20.9), this leads to a contradiction.
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5 A useful expression for the densities

The following lemma gives a useful expression for the random functions �t � 1. It will be used
in the next two sections. We denote the distribution function of the invariant measure � by F .

Lemma 5.1. For every x 2 I, de�ne the function �x on R by

�x(y) = 2m(I)(1fy>s(x)g � F (s�1(y))1s(I)(y)

and let �x be an arbitrary primitive function of �x. Then for all z 2 I we have

�t(x)� 1 =
1

t
(�x(Yt)��x(s(z)))� 1

t

Z t

0
�x(Yu) dYu (5.1)

under Pz, where Y = s(X).

Proof. The function �x is the di�erence of to nonnegative functions, so �x is the di�erence of
two convex functions. Consider the signed measure � = 2m(I)(Æs(x) � � Æ s�1)1s(I) on R, where
Æs(x) denotes the Dirac measure at s(x). Clearly, we have the relation �x(b)��x(a) = �(a; b] for
all a � b. So by the generalized Itô formula

�x(Yt)��x(Y0) =

Z t

0
�x(Ys) dYs +

1
2

Z
R

LYt (y) �(dy):

By relation (2.5) of theorem 2.3 we have

1
2

Z
R

LYt (y) �(dy) = m(I)LYt (s(x))�m(I)

Z
s(I)

LYt (y) dF (s
�1(y))

= m(I)LYt (s(x))�m(I)

Z
I
LYt (s(y))�(dy)

= t(�t(x)� 1):

This completes the proof of the lemma.

In the proofs of the central limit theorems that we derive in the next two sections, we will
use the following lemma to deal with the �rst term on the right hand side of (5.1).

Lemma 5.2. The primitives �x of the functions �x de�ned in the statement of lemma 5.1 can

be chosen in such a manner that for all z 2 I

sup
x2I

1p
t
j�x(Yt)��x(s(z))j Pz�! 0:

Proof. Since the functions �x are bounded in absolute value by 2m(I), we can choose the
primitives �x in such a manner that for every x 2 I we have j�xj � j�j, where � is some
function that does not depend on x. We then get

sup
x2I

1p
t
j�x(Yt)��x(s(z))j � 1p

t
(�(Yt) + �(s(z))

Pz�! 0:

since Y is ergodic.

11



6 Finite-dimensional central limit theorems

If the state space I is an open interval (bounded or unbounded), then Y = s(X) is an ergodic
di�usion in natural scale on the open interval s(I). Therefore, by theorem 20.15 of Kallenberg
(1997), we must have s(I) = R. The process Y is then a local martingale (see for instance
Kallenberg (1997), theorem 20.7), which allows us to prove the results below. We use the notation
ds to denote Stieltjes-integration with respect to the scale function s. As usual, Nn(0;�) denotes
the n-dimensional normal distribution with mean vector 0 and covariance matrix �. If � is a
signed measure on I, we can write � = � 0� � 00, where � 0 and � 00 are true measures on I. We say
that � is �nite if both � 0 and � 00 are �nite.

Theorem 6.1. Suppose that I = (l; r) is an open interval. let �1; : : : ; �n be �nite signed measures

on I such that Z
I
(�i(l; x]� F (x)�i(I))

2 ds(x) <1 (6.1)

for every i. Then for every z 2 I we have

p
t

�Z
(�t � 1) d�1; : : : ;

Z
(�t � 1) d�n

�
Pz=) Nn(0;�);

where

�i;j = 4m(I)

Z
I
(�i(l; x]� F (x)�i(I)) (�j(l; x]� F (x)�j(I)) ds(x):

Proof. By lemma 5.1 we have

p
t

Z
(�t � 1) d�i =

1p
t

Z
I
(�x(Yt)��x(s(z))) �i(dx)

� 1p
t

Z
I

�Z t

0
�x(Yu) dYu

�
�i(dx):

Since �i is �nite, lemma 5.2 implies that the �rst term on the right hand side converges to 0 in
probability. By the stochastic Fubini theorem (see Protter (1990)), the second term is equal to
�M i

t=
p
t, where M i is de�ned by

M i
t =

Z t

0

�Z
I
�x(Yu) �i(dx)

�
dYu:

It thus remains to prove that

1p
t
(M1

t ; : : : ;M
n
t )

Pz=) Nn(0;�):

In view of the remarks preceding the theorem, every M i is a continuous local martingale. Using

12



relation (2.5) of theorem 2.3 we �nd that

1
t



M i;M j

�
t
=

= 1
t

Z t

0

�Z
I
�x(Yu) �i(dx)

��Z
I
�x(Yu) �j(dx)

�
d hY iu

=

Z
R

�Z
I
�x(y) �i(dx)

��Z
I
�x(y) �j(dx)

�
1
tL

Y
t (y) dy

=
1

m(I)

Z
R

�Z
I
�x(y) �i(dx)

��Z
I
�x(y) �j(dx)

�
�t(s

�1(y)) dy

= 4m(I)

Z
I
(�i(l; y]� F (y)�i(I)) (�j(l; y]� F (y)�j(I)) �t(y) ds(y):

Corollary 4.5 thus implies that
1
t



M i;M j

�
t

Pz�! �i;j:

The statement of the theorem now follows from the central limit theorem for continuous local
martingales (see for instance Van Zanten (2000a), where the CLT is proved by means of a
time-change argument).

Interesting corollaries of theorem 6.1 can be obtained by specifying the measures �i. If we
take �i = Æxi (the Dirac measure concentrated at xi) for i = 1; : : : ; n, we get a multivariate
central limit theorem for the densities �t themselves. Condition (6.1) then reads asZ

I
(1(xi;r) � F )2 ds <1

for i = 1; : : : ; n. This is clearly a condition on the tails of the invariant measure �. It is easily
seen to be equivalent to the single conditionZ

F 2(1� F )2 ds <1: (6.2)

Hence, we arrive at the following result.

Corollary 6.2. Suppose that I = (l; r) is an open interval and that (6.2) holds. Then for all

z 2 I and x1; : : : ; xd 2 I we have

p
t(�t(x1)� 1; : : : ; �t(xd)� 1)

Pz=) Nd(0;�);

where

�i;j = 4m(I)

Z
I
(1(x1;r) � F )(1(xd;r) � F )ds:

If we take a function fi 2 L1(�), the signed measure �i de�ned by d�i = fi d� is �nite and
it holds that Z

I
(�t � 1) d�i =

1

t

Z t

0
fi(Xu) du�

Z
I
fi d�:

Theorem 6.1 thus yields the following central limit theorem for Lebesgue integrals.

13



Corollary 6.3. Suppose that I = (l; r) is an open interval. Let f1; : : : ; fn 2 L1(�) be such thatR
fi d� = 0 and Z

I

�Z x

l
fi(y)�(dy)

�2

ds(x) <1

for every i. Then for every z 2 I we have

1p
t

�Z t

0
f1(Xu) du; : : : ;

Z t

0
fn(Xu) du

�
Pz=) Nd(0;�);

where

�i;j = 4m(I)

Z
I

�Z x

l
fi(y)�(dy)

��Z x

l
fj(y)�(dy)

�
ds(x):

7 Uniform central limit theorems

Suppose that we have a collection f��g�2� of �nite signed measures on I, indexed by a set �.
Consider the random maps Zt on � given by

Zt(�) =
p
t

Z
(�t � 1) d��: (7.1)

If � is a signed measure on I, say � = � 0 � � 00, where � 0 and � 00 are true measures on I, then we
write k�k = � 0(I) + � 00(I). Under the assumption that

sup
�2�

k��k <1; (7.2)

each Zt is a random element of the space `1(�) of bounded functions on �. In this section
we prove a result regarding the weak convergence of the random maps Zt in this space (see
Van der Vaart and Wellner (1996) for the basic theory of weak convergence in `1-spaces). For
uncountable index sets � we will prove weak convergence in `1(��) for every countable subset
�� � �, instead of weak convergence in `1(�) itself. That way, we do not have to impose
awkward continuity conditions on the Zt. If � is �nite, the result reduces to that of theorem
6.1. Given a metric d on �, we denote by N(";�; d) the minimal number of balls of d-radius "
that are needed to cover �.

Theorem 7.1. Suppose that I = (l; r) is an open interval. Let f��g�2� be a collection of �nite

signed measures on I, indexed by a set �. Suppose that (7.2) holds and thatZ
I
(��(l; x]� F (x)��(I))

2 ds(x) <1

for every � 2 �. Moreover, assume that there exists a metric d on � such that (�; d) is bounded,

Z 1

0

p
logN(";�; d) d" <1 (7.3)
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and Z
I
((�� � � )(l; x] � F (x)(�� � � )(I))

2 ds(x) � d2(�;  ) (7.4)

for all �;  2 �. Then for all z 2 I and countable �� � � we have Zt
Pz=) G in `1(��), where

G is a zero-mean Gaussian random map with covariance function

EG(�)G( ) = 4m(I)

Z
I
(��(l; x]� F (x)��(I)) (� (l; x]� F (x)� (I)) ds(x):

Proof. Using lemmas 5.1 and 5.2 and the stochastic Fubini theorem as in the proof of theorem
6.1, we see that it suÆces to prove the weak convergence in `1(��) of the random maps

� 7! 1p
t
M �
t ; (7.5)

where the local martingales M � are de�ned by

M �
t =

Z t

0

�Z
I
�x(Yu) ��(dx)

�
dYu:

The �nite dimensional convergence follows from theorem 6.1, so we only have to show asymptotic
equicontinuity. For that purpose we use a result of Nishiyama (2000), who gives suÆcient
conditions for equicontinuity of random maps of the form (7.5) in terms of the brackets of the
local martingalesM �. Under the conditions of the present theorem, theorem 3.4.2 of Nishiyama
(2000) implies that it suÆces to show that

sup
� 6= 2��

1
t



M � �M 

�
t

d2(�;  )
= OPz(1): (7.6)

Using (2.5) and (7.4) we see that for �;  2 �

1

t

D
M � �M 

E
t
=

1

t

Z t

0

�Z
I
�x(Yu) (�� � � )(dx)

�2

d hY iu

=

Z
R

�Z
I
�x(y) (�� � � )(dx)

�2
1
tL

Y
t (y) dy

=
1

m(I)

Z
I

�Z
I
�x(s(y)) (�� � � )(dx)

�2

�t(y)ds(y)

= 4m(I)

Z
I
((�� � � )(l; y]� F (y)(�� � � )(I))

2 �t(y) ds(y)

� 4m(I)k�tk1 d2(�;  ):

We thus �nd that

sup
� 6= 2��

1
t



M � �M 

�
t

d2(�;  )
� 4m(I)k�tk1:

By theorem 4.1 this is OPz(1), so we have (7.6).
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The �rst corollary of theorem 7.1 extends the �nite dimensional result of corollary 6.2. If
B is a compact set in Euclidean space, we denote by C(B) the space of continuous functions
on B, endowed with the supremum norm. By remark 2.4 the (restrictions of the) densities �t
are random elements of the space C(J) for every compact interval J � I. We will prove that
the random functions

p
t(�t � 1) converge weakly in this space. The functions

p
t(�t � 1) can

also be viewed as random elements of the space Cb(I) of bounded, continuous functions on the
whole interval I. But by remark 4.3 they can not have a weak limit in this space, since that
would imply that k�t � 1k1 ! 0 in probability.

Corollary 7.2. Suppose that I = (l; r) is an open interval and that (6.2) holds. Then for every

z 2 I and compact J � I we have the weak convergence

p
t(�t � 1)

Pz=) G

in C(J), where G is a zero-mean Gaussian random map with covariance function

EG(x)G(y) = 4m(I)

Z
I
(1(x;r) � F )(1(y;r) � F )ds:

Proof. Since the random functions
p
t(�t � 1) are continuous, it suÆces to show that for some

countable, dense J� � J , they converge weakly in `1(J�). To prove that this is the case we
apply theorem 7.1 with � = J and �� = Æ�, the Dirac measure at �. We de�ne the metric d
on � by putting d(�;  ) = (js(�) � s( )j)1=2. Since s : I ! s(I) is a homeomorphism and �
is compact, the set s(�) is a compact interval again. This implies �rst of all that (�; d) is a
bounded metric space. Note also that

N("; d;�) = N("2; j � j; s(�)) � C="2

for some constant C > 0, so that the entropy condition (7.3) is satis�ed. To prove that we have
(7.4), note that for � �  the left hand side of (7.4) is in this case equal toZ

I
1[�; )(x) ds(x) = s( )� s(�):

This completes the proof of the corollary.

The following simple corollary gives a uniform version of the central limit theorem for
Lebesgue integrals of corollary 6.3.

Corollary 7.3. Suppose that I = (l; r) is an open interval. Let ff� : � 2 �g be a collection of

functions that is bounded in L1(�), such that
R
f� d� = 0 andZ

I

�Z x

l
f�(y)�(dy)

�2

ds(x) <1

for every � 2 �. Moreover, assume that there exists a metric d on � such that (�; d) is bounded,
condition (7.3) holds, andZ

I

�Z x

l
(f (w)� f�(w))�(dw)

�2

ds(x) � d2(�;  ) (7.7)
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for all �;  2 �. Then for all z 2 I and countable �� � � the random maps

� 7! 1p
t

Z t

0
f�(Xu) du

converge weakly in `1(��) to G under Pz, where G is a zero-mean Gaussian random map with

covariance function

EG(�)G( ) = 4m(I)

Z
I

�Z x

l
f�(y)�(dy)

��Z x

l
f (y)�(dy)

�
ds(x):

Proof. The result follows immediately from theorem 7.1 by taking d�� = f� d�.

The result of corollary 7.3 is still fairly general. In concrete cases, an additional analysis
will be needed to verify the conditions of the corollary. We close this section with two examples.
For functions that depend in a di�erentiable manner on a Euclidean parameter, we have the
following uniform central limit theorem.

Corollary 7.4. Suppose that I = (l; r) is an open interval. Let � � R
n be compact, convex set

and let ff� : � 2 �g be a collection of functions that is bounded in L1(�), such that
R
f� d� = 0

and Z
I

�Z x

l
f�(y)�(dy)

�2

ds(x) <1

for every � 2 �. Moreover, assume that f�(x) is continuously di�erentiable in � for every x 2 I,
the partial derivatives @

@�i
f�(x) are jointly measurable and �-integrable in x for every � 2 �, and

sup
�2�

Z
I

�Z x

l

@
@�i
f�(w)�(dw)

�2

ds(x) <1

for every i. Then for all z 2 I, the random maps

� 7! 1p
t

Z t

0
f�(Xu) du

converge weakly in C(�) to G under Pz, where G is a zero-mean Gaussian random map with

covariance function

EG(�)G( ) = 4m(I)

Z
I

�Z x

l
f�(y)�(dy)

��Z x

l
f (y)�(dy)

�
ds(x):

Proof. The random maps are clearly continuous in �, so it suÆces to prove that for some
countable, dense �� � �, the weak convergence takes place in `1(��). The convexity of � and
the fact that f�(w) is continuously di�erentiable in � imply that

f (w) � f�(w) =
nX
i=1

( i � �i)

Z 1

0

@
@�i
f(1�t)�+t (w) dt:
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Using the regularity of the derivatives, Fubini's theorem, the Cauchy-Schwarz inequality and
Jensen's inequality, it follows that

�Z x

l
(f (w) � f�(w))�(dw)

�2

� k � �k2
nX
i=1

Z 1

0

�Z x

l

@
@�i
f(1�t)�+t (w)�(dw)

�2

dt:

Another application of Fubini's theorem yields

Z
I

�Z x

l
(f (w)� f�(w))�(dw)

�2

ds(x)

� k � �k2
nX
i=1

Z 1

0

 Z
I

�Z x

l

@
@�i
f(1�t)�+t (w)�(dw)

�2

ds(x)

!
dt

� k � �k2
nX
i=1

sup
�2�

Z
I

�Z x

l

@
@�i
f�(w)�(dw)

�2

ds(x)

= C2k � �k2;

with

C =

 
nX
i=1

sup
�2�

Z
I

�Z x

l

@
@�i
f�(w)�(dw)

�2

ds(x)

!1=2

:

So if we de�ne the metric d on � by d(�;  ) = Ck� �  k, all conditions of corollary 7.3 are
satis�ed.

The usefulness of corollary 7.3 is not restricted to classes of functions that depend smoothly
on a parameter. To illustrate this we prove a functional central limit theorem for the empirical
distribution functions Ft de�ned by Ft(x) = �t(l; x]. The result requires the tail condition (6.2)
again. Note that (6.2) holds if and only ifZ

I
(F (u ^ x)� F (u)F (x))2 ds(u) <1

for all x 2 I.
Corollary 7.5. Suppose that I = (l; r) is an open interval and that (6.2) holds. Then for all

z 2 I and compact J � I we have the weak convergence

p
t(Ft � F )

Pz=) G

in `1(J), where G is a zero-mean Gaussian random map with covariance function

EG(x)G(y) = 4m(I)

Z
I
(F (u ^ x)� F (u)F (x))(F (u ^ y)� F (u)F (y))ds(u):
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Proof. Since the random functions
p
t(Ft � F ) are continuous from the right, it suÆces to

show that for some countable, dense subset J� � J , they converge weakly in `1(J�). We apply
corollary 7.3 with � = J and f� = 1(l;�]�F (�). Some elementary calculations show that in this
case Z

I

�Z x

l
(f (w) � f�(w))�(dw)

�2

ds(x)

= (F (�)� F ( ))2
Z
I
(T�; (x)� F (x))2 ds(x);

(7.8)

where for � �  , the function T�; is de�ned by

T�; (x) =

8><
>:
0 ; x � �;
F (x)�F (�)
F ( )�F (�) ; � < x �  ;

1 x >  :

Since J is compact and therefore bounded, the assumption on the tails of the invariant measure
implies that

sup
�; 2J

Z
I
(T�; (x)� F (x))2 ds(x) <1: (7.9)

So we have a �nite constant C > 0 such thatZ
I

�Z x

l
(f (w)� f�(w))�(dw)

�2

ds(x) � C2 (F (�)� F ( ))2 :

Since m gives positive mass to non-empty intervals (see for instance Kallenberg (1997), theorem
20.9), F is strictly increasing and therefore injective. It follows that d(x; y) = CjF (x) � F (y)j
de�nes a metric on J . Obviously, (J; d) is bounded. Since F maps I into [0; 1] we have

N("; J; d) � N("=C; [0; 1]; j � j) � C=";

so that the entropy condition (7.3) is satis�ed.

Remark 7.6. Note that in the proof of the last corollary, we only used the compactness of J
to show (7.9). There are examples of di�usions for which

sup
�; 2I

Z
I
(T�; (x)� F (x))2 ds(x) <1

(see Negri (1998)). In that case, the weak convergence of
p
t(Ft � F ) takes place in the space

`1(I).
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