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1. INTRODUCTION

Let XI’XZ""’XN be independent and identically distributed random

variables with a common continuous distribution function F. If X,y < XZ-N <
< ... < XN:N denotes the sequence XI’XZ""’XN arranged in increasing order,
then the rank RjN of Xj 1s defined by Xj = XRjN’N and the antirank DjN 1s
defined by XDjN = Xj:N’~j =1,2,...,N. We consider the simple linear rank
statistic

N RjN N i
a.n Ty = 1 CjNJ(N+1> = 1 ooy JGED

3=l j=1 "IN
where CIN’CZN""’CNN’ N=1,2,..., is a triangular array of regression con-

stants and J is a scores generating function defined on (0,1). The two-sample
linear rank statistic is obviously obtained as a special case by setting
ch =0 for j = 1,2,...,n, ch =1 for j = n+l,...,N. If ch

j=1,2,...,N and J(t) = t for t € (0,1) then the statistic TN is distributed

as Spearman's rank correlation coefficient p under the null-hypothesis of

= j for

independence.

The statistic Ty may be used for testing the null-hypothesis that all
observations are independent and identically distributed against classes of
alternatives indicated by the choice of regression constants and scores
generating function. Both under the hypothesis and under contiguous and fix-
ed alternatives it was shown that TN is asymptotically normally distributed
under very general conditions (cf. HAJEK & $TDAK (1967), Chapters V and VI,
HAJEK (1968) and DUPA& & HAJEK (1969)). More recently a number of authors
have studied the rate of convergence in these limit theorems. Berry-Esseen
type bounds of order O(N_%) for simple linear rank statistics were estab-
lished by HUSKOVA (1977,1979), HO & CHEN (1978) and DOES (1981). The purpose
of this paper is to establish an Edgeworth expansion for simple linear rank
statistics under the hypothesis with remainder O(N_]) for a wide class of
scores generating functions including the normal quantile function. We note
that for the special case of the two-sample linear rank statistic, asympto-
tic expansions both under the hypothesis and under contiguous alternatives
were obtained in BICKEL & VAN ZWET (1978). Asymptotic expansions for the

simple linear rank statistics under contiguous alternatives will be



discussed in the author's forthcoming Ph.D. thesis.

In Section 2 we formulate our theorem. Section 3 contains a number of
preliminaries. The proof of the theorem is contained in Section 4. Finally
in the last section we compare our results with those in BICKEL & VAN ZWET
(1978) for the two-sample linear rank statistic. In the sequel we suppress

the index N whenever it is possible.

2. AN EDGEWORTH EXPANSION

Throughout this paper we make the following assumptions.

ASSUMPTION (A). The regression constants ¢ __,c_ _,...,c__ satisfy
IN" 2N NN
N N ,
Z c... =0, ) eto=1, max |c. | = O(N 2?)
j=1 N j=1 N 1<jen N

This assumption implies that ETy = 0.

ASSUMPTION (B). The scores generating function J is three times differen—
ttable on (0,1) and

J” (t)

(2.1) lim sup t(]—t)'m

t>0,1

< 23

there exist positive numbers T > 0 and o < 3+ 1/14 such that its third

derivative J" satisfies

(2.2) 13" (e)] < T{t(1-t)} *  for t e (0,1).
Furthermore

1 1
(2.3) J J(t)dt = 0, f 72 (tde = 1.

0 0
We note that (2.1) ensures that the function J does not oscillate too
wildly near O and 1 (see also Appendix 2 of ALBERS, BICKEL & VAN ZWET (1976)).

Condition (2.3) can be assumed without loss of generality.



Taking
(2.4) J =

we know that the variance oé of TN (cf. (1.1)) is given by

2 X ] -\
(2.5) o, =0 (TN) = 'ﬁ:T z <J (m) - J)
=1

]

=l )

(see e.g. Theorem II 3.1.c of HAJEK & $IDAK (1967)). Define for each N 2> 2

* -1
(2.6) TN = oy TN
and
(2.7) F;(x) = P(T;:zx) for —» < x < o,

Furthermore define for each N > 2 and real x, the function FN by

2
K K K
(2.8) Fy (o) = @(x)-¢(x){—%§(x2—1)-+7§§ x3—3x)-+7%§(x5—10x3+15x)},

where ¢ denotes the standard normal distribution function, ¢ its density

and where the quantities k.. and K,y are given by

3N N

1
N
(2.9) Cay = Zl C?N{f J3(t)dt}
0

and
. 1 1
(2.10) 4N = jzl C?N{[ J4(t)dt-3} - %{J J4(t)dt— 1}.
0 0

Our theorem reads as follows.
THEOREM 2.1. If the Assumptions (A) and (B) are satisfied, then as N -

2.11) sup |F () - FyGo)| = o

xe R

).



We note that Kan and 4N (cf. (2.9) and (2.10)) are asymptotic expres-—
*

sions for the third and fourth cumulants of TN where terms of order O(N_])

may be said to constitute a genuine Edgeworth

~

have been neglected. Hence F

N
* .
expansion for FN. We should also point out that Theorem 2.1 allows scores
generating functions tending to infinity in the neighbourhood of 0 and 1 at

1/14+e for some € > 0. It is clear that this includes

the rate of {t(1-t)}
the normal quantile function. Whenever we shall suppose in the remainder
of this paper that (2.2) in Assumption (B) is satisfied, we shall tacitly
and _.hout loss of generality assume that a € (3,3+ 1/14) and define

§ = 3+ 1/14-0. Hence, from now on we replace (2.2) in Assumption (B) by

(2.12) 13 (6) ] < r{e(1-t)) GO e v ¢ 0, 1),
where
(2.13) 0<s < 1/14.

To conclude this section we define U]’UZ""’UN to be independent and

uniformly distributed random variables on (0,1) and U]:N < U2:N < ... < UN:N

the corresponding uniform order statistics.
3. PRELIMINARY LEMMAS

The aim in this section is threefold. In the first place we approximate
(N—I)o§ (cf. (2.5)) by a integral. For this we shall draw heavily on the
results in Appendix 2 of ALBERS, BICKEL & VAN ZWET (1976). Secondly we study
the behaviour of the characteristic function of T; (cf. (2.6)) for large
values of the argument. To this end we shall provide a lemma which is a
special case of Theorem 2.1 of VAN ZWET (1980). Finally we prove two tech-

nical lemmas, the purpose of which will become clear in Section 4.

LEMMA 3.1. If J satisfies Assumption (B), then

N+1

N . 2
(3.1) ¥ <J(—J—— —3) - n o+ o' /728y,
j=1



PROOF. Take § as in (2.12) and (2.13), let h be a function on (0,1) with
R'(e) = T{e(1-6)} P/ 14*8 Lnd write Aj = 3/ (1), Since

"
lim sup t(l—t)-%r%%% < %
t>0,1

b

Lemma A.2.3 of ALBERS, BICKEL & VAN ZWET (1976) yields

| ) Of{xj(l—xj)}'8/7+26
E{h(Uj:N)"h(lj)} =

N

uniformly in j. Because |J'(t)| < h'(t) we have |J(s)-J(t)| < |h(s)-h(t)]
for every s,t € (0,1) and hence

(4. (1ox.) )78/ 7%28
(3.2) ]

_ 2 _ J
E{J(Uj:N) J(Aj>} = 0( N )

uniformly in j. As J satisfies (2.1), we also have, in view of (A.2.11) in
ALBERS, BICKEL & VAN ZWET (1976),

Aj(l—)\j)+ ]J'()‘J)l\ {xj(l_)\j)}—IS/llH'(S
(3.3) IEJ(Uj:N)-J(xj)] = o( - ) - 0(“““ﬁ““‘ )

(2.3) and (2.13)), it

uniformly in j. Since fJ

0 and § € (0,1/14) (cf.
follows that

.2) and (3.3) and since sz

Zil—

N
(3.4) ‘ ) J(A.)‘
=1

I M2

Zil—

_ _ e 13/14-8
o) EJ(Uj:N)}l o

).
j=1

Furthermore, in view of (3

1 and § € (0,1/14)

N N
2 _ 2 2
jzl J (xj) Nl = jzl {(J (Aj) EJ (Uj:N)}l <

IA

N N
- 2 - =
jzl ELI(U, ) IO +-2j£]|J(xj>llEJ<Uj:N> I

which proves the lemma. [J



. . .. . *
We now consider the behaviour of the characteristic function of TN for

large values of the argument. Let
. *
1tTN
(3.5) wN(t) = Ee .
LEMMA 3.2. Suppose that the assumptions of Theorem 2.1 are satisfied. Then
there exist positive numbers B, B and y such that

(3. g (e) ] < By P 1o8 N

3/2

for log N < |t] < yN and N = 2,3,... .

PROOF. The present lemma is a special case of Theorem 2.1 of VAN ZWET (1980).
Since we are concerned with independent and identically distributed random
variables XI’XZ""’XN - which we may assume to be uniformly distributed
without loss of generality - Condition (2.7) of this theorem is clearly
satisfied. Moreover, the assumptions of our theorem guarantee that there
-exists a positive fraction of the scores which are at a distance of at least
Nn3/210gN apart from each other, so Assumption (2.6) of Theorem 2.1 of

VAN ZWET (1980) is also fulfilled. Finally, it follows from Section 3 in
VAN ZWET (1980) that the existence of positive numbers ¢ and C such that

N N »
(3.7) ) ¢t =c, L c. <CN -,

N

N P - N PN
(3.8) z (J(*m -J) = cN, z <J(T\IT]— —J> < CN
3=l j=1
suffices to prove the present lemma. Assumption (A) guarantees the validi-
ty of (3.7) and (3.8) is an immediate consequence of Assumption (B) and the

continuity of J (cf. also (3.1)). 0O
. . . 8/15
Let [x] denote the largest integer not exceeding x. Define m = [N ]

and T = {1,2,...,m,N-m+1,...,N-1,N}.

LEMMA 3.3. If Assumtions (A) and (B) are satisfied, then



. 5
j _ -1-76/3
(3.9) E| ) cp J(EIT)l = 0(N )s
JeI 3
N-m . 2 N-m 2
1 j ( _ -4/3-1468/15
(3.10) {7:—— ) I } E ) ¢ ) = 0N ).
N-2m j=m+1 N+1 \j—”l Dj

PROOF. According to Assumption (A) ZCj = 0, 2c§ = 1 and

N
2 |c.|k < max Ic.lk 2
= 1<j<N J J

[ =

2 = o!TR/2y
1 J

for k > 2. It follows that for distinct i,j,h,g,k,£ € I

Ec = O(N_3), Ec5 c = O(N—4), Ec4
D. D. D.
i i’ i
3 3 -3 4 P 3
ECD.CD. = 0N 7), ECD.CD.CD =0N ), ECD.
1 ] i ] h 1
2 2 2 -3 3 _ -5
ECD.CD.CD = 0N ), ECD.CD.CD <y = 0N 7),
i 7] h i 7] "h g
2 2 Py 2 =5
ECD.CD.CD < = 0N ), ECD.CD.CD ¢y Cp. = omw ),
i3 h'g i h g k
E = O(N_6).

c.c.c c_ cC_ C
Di Dj Dh Dg Dk DK

Furthermore, Holder's inequality yields
; 5 ; 675/6
(3.11) E ‘z CD. J(—m)! < {E<.z CD. J(-N"l‘_l )} N
JeI 3 JeI 73

In view of (2.12) and (2.13) we have for k = 1,2,...,6
m

. N+1
1 i ik _ o k/144ks Y
N jZI Ml 0( i {t(1-t)} dt/ =

) 0<{E§T}]—k/]4+k6>.

(3.12)

Direct computation of the right-hand side of (3.11) produces (3.9). Since

_ 2 -1
ch = 0, ECD. =N and ECD.CD.

J 1]

= —{N(N—l)}_] for i # j, we have



E<‘N§m cp >2 = E( I < >2 = 0(3).

j=m+l 7] jel 7]
Similarly we find that, in view of (3.4) and (3.12),

N-m . .
1 YOI = 1 VoIG
N N+1 N . N+1
Jel

j=m+l
13/14+8
m
o} )

-13/14-6

+O(N )=

(3.13)

and the lemma follows. []
To conclude this section we prove

LEMMA 3.4. If Assumption (A) is satisfied, then for any y < 1 and N + o

(3.14) P( R 1—y> - o 2213y,
jeI 7]

. 2 -
PROOF. Since E(Zj€I cDj) = 2mN = and

2 N
2 _ 2w\ _ 2m(N-2m)( 4 1
E(jZI CDj Tf) TN \jZ] 3 N)’

the Bienaymé-Chebyshev inequality ensures that for every y < 1
2 2m 1-y 4 2 2m 2 -22/15
Pl| ) . TR 2 E| ) o 0N ).

; . N 2 2 . ]
jel i (1-v) jeI 7]
The lemma follows because mN_] >0 as N+ o, []

IA

4. PROOF OF THE THEOREM

To prove Theorem 2.1 we start with an application of Esseen's smooth-

ing lemma (see e.g. FELLER (1971), p.538), which implies that for all y > 0

3/2
VN7 e () =2 () |
lel

(4.1) sup |F§(x)—§N(x)| < % [
xeR

/

dt'+ O(N > 2),

—yNB/z

*
- N
denotes the Fourier-Stieltjes transform of FN’ i.e.

where wN denotes the characteristic function of T. (cf. (3.5)) and AN



*® 2
. 2 K K K
[ oitx _ ottf _T3NL 3 “uN 4 “3N 6
4.2) A f AR - T 1o By dy NN }.
The derivative of XN is uniformly bounded and also
dy (t)
N *

'———dt— SE’TNIS].

Because wN(O) = AN(O) = 1, we have

4y (D)2 (0 |
el

. it = o 3%y,

lejen 372

Similarly, Lemma 3.2 and (4.2) ensure that

-3/2

(4.4) dt = O(N ).

{ 9y (£) A () |

lel

log N < |t] < yN3/2

From (4.1), (4.3) and (4.4) it follows that, in order to prove Theorem 2.1,

it suffices to show that

1

(4.5) dt = o (N ),

[ (B) =2 (B) ]
J lt]
teA

where A = {t:N_B/2

< |t] € log N}.

To solve this problem we use a conditioning argument. We take § as in
(2.12) and (2.13) and define m = [N8/15] and T = {1,2,...,m,N-m*1,...,N-1,N}
as in Section 3. Let Q = {Dj:jeI} be the set of antiranks Dj with indices in

I and let w = {dj:jeI} be a possible realization of Q. Finally define

_ J
@ zy= 1oy I
Jjel 73

Because (TN—ZN) and Zy are conditionally independent given Q, we have

* -1
itT ito (T,.~Z..) ito Z
V() = Ee N E[E(e NCOROR [Q)E(e N NIQ)] =

-1 -1 -1
ito, {(Ty=2Z,)-E(Ty-Z |D} \ ito, E(T-2Z|Q) , ito Z
_ E[E<e N VNN N N 19>e N VN YN E(e N N|Q>].

(4.7)



10

o, _ N-m
We note that conditionally on Q = w, TN ZN Zj=m+1 ¢p, J(G/(N+1)) is
distributed as a simple linear rank statistic for sampie size N-2m based on

a set of regression constants {cl, 930 sCy }\{cd :jel} and having a scores
generating function

m+ (N-2m+1)t

(4.8) JN(t) = J< N1 > for t € (0,1).

We write this simple linear rank statistic as

. /Q'
= ]

wn e F o).

where M = N-2m, {b sboseeesb } = {cl,cz,...,c }\{ch:jel} Q5Qy,---,Qy are

the ranks of V V2""’VM’ whlch are independent and uniformly distributed

random Varlables on (0,1).

Define for j = 1,2,...,M

Q.
s 1 M-1
(4.10) VJ = <M+]lV ) = —MTI— + M"’] Vj
and let SwN be a three-term Taylor expansion of TwN’ viz.
M J' Q . ., Q \2
SN = ) b. 1J (V ) + Iy V. )(M+] - vj> Iy V. )(M+1 Vj) }.

j=1

We shall approximate (TwN—ETmN) by (SmN_ESwN) and for this we need

LEMMA 4.1. Under the Assumptions (A) and (B) we have, uniformly in w,

2
(4.12) ot (TS = (, + <.Z Cd.) )0(N‘2"45/15),
JeI ]

[\]

PROOF. Let, for j = 1,2,...,M,

QJ Q - 1n Q -\
Yj =J (M+1) - {J (V )*-J (V )<M+l Vj) + J (V )<M+] Vj) }.

Because ZM_ b? < 1 and
=13
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] j=1 jer %3 j=1
2
<1+ ( z c > s
. d.
Jel J
the Cauchy-Schwarz inequality yields
M 2 M
2 2 _ _ 2_.2
0" (T Sun) S BTy S.) = E(jzl ijj> = jzl bIEY] +

(G,k)# je

(2 + (JEI c .>2>EY?.

J

2
2
+ ) bib EY V) < EY] + <1 + ( ZI cdj> )EIYIYZI <

Here ZZ(j K) £ denotes summation over all non-negative distinct integers j,k
b —-—

satisfying 1 < j,k < M. Define r(t) = {t(1-t)} 1. By Taylor's theorem,

(4.8), (2.12) and the convexity of the function r(t) we see that

AR AT Q 2
o S_E<_-V) o o (n s o, )} s
1 36 M+1 1 0<n<1 M+1

_rt Yy s _6+1/7-26 mQ, 6+1/7-26(™F DV,
< — El——~-V — )+ T _—r.
36 A\~ Vi N+l N+ 1

The independence of the vector of ranks (QI’QZ""’QM) and the vector of

order statistics (V VM'M) and Lemma A.2.3 of ALBERS, BICKEL &

I:M’V2:M’."’
VAN ZWET (1976) imply

o2\ err/7-2s™ ) | e\ 4T N8 ern/7-2™ U
Wl V1 W w) M1 w1 )"

% oy il 6 _6+1/7-26(m+}

LBV N1

M .
_ 1 J \_6+1/7-28 mtj.\ _ -2-148/15
- 0(‘; Lo Kk Feh) = oa )-

IA

Furthermore, the conditional distribution of Q-1 given V, is binomial with

1
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parameters M-1 and V1 and by application of a recursion formula for the
central moments of this distribution (cf. JOHNSON & KOTZ (1969, p.52) we

find

E(Q, - EQ,[V)I*|v) = 0w, (1-v )} + v (1-7))) .

Hence,
Q. \® 6r1/7-as(m* BT, V-V s v, a-vy)
(=) = () - (P )
(4.14) A
6+1/7-25(™F AHFDVINN o j4s/15
e T \—N:]_ —O(N )a

—2-148/15

Combining (4.13) and (4.14) we find that EY? = O(N ). This proves

the lemma. [

It follows from Lemma 4.1, (2.5) and (3.8) that

) ito_l(S -ES

N
itoy (T NETuy N N ES,y)

Ee - Ee

241
. o ) ~1-78/15 ’
< Itl oy EITwN ET sz+Eszl = 0<|t|N {1+—<j§1 Cdj> } >,

<

(4.15)

uniformly in t and w.

Our next task is to evaluate E exp{ito&](sw —ESwN)}. The technique

N
for doing this resembles that in HELMERS (1980). Let x be the indicator

function of (0,~) and define

M

M

S, = j§1 bj(JN(Vj) - EJN(Vj)) = jzl ijN(vj),

. e V. -

(4.16)
5, = ““l“i b.{Jg(G.)(X(v.-vk)—v.)z-EJ§(§.)(X(v.- k)—v.)z},
2001) % (§,K0# 7 J J J 1 j i
] " 3 — — — —

5,=——5 L.l By I (V) X(V3=V )=V ) (X (V5 =Vp) V).

206 1) (§,k,0)#
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N
First of all we compute a number of moments.

. 4
It is easy to see that Sw --ESwN = Zv=] Sv and ESv =0 for v =1,...,4.

LEMMA 4.2. Under the Assumptions (A) and (B) we have, uniformly in w,

-13/10-78/5 2 _ gy22/15-148/15

3
Els,|? = o ), ESj )
(4.17)
ESZ _ O(N_7/5_146/15).
. . ' . . 3 4.3/4
PROOF. By applying Holder's inequality we obtain EISZ| < {ESZ} . Let,

for distinct j and k, h(Vj,Vk) = J&(ﬁj)(x(vj— k)—Vj). Define h(x,x) = 0 for

all 0 < x < 1. Direct computation of ES, shows that
. 1 M M 4
SR PR ELRN
- T LT L mvonmupne,vone,up) ¢
e+ 4h321 TGSy 621 g2 us A L
+4 37 bl { % % % % Eh(V,,V_)h(V ,V_)h(V ,V )h(V,,V )} ¥
Going 3 ELZp eot 21 g E ST e 2T

goeaHI 1 1)
+ 3 b.b { Eh(V,,V. )h(V,,V )h(V,,V _)h(V,,V )} +
(3,k)# ik r=1 s=1 t=1 u=l ’'r 1°"s 2° 't 22y

M s dl 1 1 1
+ 6 bsb, b { Eh(V,,V )h(V,,V Yh(V,,V )h(V,,V )} +
Gk, )¢ 7 KLY 621 £21 uml 1’ 'r 1’"s 227t 32’y

M M M M
+ I} b.b.b,b { 7V ) ) ER(V,,V)h(V,,V)h(V,,V )h(V,,V )}].
Grtims 3 EERLDy o2y 2y w2 DX 2T 3 A

To bound the right-hand side of (4.18) we note that an expectation in (4.18)
equals zero if at least one of the indices (r,s,t,u) occurs only once. With
the aid of the Cauchy-Schwarz inequality the non-zero expectations may be
bounded by either Eha(V],Vz) or {Eha(V],Vz)}%Ehz(Vl,Vz) or {Ehz(Vl,Vz)}2

and we obtain



M
4 4 ~2_. 4
ES, = O<{ ZI bj} N “EhT(V,,V,) +

3 -2, 4 1.2 -3_. 4
+ {(jz£)¢ bjbk}{N {Eh (vl,vz)}th (V,»V,) +N “Eh (v],vz)} +
(4.19)

f 77 2.2 2 ,
+ bsbs + ))})  bibb, +  J)))  b.b b,b t -
Lgiior 38 Glicms 188 & Emye dE

3

-2 2 2 -3 .4 \
- {N “{Eh (vl,vz)} + N “Eh (V1’V2)}j'

In view of (4.8) and Assumption (B) we have, for 1 < k < 4,
Elhk(V],Vz)l = EIJ&(G])]ka(vl—VZ)—VIIk <
R m+l + (M-1)V_y k
< B[ @) [C v, 0-v) < E‘J'( o ‘)| v,(1-V,) =
-
(4.20) _ O([ {t(]_t)}—ISk/14+k6{(N+]);L}(m+1)}{(M+m)ﬁ;fN+l)t}dt> _
m+1
N+1
.
_ O(f N{t(]_t)}l-ISk/14+k6dt> - oK/ 2 14/15-Tk8 /15y

m
N

According to Assumption (A) and the fact that {b],b ,b } = {CI’CZ""’CN}\

g3eeeaby
\{Cd :jel}, we have

-7/15

% b¥ = o hH I 7T bob ‘ = o /13
[E ColGhos 1K ’
ORI I A SRR T N I RS IR G R
(G,k)# Gk, % 3
2/15
)Y b.b, b,b } = 0N ).
Gk by S kLD
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Combining (4.19) through (4.21) we find that ES; = 0(1\1_-26/15_286/15

hence E|s, | = o 13/10-78/5

) and
). In the same way one can obtain the other two

assertions in (4.17). 0O

Define, for real t and N = 2,

..o =1
1tcN (SwN_ESwN)

(4.22) pN(t) = Ee
and
ito—]S 2
_ N 71 it (it) 2
(4.23) p]N(t) = Ee {1 + S (SZ+S3+S4) + 5 Sz}'
N ZGN

The next lemma shows that py can be approximated by PINe
LEMMA 4.3. If the Assumptions (A) and (B) are satisfied, then

-17/15-148/15

(4.24)  Jog(®)=p g (©)] = 0(£™N )

unt formly for |t| < log N and w.

PROOF. Repeated use of Lemma XV 4.1 of FELLER (1971) yields
2 -2 2 -2_..2..2
log(©)=p ()] = 0(t7op E[S,[[s4+s,| + tTo "E(S5+S,) +
3 -3 3
+ |t Oy E[s,[7).

From (2.5) and (3.8) it follows that for all sufficiently large N there

. .. 2
exist positive numbers e, < such that €, £ o < ¢

1 S &y ] SOy S €y Lemma 4.2 produces

the desired result. [J

Clearly our next task is to evaluate the right-hand side of (4.23) and
we start with the leading term. According to (4.16) S1 = Z?=] bjEN(Gj)'
We have EJN(VI) = 0 and for all igfficiently large N, there exist positive
numbers Y1 <Y, such that Y < EJN(VI) v, (cf. (2.3)). In the sequel we

shall assume
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(4.25) z 02 < 1=v
. d.
Jel 73

for some vy € (0,1), to guarantee that
(4.26)  yy, € 0°(S) <y
) 1 - 17 - 2

Finally we note that Assumptions (A) and (B) imply that z = 0N ) and
that the random variable J (V ) has a finite l4-th absolute moment It fol-
low. .:um the classical theory of Edgeworth expansions for sums of indepen-
dent and non-identically distributed random variables (see e.g. Lemma VI 4.11

in PETROV (1972)) that

12 it> 1
’E exp{it SI/O(SI)} - e 2 {] - -;——;S—)— z] bJ EJ (V ) +
o j
b M
*—— ] b {EJ (v ) - 3[EJ (v )1} -
245" (s)) j=1 j
(4.27)
: 6 2
- t Z b3 EJ @ )} }‘
7240 (s)) 4= ]
2
1
= o et et

uniformly for |t| < log N and w for which (4.25) is satisfied. Replacing t

by t,. = to(Sl)/oN and expanding exp{—%té} we find that uniformly for

N
lt] € log N and w for which (4.25) is satisfied

-1

ito,." S 1.2 3 M 4 M
(4.28) £e N logzt {1 L Z b3 EJ @p o+ 1 b? .
60 N j= 240N j=1
6 (M 2 2
~4 s aro2 5 12 t 3.~3 .5 t 2 2
- (BT (V) - 3[ETL(V))1%) —-—z{.z bjEJN(Vl)} + —(o~0"(S)) +
720, %3=1 20
N N
4 .. 5
2 it 2
Ji—(o -0 (8 )) ——~g{ 2o (s 1)) Z biEJ3(V )}l =

A
8o oN 120 N



2 2
= o Nt e E ) + 0CloZ-o% (s ) 1P ItlR ()™ )

2
+ 0 of-o" (s ) 1 lElpy (e,

where 0 < 6 < } and Pl and P2 are fixed polynomials.
We now turn to the remaining terms on the right in (4.23). Let

it (V.)
(4.29) bg(t) =Ee !

denote the characteristic function of SN(GI)’ so that
itc&lsl M b.t
(4.30) E e = 1T q (~l—>.
j=t N

N

From the Assumptions (A) and (B) it follows by Taylor expansion that for
distinct integers £.,...,£ where 1 <n < 4
1 n
b, t

£ 2, n
n ~ -~ -
4.31) m oy ( v ) -1 - 52T 32 }EJZ(V y + o 2 1e 13y,
v=l N\ © 202 =1 K\) N1

N

N

uniformly for |t| < log N and w for which (4.25) is satisfied.

In the last two lemmas we summarize the results we need.

LEMMA 4.4. If the Assumptions (A) and (B) are satisfied then, uniformly
for |t| < log N and w for which (4.25) is satisfied
-1

| .
i1to.. S ito,. S
'E(e N 1s)-Ee N 1{ ESS+(1t) ESS
2 GN

1°2 252 2
(4.32) N
. .3 . . -1-e 2.2
- (lt)3 [EFI{;(VI) —{EJI%I(VI)}ZJ}I = O(N 1Ithl(t)e o ),
4N0N \
.o=1 .o=1
ito,. S 1to,.. S -1-c 2
N 1 N “1[it 2 -0t
(4.33) E(e SB>-E e {EE ESIS3}' 0(N lthz(t)e ),
. -1
ito. S -1-¢ 2
(4.34) E(e N 134)! = O(N 3|t|P3(t)e'et ),

where 0 < 6 < 1, € > 0 and Pj 18 a fixed polynomial, j = 1,2,3.

17
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PROOF. Because the statements (4.32) through (4.34) are all proved in

essentially the same manner, we shall only prove the first statement, by

way of an example. An application of Lemma XV 4.1 of FELLER (1971) shows

A ~ A it, ~ =
|exp{1to (b J (vj)*-kaN(vk))}— 1-E§(ijN(Vj)+-b J (vk))

.33
(1t) 2_(@({t)" v 5 ~ 2 3
- (b J (V )i-b J (Vk)) 3 (ijN(Vj)+-kaN(Vk))
20 6o
4 N N
< 4(b J (v ) +b JN(\“Ik))4
N

It follows that
B explitoy’ (b,Ty (V) + b T () 1RV G(V;-v)=v,) =

= E[J (v ) (x (V. -—vk) V )][ (b J (V )+b (Vk)) +

(4.35) + (lt) R e @)+ 26,5, EMUBK; (T +bIIRE)) +
20 N
+ (1t) (b J (v )+3b3 2y Jﬁ(\?J.)B’N(Vk)+3b b J (V )J (V )+b (Vk))] +
60
N

+ o’ E[Jﬁ(§j)(x(vj—vk)—vj)[{b 3 @, )+ by T @O,

We note that it is easy to check that

"o vy i (u;) 22 =
E[JN(Vj)(x(Vj v,) VJ'”[HZ k< KJ (V£)+ o2 bKJ (V!.) +
N
(4.36) ' (ig) ZJN(VK){b Ty @)+ b AR ) bHEN(?rn)}) .
Oy n#j,k,L
» Ut ; b3J3(§ )]
60N

and hence
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]

exp{lto (b J (V )+b, J 4 ))}J (V )(X(V - k)“V ) =

A : L2
BLOR ) (cvv) v 1 £+ L9562 ()’ (320, T2, @) +

N ! 20§ ! 601?] L
4 S
+ 3b b J (V )J (V )+b (Vk)}] + 0(t EIJN(Vj)(x(VJ--Vk)-Vj)I .

. {b J (V )*‘b (Vk)})
From (4.31) it follows that for distinct integers 1 < j,k < M and |t]| < logN

b,t ito 'S 2 R
(4.37) m uN(—f—) —Ee UV ‘{1+_‘§_2(b?+bﬁ)m§(v]) £ 0N 3/2|t|3)},
243,k N 205 3 :
N
uniformly for |t| < log N and w for which (4.25) is satisfied. Hence,
combining (4.35) through (4.37) and Assumption (A), we find after some
algebra
-1
ito,. S b. b,t
s Sz) _ 3 g ("L > .

) n| —=—
Goiod BT g5 Mo

* E explito (b 3y (v Y +b JN(Gk))}J&(Gj)(x(Vj— »
. -1
ito.. S .
- {E e N 1][l—tEs S (lt) Gb) 5625
N

_Vj) =

1 2 1 2
20N

(4.38)

+ (i) N ELJ), (v )(x(v -V, )-V. )J[
602 (5,1)# k Mrl N
3
b.b
J (V )32 (Vk) + Ta%ﬁli JI?I(Vk ] +

2.2
(it)3 bjbk(b.+bk)

. M+1

20 (J sk)#
_ _a+2
3/2t4e ot

ET @) 5 T (V=1 V) HETL )1 +
£ O BT, )1+ T @I @1+ 13N 1D,

uniformly for |t| < log N and w for which (4.25) is satisfied. From
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Assumption (B) and (4.8) it follows that (see also (4.19))

El?é(%l)ﬁN(Gz)Jﬁ(ﬁl)l = oqy!/10-78/5y .
BIT @I @1 = ol /137148713,
(4.39)
BITE @ a1 = o678 632w = o

1/30-78/15

Yoy e 1B G Y % C@y)] =
EQyOV D+ g I+ (V) D1, = 0w ).

Finally we obtain by partial integration

3 @Ryt _
EJ (V) T5 (0,035 (V) (x(V,=V,)-V,) =

(4.40)

_ i M1 2 4 s P MEL 3o ~2 s 02

Combining (4.38) through (4.40) and (4.21) we arrive at (4.32). [

LEMMA 4.5. If the Assumptions (A) and (B) are satisfied then, uniformly for
[t] £ log N and w for which (4.25) is satisfied,

.1 ., -1

1to,, S ito. S .
gle N sz) - {E e N l}{Esz + Ltgg g2

\® 2 27 o102 *

4.41)
.2 . "~ o _ 2
+ (—lt—)z—[ES;(v])—{EJ§<vl)}23H o e elp()e Y,
4N0N

where 0 < 6 < 5, € > 0 and P 18 a fixed polynomial.

PROOF. The proof of the statement (4.41) is similar to that of Lemma 4.4

and we shall only provide a sketch. Throughout, all order symbols will be

uniform for |t]| < log N and w for which (4.25) is satisfied. Let, for

distinct j and k, h(V.,Vk) = J'(%.)(X(V.—Vk)—v.). Direct computation of
4 2 ] N*] ] ] \

E(exp{ltoN SI}SZ) shows



+

(4.42)

+

L#],k

+

21
2
) -

) ISR v s 2
r;j E explitog (ijN(Vj)+erN(Vr))}h (Vj’vr) .

NESFEND)

S VI ~ A
E exp{ito_ (b.J _(V.)+b J (V) +
r#j s#i,r AT

()}

~

kJ

m

b Iy TNV T

.=l o~ =
) bjbk{E exp{itoy” (b Jy(V,)+b

(3,k)#
b,t
L
uN(o )+ z
r#j,k

v ) I (v,

N''k ’Vk)h(vk’vj) °

. _1 ~ ~ ~ ~ ~ ~
E exp{ltoN (ijN(Vj)+kaN(Vk)+erN(Vr))}°

T

[h(VS, VBV, V) + 2h(V,,V )RV ,V,)] b

) )

e | ~ ~ ~ ~
E exp{ito,_ (b.J (V.)+b_J_ (V.))}h(V.,V.) -
3,k s#i,k,r N I N3 rN''r 1’'r

SN

N m

1 ~ A ~ A
(b, I (V. )+b J _(V )) }h(V, ,V )
k"N 'k s"N''s k’’s L43,Kk, 1,5

E exp{ito

Using Lemma XV 4.1 of FELLER (1971), we expand all six exponentials in the
right-hand side of (4.42) (cf. (4.35)). From (4.31) it follows that for dis-

tinct integers ﬂl,...,ﬂn where 1 £ n £ 4 we have (cf. (4.37))

(4.43)

With the aid

as in (4.38).

b,t

" “N(?%") B

R 4 N
1 n

-1
ito, S 2¢n ” _
Ee © 1{1 . Y }EJé(Vl) + 0N 3/2[t|3)}.
20N v=1 v :

of (4.43) and the expansions of the exponentials we proceed

For example, the term involving h(Vj,Vr)h(Vk,Vr) on the right

in (4.42) equals
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b,t

1 (oL > Lo -1, o~ oA ~ A ~ oA
_ b.b m ut——) E exp{ito, (b.J (V.)+b J (V. )+b J (V. ))}-
(M+])2 Gane k 24k, r N\oN N V3NV TPRINYRT T e N e

[

1toy S] ZXZ bjbk
- h(V.,V)h(V, ,V) =3E e }{ -—-————{Eh(V.,V Yh(V, ,V.) +
e T (Grlof aep?l 3TE KT

. )
it (it) 202 a 272 A 272 & ~ oA~ A
+ GNESIh(Vj,Vr)h(Vk,Vr) + 2 E<ijN(Vj)+kaN(vk)+erN(vr)+2bjkaN(vj)JN(vk)+
N

bR Y 5NY (v T Y (v
+2 L W OTV) + ZbkerN(Vk)JN(Vr)>h(Vj,Vr)h(Vk,Vr)] +
2 b.b
B ) _ 1k

. 2(b?+b§+b2
20y (G,k,0)# (u+)”

~2A
r)EJN(Vl)Eh(Vj,Vr)h(Vk,Vr)} +

2 -~ ~ -~ ~ -~
. 0<N‘3/21t|3 O BT @I 1T, @ 1+ 1T+
+ T (V) 1+ IR TP ILE,) |).

From the Assumptions (A) and (B) and (4.8) we are able to calculate these
sums (cf. (4.21) and (4.39)). Note that by partial integration we have

2

BT (V)T (0 )h(V,,V)h(V,,V,) = z(ﬁé}) [Eﬁg(ﬁl)-{E3§(§l)}23.

Following this program, we finally arrive at

b,t
1 L Lo =1, o~ s ~ s N e
_— b.b Il u (———) E exp{ito, (b.J (V.)+b J (V. )+b J (V.))}-
ae? G 3 e O NIRRT e

.. -1

( f 1toy 8 ZZZ bjbk
- h(V.,V)h(V,,V.) = 4F e }{ -——————[Eh(V.,V Yh(V, V) +
e Gion# aen?l 3TE R

2.2
: L2 b%b
it (it) j ko _~4 o ~2 .~ 2

+ E—Eslh(vj,vr)h(vk,vr)] * o= 1y LEIG (V) - {EI (V)T +
N 40N (Jak)¢

2
F o T Jelpe)e )y,

where 0 < 8 < i, € > 0 and P is a fixed polynomial. All other terms in the
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right-hand side of (4.42) can be handled in the same way. []

From Lemmas 4.4 and 4.5 it follows that uniformly for |t| < log N and
w for which (4.25) is satisfied (cf. (4.23)),
., —1
ito, S .82
p () = {E e N 1}{1 » G5 [2ES S, + 2ES S 4—ES§] +

20§ 2 3
Gl 2 2. (D)~ oo ~2 a2

+ —£-[ES7S.+ES .S, 1 - ~—2[EJ_ (V.) -{EJ_(V.))} 1} +
. 3 1°2 1°2 4 TN N 1
20N 8NoN

2
f o T Jep)e ),

where ¢ > 0, 0 < 6 < } and P is a fixed polynomial. Using (4.26), Lemmas

4.1 and 4.2, as well as the fact that ESIS4 = 0, we obtain

2 _ 2 2 -17/15-148/15, _
2ES]S2 + 2ESIS3 + E82 =0 (SwN) o (Sl) + O(N ) =
(4.44) 2.1
2 -
=02(T )—oZ(S)+/1+ Z c \\ o ! 76/]5),
wN 1 \ . d.) ;
JeI ]
uniformly for w satisfying (4.25). Writing h(Vl,Vz) = Jﬁ(ﬁl)(x(vl—vz)—Vl) as

before, we find by repeated use of Assumptions (A) and (B) (cf. (4.20),
(4.21) and (4.39)) that, uniformly for w satisfying (4.25),

o TE),

A
2 2 _ "IN 2
ESYS, + ES S5 = — )} biby

12 P2 N Ghios

where € > 0 and

~2’\ ~ ~ ~ ~
AlN = EJN(Vl)h(VZ’Vl) + ZEJN(V])JN(VZ)h(Vl’VZ) +
(4.45)
+ 2E3 (VD h(V,,Vh(Vy, V).

It follows that uniformly for [t] < log N and w satisfying (4.25),
.o -1

ito,, S .2
(4.46) o (B) = {E e N 1}{1-+£i§%—[02(TwN)'-02(SI)] .
N



24

) . N4
(it)” TIN 77 2 (i) ~bos o N2 s D }
P LY. bib, - ~—=_{EJ (V.) - {EJ(V, )}t +
200 N Gl TF awet N e
N
2 2\1%
+ O(N—I_E ltIP(t)e_et (1 + ( ) cd.) )2>,

jel 73
where € > 0, 0 < 6 < } and P is a fixed polynomial.
Let us turn back to our starting point (4.7). Choose y € (0,1) and

define the event B = {Zj
p(aS) = o 22/ 15

I cg. < 1=y} (cf. (4.25)). According to Lemma 3.4,
J

), so

. *
1tT

. -1
itoy {T\~Z ~E (T, ~Z\|Q)}
(t) = Ee N_ E[x(B)E(e N NN NN IQ) .

-1 -1
itog E(Ty-Zy| 2 ( itoy Z
- e E{ e

N N|Q>] . O(N—ZZ/IS).

From Lemma 3.3 it follows that EIZNl5==O(N_]_76/3) and E(E(TN—ZN!Q))2 =

= O(N_4/3—146/15). Hence by Taylor expansion we obtain
* -1
itT itoy {Ty=Z—E(T~Z|2)}
wN(t) =E e N_ E[X(B)E<e N NN NN Q> .
it (it)2 2
. {1-+7;{E(ZN|Q)+E(TN—ZN|®}+ 7ZFT{E(ZN]Q) +
(4.47) N

+

.03 A
2E(zN[Q)E(TN—zN|Q)}+~(lt) E(z§|9)4-(1t) E(Zglﬂ)}] +

3 4
60N 240N

O(N—22/15) + 0([t2+lt[5]N_1_76/3),

+

uniformly for |t]

IA

log N. In view of (4.15), (4.22) and (4.24) we have,

uniformly for |t]| < log N and w satisfying (4.25)
.. =1 ., =1
< itoy {TN—ZN—E(TN—ZNIQ—m)} > itoy (T E(T )
El e Q=w ] = E e =

2 1
(4.48) = oy (B) + 0<1t|N 1'75/15<14-< I e, ) >2> = o0+
jeI 7]

o5 e+ (] cdﬁ),

jeI 73
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where € > 0 and P is a fixed polynomial.
Before substituting this in (4.47) we shall provide uniform bounds for
2 2 2 -
j N © (TwN) and o (TwN)-G (Sl)' Theorem II 3.1.c of HAJEK &
$1DAK (1967) and Assumption (A) imply that

2 e P2 -l 2\ ¥ - \?
T =7l e, T jzl (M+1)"JN ’

. 2
the quantities o -

Jel J jel ]
where (cf. (4.8))

N-m

M .
- _1 iy 1
IN T ® .Z JN(M+1) M. L J(N+1
j=1 j=m+l
Tt follows from (3.13) that I3N| = O(N—13/30—76/]5) and from Assumption (A)
1/30
that lzjeI cdj] = 0(N ), hence

M
2 o 2 -13/15-146/15
Gan S = gdi- 1 )Zl IGap + o )

jeI 7373

. . = Aa—13/14=8

uniformly in w. Furthermore we know from (3.4) that |J| = O(N ), so
~ in view of (2.5) and Assumption (B) we have
2 2
oy 0" T | = ' Z 5 (N+1) 1= e, ) I 3 (M}l)l *
jel i’ =1

. 50) . o 13/15-146/15) Z i Z 2 2m % 2

‘ B N1 “a. ” §o) N

]

-13/15-1468/15 -2/5-148/15

+ O(N ) = 0N )»

uniformly in w.
To obtain the second bound, we argue as in Lemma 3.1 with J and h(t)
-1
replaced by JN and hN(t)==h((N+1) (m+*(M+1)t)) to conclude that

-14/15-146/15

o = B2 + o ).

I
N~

=1 N ™M+1
-13/15-1468/15

One easily verifies that |EJ§(V1) - E3§(§])| = O(N ) and

together with (4.49) and (4.16) this yields



2 2 -13/15-148/15
(4.51) |o“(T )-0"(S)| = 0N / / )
wN 1
uniformly in w.
We now substitute the random versions of (4.48), (4.46) and (4.28) in
(4.47). Using (4.50) and (4.51) we find after straightforward computations

that uniformly for |t]| < log N

2 -
wN(t) = E[x(B){e_%t ( z c? - Z cg )EJ;(V]) +
6ooNi=1 3 jer Vi
. N
LY e @ -2 @ 12 - T G - G 1%] -
oaghl:t, R ‘AR N NN N
GN J=

6 N 2 2
t 3 ~3 = 2 2
- ‘_6<Zl cj> {EJN(VI)} ——2—[0 ] (TN—ZN|Q)] +

720, j= 205,

4 5
+ JLZEUZ—GZ(T [Q)]

N

80N

.3 A 2
i£~-—ﬁg Z S + o(N ]Ith(t)e ot
jeI 7]

it 3 _~3.2 2 2
e EJL (V) [oy-o (TN—ZNIQ)] +

| 12

5.
120N j=1

(4.52)

) +
203
)

})I][14~——[E(Z |Q)+~E(T N{ﬂ)] -

+ O<N_l_€[t]P(t){]4-< z cp. )

jel

2 .3
- JLE[E(zilg) + 2E(Zy | ME(T -z |2)] - =5 E(zg ]Q) +

ZGN 60N

-22/15 -1-78/3

4
+ —E—ZE(Zglﬂ)] + O(N + |t]P(L)N
240N

)s

where € > 0, 0 < 8 < { and P is a fixed polynomial.
A few more facts are needed to complete our calculation of w (t). First
we note that for a = (m+l1) (N+1) -1 = O(N 7/15), Assumption (B) and (4.8)

imply that

a

0
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for k = 1,...,4 and hence

IEJN(GI)I _ O(N—13/30—76/15),
I-a
E3§<§1> _ g;% J 2yat + O(N—13/15—146/15)’
a
. 1-a ” 1-a I-a
Eﬁg(ﬁl) = g;%~ J J3(t)dt-3(g;%> { J Jz(t)dt}{ J J(t)dt} +
4.t : a a a
+ O(N—l3/10—76/3)’
1-a
ETS (V) = ¥ J S (eyae + o 1330778715y
a

Furthermore, Lemma 3.3 yields

E(ci_cz(TN_ZN]Q)) = E(E(Zﬁ]g)) + 2E(E(zN]Q)E(TN_ZN|Q)> +

(4.54)

-4/3-148/15

+ 0N ).

Combining (4.53) and (4.54) with (4.52) it follows after some computations
and repeated use of Assumptions (A) and (B) that, uniformly for

N2 < lt] < log N,

2 .. 3 4 6
-1t it t t 2
_ 2 - —-_
Uy (B = e {1 3 K3 T T 7 Mun 6 K3N} *
60N 240N 720

(4.55)

2
s o elp(e)e™® ) w0 o e lR(e)),
where ¢ > 0, 0 < 6 < §, P is a fixed polynomial and Kan and K4y are given
by (2.9) and (2.10).
To conclude the proof of Theorem 2.1 we note that (3.1) implies
2

oy = 1 + O(N

—6/7-26).

Substituting this in (4.55) we obtain (4.5) with A_ as in (4.2) and the

N
proof of the theorem is complete. []



5. TWO-SAMPLE LINEAR RANK STATISTICS

In this section we compare our results with the expansions for the two-

sample linear rank statistics in BICKEL & VAN ZWET (1978). Let 1 < n < N,

A = nN 1 and assume that ¢ s A < 1-¢ for some fixed € ¢ (0,1) and all N.
1
Define c = (1-2)/{Nr(1- )\)}2 j=1,2,...,n and Cj = =A/{NA(1-))1}2,

j = n+],...,N It is easy to check that in this case the c:

J's satisfy

Assumption (A) and

4 1-33+32°

3 1-2 b
€57 ’ L 3T M

3 mma-ny

u}~12
I ~>12

]

"aking a scores generating function J which satisfies Assumption (B), we

define the two-sample linear rank statistic as in (1.1). For the distribution
. * . . . .

function F_ of the standardized version of this statistic Theorem 2.1

N
provides an Edgeworth expansion with remainder ¢ (N 1):

if 1
F (o = o(o) - ¢(x){——~—~—————T<J J (t)dt) (x2-1) +

6{NA(1-A)}?

(5.1 + ————l——-[(1—6k+6l ) J J (t)dt - 3(]—2X)2](x3—3x) +
) 24N (1-2)
0
2 ] 2
(1-23) 3 5 3
+ m([ J (t)dt) (x"-10% +15X)},
0

then

sup IF*(X)-g,(X)I = O(Nﬂl), as N + =,
N N
xe R

BICKEL & VAN ZWET (1978) consider the two-sample linear rank statistic

T& for an arbitrary vector of scores a = (a],az,...,aN), i.e
N
(5.2) ' = ) a.V.,

where
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[1 if 1 £ D, < n,
V. = J
J 10 otherwise,

for j = 1,2,...,N and where D,,D ..,DN denote the antiranks. In their

) PRV
paper they establish asymptot;c pransions for the distribution function of
T& under the null-hypothesis as well as under contiguous alternatives. A
related paper is that of ROBINSON (1978) which deals only with the null-
hypothesis.

In order to compare the results in BICKEL & VAN ZWET (1978) with Theo-
rem 2.1 in the present paper we introduce the following assumption on the

scores aj .

ASSUMPTION (C). Let aj = J(3/(N+1)) for j=1,2,...,N. This scores generating

function J is twice continuously differentiable on (0,1) and

J"(t)

(5.3) lim sup t(1-t) :]—'—(—t_)—

t > 0,1

< 23

there exist positive numbers K > 0 and 0 < B < 1/6 such that its first

derivative J' satisfies

(5.4) [J'(t)| < K{t(l—t)}_7/6+6 for t € (0,1).
Furthermore

| 1
(5.5) f J(t)dt = 0, j 72()de = 1.

0 0

LEMMA 5.1. If € £ A £ 1-¢ for some fixed € € (0,3) and Assumption (C) are

satisfied, then as N > =

T' - ET!

N N ~ -1

(5.6) sup ‘P(————r—— < x) -F. )| =0® ),
xeR o (TN) N

where FN 18 defined in (5.1).

PROOF. The present lemma is almost an immediate consequence of Corollary
2.1 of BICKEL & VAN ZWET (1978). Assumption (C) guarantees that there

exists a positive fraction of the scores which are at a distance of at least
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w372

log N apart from each other. Furthermore, in view of Lemma 3.1 and

Appendix 2 of ALBERS, BICKEL & VAN ZWET (1976), Assumption (C) yields that

= 0(N1/6—B) s

I o~z
[

I o~

2 1/3-28

aj =N+ O(N ),

i
s

1

e

]

3

N | Byar + o 38y,

—
(SN

Il o~z
o
w
I
O

.

2/3—48)

I~
©
i

1
N f I (t)de + 0N
0

[
—
e B~

Substituting this in the expansion ﬁ(x,k) (cf. (2.56) in BICKEL & VAN ZWET
(1978)) and standardizing T& with the exact variance 02(T§) the result
follows. [J

For the two-sample case Lemma 5.1 is clearly a better result than
Theorem 2.1, as was to be expected. Roughly speaking, Assumption (B) in
Theorem 2.! requires a bit more smoothness than Assumption (C) in Lemma 5.1;

. + .
lare . o instead of f |J]6 € < =, For practical pur-

it also requires [ |J]
poses, however, Assumption (B) is already quite satisfactory. It is gratify-
ing to find that the expansions in the two results coincide. We note that

some numerical examples are contained in BICKEL & VAN ZWET (1978).
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