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ABSTRACT 

An Edgeworth expansion with remainder o(N- 1) is established for simple 

linear rank statistics under the null-hypothesis. The theorem is proved for 

a wide class of scores generating functions which includes the normal quan­

tile function. 
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I . INTRODUCTION 

Let x1,x2 , ..• ,~ be independent and identically distributed random 

variables with a common continuous distribution function F. If X < x2 < 
I :N :N 

< ••• < ~:N denotes the sequence x1,x2 , ... ,~ arranged in increasing order, 

then the rank RJ.N of X. is defined by X. = XR N and the antirank D.N is 
J J ·N: J 

defined by XDjN = Xj :N' j = 1,2, ..• ,N. We con~ider the simple linear rank 

statistic 

(I.I) 

where c 1N,c2N, ... ,CNN' N = 1,2, ... , is a triangular array of regression con­

stants and J is a scores generating function defined on (O,I). The two-sample 

linear rank statistic is obviously obtained as a special case by setting 

cjN = 0 for j = 1,2, .•. ,n, cjN = for j = n+l, ... ,N. If cjN = J for 

j = 1,2, ..• ,N and J(t) = t fort E (0,1) then the statistic TN is distributed 

as Spearman's rank correlation coefficient p under the null-hypothesis of 

independence. 

The statistic TN may be used for testing the null-hypothesis that all 

observations are independent and identically distributed against classes of 

alternatives indicated by the choice of regression constants and scores 

generating function. Both under the hypothesis and under contiguous and fix­

ed alternatives it was shown that TN is asymptotically normally distributed 

under very general conditions (cf. HAJEK & SID.AK (1967), Chapters V and VI, 

HAJEK (1968) and DUPAC & HAJEK (1969)). More recently a number of authors 

have studied the rate of convergence in these limit theorems. Berry-Esseen 
-l 

type bounds of order O(N 2 ) for simple linear rank statistics were estab-

lished by HUSKOVA (1977,1979), HO & CHEN (1978) and DOES (1981). The purpose 

of this paper is to establish an Edgeworth expansion for simple linear rank 

statistics under the hypothesis with remainder O(N- 1) for a wide class of 

scores generating functions including the normal quantile function. We note 

that for the special case of the two-sample linear rank'statistic, asympto­

tic expansions both under the hypothesis and under contiguous alternatives 

were obtained in BICKEL & VAN ZWET (1978). Asymptotic expansions for the 

simple linear rank statistics under contiguous alternatives will be 
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discussed in the author's forthcoming Ph.D. thesis. 

In Section 2 we formulate our theorem. Section 3 contains a number of 

preliminaries. The proof of the theorem is contained in Section 4. Finally 

in the last section we compare our results with those in BICKEL & VAN ZWET 

(1978) for the two-sample linear rank statistic. In the sequel we suppress 

the index N whenever it is possible. 

2. AN EDGEWORTH EXPANSION 

Throughout this paper we make the following assumptions. 

ASSUMPTION (A). The regress&on constants c ,c , ... ,c satisfy 
IN 2N NN 

N 

l cjN = 0, 
j=l 

This assumption implies that ETN = 0. 

_1 
= 0 (N 2 ). 

ASSUJviPTION (B). The scores generating function J &S three times differ•en­

tiable on (0,1) and 

(2. I) · I J" ( t) I lim sup t(l-t) J'(t) 
t-+O, 1 

< 2; 

there exist positive numbers r > 0 and a < 3 + l / 14 such that its third 

derivative J"' satisfies 

(2.2) 

Furthermore 

(2.3) 

IJ"' (t) I ~ r{t(l-t)} 

1 

J J(t)dt 

0 

0, 

-a 
fortE (0,1). 

I. 

We note that (2. I) ensures that the function J does not oscillate too 

wildly near O and (see also Appendix 2 of ALBERS, BICKEL & VAN ZWET (1976)). 

Condition (2.3) can be assumed without loss of generality. 



Taking 

(2.4) 

2 
we know that the variance aN of TN (cf. (I. I)) is given by 

2 2 N ( . )2 aN = a (TN)= - r J(-J-) - j N-1 . l N+ I 
J=l 

(2.5) 

(seP P.g. Theorem II 3.1.c of HAJEK & ~ID.AK (1967)). Define for each N ~ 2 

(2.6) 

and 

(2. 7) * * FN (x) = P(TN ~ x) for - 00 < x < oo 

~ Furthermore define for each N ~ 2 and real x, the function FN by 

2 

(2. 8) { K3N 2 K4N 3 K3N 5 3 } 
FN(x) = <I>(x) - ¢(x) -6-(x -1) +24(x -3x) +n(x -!Ox +15x) , 

where <I> denotes the standard normal distribution function, ¢ its density 

and where the quantities K3N and K4N are given by 

N I 

(2.9) K 3N = j~l cfN{f J3(t)dt} 

and 

(2. IO) 
N 

K4N = I 
j=l 

0 

Our theorem reads as follows. 

THEOREM 2. 1. If the Assumptions (A) and (B) are satisfied, then as N -r 00 

(2.11) sup JF;(x) - FN(x) J = o(N- 1). 
XEJR 

3 
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We note that K3N and K4N (cf. (2.9) and (2. 10)) are asymptotic expres­

sions for the third and fourth cumulants of T; where terms of order o(N-l) 

have been neglected. Hence FN may be said to constitute a genuine Edgeworth 

* expansion for FN. We should also point out that Theorem 2. 1 allows scores 

generating functions tending to infinity in the neighbourhood of 0 and 1 at 

the rate of {t(l-t)}-l/l 4+s for some s > 0. It is clear that this includes 

the normal quantile function. Whenever we shall suppose in the remainder 

of this paper that (2.2) in Assumption (B) is satisfied, we shall tacitly 

anc' ~shout los-s of generality assume that a E (3,3+ 1/14) and define 

6 = 3+ 1/14-a. Hence, from now on we replace (2.2) in Assumption (B) by 

(2. 12) IJ"' Ct) I :::; r{t(l-t)}-(3+1/14)+6 fort E (0,1), 

where 

(2. 13) 0 < 6 < 1/14. 

To conclude this section we define u1,u2, •.. ,UN to be independent and 

uniformly distributed random variables on (0,l) and Ul:N < u2 :N < •.• < UN:N 

the corresponding uniform order statistics. 

3. PRELIMINARY LEMMAS 

The aim in this section is threefold. In the first place we approximate 
2 

(N-l)aN (cf. (2.5)) by a integral. For this we shall draw heavily on the 

results in Appendix 2 of ALBERS, BICKEL & VAN ZWET (1976). Secondly we study 

the behaviour of the characteristic function of T; (cf. (2.6)) for large 

values of the argument. To this end we shall provide a lennna which is a 

special case of Theorem 2.1 of VAN ZWET (1980). Finally we prove two tech­

nical lemmas, the purpose of which will become clear in Section 4. 

LEMMA 3. I. If J satisfies Assumption (B), then 

(3. I) 



PROOF. Take o as in (2.12) and (2. 13), let h be a function on (0,1) with 

h'(t) = r{t(l-t)}-lS/l 4+o and write A,= j/(N+l). Since 
J 

. lh"(t) I 3 l1m sup t(l-t) h'(t) < 2, 
t-+-0, 1 

Lemma A.2.3 of ALBERS, BICKEL & VAN ZWET (1976) yields 

0 {A.(1-A.)}-8/7+28 
E{h(Uj~N)-h(Aj)}""=O( J NJ ) 

uniformly 1n J· Because IJ'(t) I ~ h'(t) we have IJ(s)-J(t) I ~ lh(s)-h(t) I 

for every s,t E (0,1) and hence 

(3.2) 
2 {A.(1-A.)}-8/7+28 

E{J(Uj :N)-J(;\j)} = o( J N J ) 

uniformly in j. As J satisfies (2. 1), we also have, in view of (A.2. 11) in 

ALBERS, BICKEL & VAN ZWET (1976), 

5 

y -}5/14+o 
(
L(l-L) + IJ (A.) I\ ({L(l-A.)} ) 

(3. 3) I EJ (U j : N) - J ( A j) I = 0 J J N J ) = o, J N J 

uniformly in j. Since JJ = 0 and o E (0,1/14) (cf. (2.3) and (2.13)), it 

follows that 

(3. 4) 
1
4 _I J(L) I = IJ _I {J(A.)-EJ(u.:N)}I = O(N-13/14-o). 

J=l J J=l J J 

Furthermore, in view of (3.2) and (3.3) and since JJ2 = 1 and o E (0,1/14) 

N 

~ I 
j=l 

N 
E{J(U .. N)-J(A.)}2 +2 I IJ(L)l!EJ(U .. N)-J(L)I = 

J. J j=l J J. J 

= O(Nl/7-28), 

which proves the leIIID1a. D 



* We now consider the behaviour of the characteristic function of TN for 

large values of the argument. Let 

(3. 5) 

LEMMA 3.2. Suppose that the assumptions of Theorem 2.1 are satisfied. Then 

there exist positive numbers B3 Sandy such that 

(3. 

for log N s ltl s yN312 and N = 2,3, .... 

PROOF. The present lennna is a special case of Theorem 2. 1 of VAN ZWET (1980). 

Since we are concerned with independent and identically distributed random 

variables x1,x2 , •.. ,~ - which we may assume to be uniformly distributed 

without loss of generality - Condition (2.7) of this theorem is clearly 

satisfied. Moreover, the assumptions of our theorem guarantee that there 

exists a positive fraction of the scores which are at a distance of at least 

N- 3/ 2 log N apart from each other, so Assumption (2.6) of Theorem 2.1 of 

VAN ZWET (1980) is also fulfilled. Finally, it follows from Section 3 in 

VAN ZWET (1980) that the existence of positive numbers c and C such that 

(3. 7) 
N 

2 
N 

4 CN-I I c. ~ c, I c. s 
J J • 

j=I j=I 

(3. 8) 
N 

(J(_l_) - :1)2 ~ 
N 

(J<NL) - Jf s CN I cN, I 
j=I 

N+I 
j=I 

suffices to prove the present lennna. Assumption (A) guarantees the validi­

ty of (3.7) and (3.8) is an innnediate consequence of Assumption (B) and the 

continuity of J (cf. also (3.1)). D 

Let [x] denote the largest integer not exceeding x. Define m = [N8115 J 

and I= {1,2, ... ,m,N-m+l, ..• ,N-l,N}. 

LEMMA 3.3. If Assumtions (A) and (B) are satisfied3 then 



(3. 9) 

(3.10) 
I N-m J. }2 ( N-m )2 

{ 1 J( ) E , = O(N-4/3-148/15). 
N-2m l N+I \· l cD. 

j =m+ 1 J =m+ I J 

PROOF. According to Assumption (A) Icj = 0, Ic~ = I and 
J 

for k > 2. 

6 
EcD. 

1 

3 3 
EcD.cD. 

1 J 

2 2 2 
EcD.cD.cDh 

1 J 

N 

I 
j=l 

It 

2 2 
EcD.cD.cD cD 

1 J h g 

k 
Jc. J ~ 

J 

follows 

= 

= 

= 

= 

EcD.cD.cD cD cD cD = 
1 J h g k l 

Furthermore, Holder's 

(3.11) 

N 
Jc. lk-2 l c~ = O(Nl-k/2), 

J j=I J 

that for distinct i,j,h,g,k,l E I 

O(N-3), 5 O(N-4), EcD.cD. = 
1 J 

O(N-3), 4 O(N-4), EcD.cD.cDh = 
1 J 

O(N-3), 3 O(N-5), EcD.cD.cD cD = 
1 J h g 

O(N-4), 2 O(N-5), EcD.cD.cD cD cD = 
1 J h g k 

O(N-6 ). 

inequality yields 

In view of (2. 12) and (2. 13) we have fork= 1,2, ... ,6 
m 

(3. 12) 

JJcN!1)lk = a( JN+1{t(1-t)}-k/14+k8 at)= 

0 

({~} 1-k/ I 4+k8) 
= O N+l • 

4 2 
EcD.cD. 

1 J 

3 2 Ee c D. D. 
1 J 

7 

= O(N-3), 

= O(N-4), CD 
h 

Direct computation of the right-hand side of (3.11) produces (3.9). Since 
1 2 -1 -1 
lcj = 0, EcD. = N and EcD.cD. = -{N(N-1)} for i I j, we have 

J 1 J 
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( N-m )2 _ ( )2 _ ~ 
El I CD. - El .I CD. - O(N). 

'j=m+I J 'JEI J 

Similarly we find that, in view of (3.4) and (3.12), 

I.! N~m J(_j_)j = ,~ \' J(_j_)j + O(N-13/14-o) = 
N l N+I N .l1 N+I 

j=m+I JE 
(3.13) 

and the lemma follows. D 

To conclude this section we prove 

LEMMA 3.4. If Assumption (A) &S satisfied~ then for any y < I and N ➔ 00 

(3. 14) p( l c2 ~ 1-y) = O(N-22/15). 
jEI Dj 

\' 2 -I 
PROOF. Since E(ljEI cDj) = 2mN and 

E( l c2 _ 2m)2 = 2m(N-2m)( I 
. I D. N N (N- I ) \ . I 
JE J J= 

the Bienayme-Chebyshev inequality ensures that for every y < 

(I C 2 _ 2ml > 1-y) ~ 4 2 E( \' 2 2m)2 
p l D. N - 2 --- l CD. - N 

jEI J (1-y) jEl J 

-I 
The lemma follows because mN ➔ 0 as N ➔ 00 • D 

4. PROOF OF THE THEOREM 

To prove Theorem 2. I we start with an application of Esseen 1 s smooth­

ing lemma (see e.g. FELLER (1971), p.538), which implies that for ally> 0 

3/2 
* ~ l fyN li/JN(t)-AN(t) I . -3/2 

( 4. 1) sup 
XEJR 

IFN(x)-FN(x) I ~; 312 It! dt + O(N ), 

-yN 

where iµN denotes the characteristic function of T; (cf. (3.5)) and AN 

denotes the Fourier-Stieltjes transform of FN' i.e. 



(4.2) 

00 2 

J itx ~ · -!t2{ K3N. 3 K4N 4 K3N 6} 
"N(t) = e dFN(x) = e 1 --6-1.t + 24 t - 7Z t • 

-co 

The derivative of "N is uniformly bounded and also 

Because ~N(O) = "N(O) = 1, we have 

(4. J 
ltl:c;N- 312 

Similarly, Lemma 3.2 and (4.2) ensure that 

(4.4) J 
log N:,; It! :,; yN312 

From (4. 1), (4.3) and (4.4) it follows that, 1.n order to prove Theorem 2. 1, 

it suffices to show that 

(4.5) I _I ~_N_(_t-,-~ ~-,~_N_< t_)_I d t = 0 (N - 1 ) ' 

tEA 

where A= {t:N-312 :,; It!:,; log N}. 

9 

To solve this problem we use a conditioning argument. We take o as in 

(2. 12) and (2. 13) and define m = [N8115 J and I= {1,2, .•• ,m,N-m+l, •.• ,N-l,N} 

as 1.n Section 3. Let Q = {D.:jEI} be the set of antiranks D. with indices in 
J J 

I and let w = {d.:jEI} be a possible realization of Q. Finally define 
J 

(4. 6) 

( 4. 7) 
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We note that conditionally on Q = w, TN-ZN= ,~-m 1 cD J(j/(N+l)) is lJ=m+ . 
distributed as a simple linear rank statistic for sampie size N-2m based on 

a set of regression constants {c 1,c2 , ... ,cN}\{cd.:jEI} and having a scores 
J 

generating function 

(4.8) J (t) = J(m+(N-2m+l)t) 
N N+l fortE (0,1). 

We write this simple linear rank statistic as 

(4.9) 

where M = N-2m, {b 1,b2 , ... ,bM} = {c 1,c 2 , ... ,cN}\{cd.:jEI}, Q1,Q2 , ... ,QM are 

the ranks of v1,v2 , ... ,VM, which are independent an~ uniformly distributed 

random variables on (0,1). 

Define for j = 1,2, ... ,M 

(4. 10) 

and let SwN be a three-term Taylor expansion of TwN' viz. 

s = wN 

We shall approximate (TwN-ETwN) by (SwN-ESwN) and for this we need 

LEMMA 4. 1. Under the Assumptions (A) and (B) we have3 uniformly in w, 

(4. 12) 
2 

a2(T -s ) = f1 + ( I C ) )ocN-2-148/15). 
wN wN \ . I d. 

JE J 

PROOF. Let, for j = 1,2, ... ,M, 

Because ,M b~ ~ I and 
lj= I J 



I I 

I I \( M bj/ -
M 

bf/ !(.II cd.)
2 

-

M 

bf! LL b.b = l I = I ::; 
(j ,k)# J k j=l j=l JE J j=l 

::; 1 + ( I cd.)2, 
'jEI J 

the Cauchy-Schwarz inequality yields 

::; E(T N-s N) 2 = E( I b.Y.)
2 

= I bJ~EY~ + 
w w j=l J J j=l 

+ 

Here ll(j,k)# denotes sununation over all non-negative distinct integers j,k 

satisfying 1::; j,k::; M. Define r(t) = {t(l-t)}-l. By Taylor's theorem, 

(4.8), (2. 12) and the convexity of the function r(t) we see that 

< _c_ (~,_ - )6{ 6+1/7-Zo(m+Ql) + 6+1/7-Zo(m+ (M+l)Vl)} 
- 36 E M+ 1 VI r N+ I r N+ 1 ' 

The independence of the vector of ranks (Q 1,Q2 , ... ,QM) and the vector of 

order statistics (Vl:M'VZ:M•·•·,VM:M) and Lemma A.2.3 of ALBERS, BICKEL & 

VAN ZWET (1976) imply 

6+1/7-Zo(m+Ql) = (M-1)\(Q1- 1 -v ) 6 6+1/7-Zo(m+Ql)< 
r M+ 1 M+ 1 M-1 1 r N+ 1 -

1. ~ ( _ j-1)6 6+1/7-2o(m+j) = 
::; M . l 1 E V j : M M-1 r N+ 1 

J= 

Furthermore, the conditional distribution of Q1-1 given v 1 is binomial with 



I 2 

parameters M-1 and v 1 and by application of a recursion formula for the 

central moments of this distribution (cf. JOHNSON & KOTZ (1969, p.52) we 

find 

Hence, 

-
6+l/7-20 (m+ (M+l)V1) ( ({VI (J-V 1)}3 v 1 (I-V 1)) 

r N+ 1 = O E M + M • 

(4. 14) 

6+1/7-2o(m+ (M+l)Vl)) = O(N-2-148/15) . 
. r \ N+I 

Combining (4. 13) and (4. 14) we find that EY~ = O(N-2-l 4o/IS). This proves 

the lemma. D 

It follows from Lemma 4. 1, (2.5) and (3.8) that 

. -1 . -1 

I 
itoN (TN-ET N) itoN (SN-ES N) I 

Ee w w - Ee w w :,; 

(4.15) 2 1 

:,; ltl 0;1 EITwN-ETwN-swN+ESwNI = 0(1tlN-l-lo/lS{1 +(.II ed.) }2), 
JE J 

uniformly int and w. 
-1 

Our next task is to evaluate E exp{itoN (SwN-ESwN)}. The technique 

for doing this resembles that in HELMERS (1980). Let x be the indicator 

function of (0, 00 ) and define 

M 
I b.JN(V.), 

j= 1 J J 

s2 = M+l II b.J;(v.)(x(V.-Vk)-V.), 
(j.k)# J J J J 

(4. 16) 

ll b.{JN(V.) (x(V.-Vk)-v./-EJN(V.) (x(V.-Vk)-v.) 2}, 
(j 'k) 'F J J J J J J J 

s3 
I 

= 
2 (M+I) 2 

s4 
I 

= 
2 (M+I) 2 

III b.JN(V.)(x(v.-vk)-V.)(x(v.-v1)-v.). 
(j,k,l)# J J J J J J 



It is easy to see that SwN- ESwN = I~=l Sv and ESv = 0 for v = 1, ..• ,4. 

First of all we compute a number of moments. 

LEMMA 4.2. Under the Assumptions (A) and (B) we have, uniformly in w, 

(4.17) 
ES2 = O(N-7/5-140/15). 

4 

ES2 = O(N-22/15-140/15), 
3 

. I I 3 4 3/4 PROOF. By applying Holder's inequality we obtain E s2 ~ {ES2} . Let, 

13 

for distinct j and k, h(V.,Vk) = J~(V.)(x(V.-Vk)-V.). Define h(x,x) = 0 for 
J J 4 J J 

all O < x < I. Direct computation of ES 2 shows that 

ES4 l { M M 
h(Vj,Vk)}

4 = 4E I b. I = 2 (M+l) j=l J k=l 

[ M { M 
M M M 

Eh(V 1,Vr)h(V1,Vs)h(V 1,Vt)h(V 1,Vu)} + = 1 4 L b~ L I I I 
(M+ 1 ) j = 1 J r= 1 s=l t=l u=l 

3 { M 
M M M 

Eh(V 1,Vr)h(V 1,Vs)h(V 1,Vt)h(V2,Vu)} + + 4 H b.bk I I I I 
(j,k)=r J r=l s=l t=l u=l 

(4. 18) 
{ M 

M M M 
+ 3 H b~b~ I I I I Eh(V 1,Vr)h(V 1,Vs)h(V2,Vt)h(V2,Vu)} + 

(j , k) =r J r= I s=l t=l u=l 

2 { M 
M M 

u~I Eh(V 1,Vr)h(V1,V8 )h(V2 ,Vt)h(V3 ,vu)} + + 6 HI b .bkb! I I I 
(j ,k,!)=r J r=l s= 1 t=l 

M 
+ nn I 

(j,k,!,n)=r 

{ M M M 
bjbkb!bn r~l s~l t~l u=l 

Eh(V 1,Vr)h(V2 ,Vs)h(V3 ,Vt)h(V4,Vu)}]. 

To bound the right-hand side of (4.18) we note that an expectation in (4.18) 

equals zero if at least one of the indices (r,s,t,u) occurs only once. With 

the aid of the Cauchy-Schwarz inequality the non-zero expectations may be 
4 4 ½ 2 . 2 2 

bounded by either Eh (V 1,v2) or {Eh (V 1,V2)} Eh (V1,V2) or ~Eh (V 1,V2)} 

and we obtain 
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Of{~ 4} -2 4 = 1 l bJ. N Eh (V 1,v2) + 
\ j = I 

(4. 19) 

In view of (4.8) and Assumption (B) we have, for 1 $ k $ 4, 

( 4. 20) 

l _ m+l 

= o(f N+l{t(l-t)}-15k/14+ko{(N+l)~:l (m+l)}{(M+m);_t+l)t}dt) = 
m+l 
N+I 

m 

o(f 1-N{t(l-t)}l-15k/14+kodt) = O(Nk/2-14/15-7ko/15). 
m -
N 

According to Assumption (A) and the fact that {b 1,b2, ... ,bM} = {c 1,c2 , ... ,cN}\ 

\{cd_:jEI}, we have 
J 

I I b. j = 
j = l J 

and similarly 

(4.21) 

I .II Cd. I 
JE J 

I II b~b I = O(N-7/15), 
(j,k)# J k 
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Combining (4.19) through (4.21) we find that ESi = O(N-26115- 280115 ) and 

hence E!S 2 13 = O(N-J 3/J0-7o/5). In the same way one can obtain the other two 

assertions in (4. 17). D 

Define, for real t and N ~ 2, 

(4.22) 

and 

(4.23) 

The next lemma shows that pN can be approximated by PIN" 

LEMMA 4.3. If the Asswrrptions (A) and (B) are satisfied, then 

(4.24) 

uniformly for ltl slog N and w. 

PROOF. Repeated use of LeUDlla XV 4.1 of FELLER (1971) yields 

From (2.5) and (3.8) it follows that for all sufficiently large N there 
2 

exist positive numbers £Is £2 such that £1 s oN s £ 2• Lemma 4.2 produces 

the desired result. D 

Clearly our next task is to evaluate the right-hand side of (4.23) and 

we start ~it~ the leading term. According to (4.16) s1 = l~=I bjJN(Vj). 

We have EJN(v 1) = 0 and for all sufficiently large N, there exist positive 
~2 ... 

numbers y 1 s y 2 such that y 1 s EJN(V 1) s y 2 (cf. (2.3)). In the sequel we 

shall assume 
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(4.25) I c~. < l - y 
jEI J 

for some y E (0,1), to guarantee that 

(4. 26) 

Finally we note that Assumptions (A) and (B) imply that l~-I b~ = O(N- 1) and 
~ ~ J- J 

that the random variable JN(V 1) has a finite 14-th absolute moment. It fol-

lm.; -LLuill the classical theory of Edgeworth expansions for sums of indepen­

dent and non-identically distributed random variables (see e.g. Lemma VI 4. II 

in PETROV (1972)) that 

+ 

(4.27) 

uniformly for ltl slog N and w for which (4.25) is satisfied. Replacing t 

by tN = to(S 1)/oN and expanding exp{-!t~} we find that uniformly for 

ltl slog N and w for which (4.25) is satisfied 

(4.28) 

-I 

I 
itoN s 1 _ 1 t2{ . 3 M 

Ee -e 2 1-~ I 
6a~ j=I 



1 4 9 1 2 2 2 3 -et2 
= o (N - ( t + I t I ) e - 2 t ) + 0 ( Io N -o ( S 1 ) I I t IP 1 ( t) e ) + 

-1 2 2 -et2 
+ O(N loN-o (S 1) I ltlP2 (t)e ), 

where O < e <!and P1 and P2 are fixed polynomials. 

We now turn to the remaining terms on the right in (4.23). Let 

(4.29) 

~ A 

denote the characteristic function of JN(V 1), so that 

-1 
itoN s1 M (b.t) Ee = TT µ _J_. 

j=l N ON 
(4.30) 

From the Assumptions (A) and (B) it follows by Taylor expansion that for 

distinct integers l 1, ••• ,ln where I 

(4.31) 
bl t 

n ( V ) TT µ -- = 
v=l N ON 

uniformly for ltl ~ log N and w for which (4.25) is satisfied. 

In the last two lemmas we summarize the results we need. 

LEMMA 4.4. If the Assumptions (A) and (B) are satisfied then, uniformly 

far ltl ~ log N and w for which (4.25) is satisfied 

-1 -1 

IE(e itoN SI S ) - E e itoN Sl{it ES S + (it)2 ES2S -
2 oN 1 2 Zo~ 1 2 

(4.32) 

(4. 33) 

(4. 34) 

where O < e < !, E- > 0 and P. is a fixed polynomial, j = 1,2,3. 
J J 

17 



JS 

PROOF. Because the statements (4.32) through (4.34) are all proved in 

essentially the same manner, we shall only prove the first statement, by 

way of an example. An application of Lemma XV 4.1 of FELLER (1971) shows 

It follows that 

(4.35) 

We note that it is easy to check that 

(4.36) 

and hence 
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_ f A . [it (it) 2 2 (it) 3 2 ~2 A ~ A 

- E[JN(V.) (x(V.-Vk)-V.)] -S1 + 2 s 1 + 3 (3b.bkJN(V.)JN(Vk) + 
J J J 0N 2o 60 J J 

N · N 

2~ A ~2 A 3~3 A ] 4 A 

+ 3bjbkJN(vj)JN(Vk) + bkJN(Vk)} + O(t EIJN(Vj)(x(Vj-vk)-Vj) I • 

4~4 A 4~4 A 

• {b j JN (V j) + bkJN (Vk) } ) • 

From (4.31) it follows that for distinct integers 1 s j,k s Mand rtlSlogN 

1:i -..i(:lt) = E /to;\{ I + t2
2 (bf +b~)EJ;(v 1) + O(N-J/Z It J 3) }, 

l:/:J, k N 2oN 
(4. 37) 

uniformly for ltl slog N and w for which (4.25) is satisfied. Hence, 

combining (4.35) through (4.37) and Assumption (A), we find after some 

algebra 

-1 

( itoN s1 ) b. {blt) 
Ee s = II _J n µ - • 

2 (j ,k):/: M+l l:/:j,k N\ oN 

(4. 38) 

uniformly for ltl slog N and w for which (4.25) is satisfied. From 



20 

Assumption (B) and (4.8) it follows that (see also (4.19)) 

(4.39) 

EIJ2(v )J cv )J'(v )I= O(N1/10-7o/5)· 
N 1 N 2N 1 ' 

El ~J cv~ ) , cv~ ) 1 = O(N1/1s-14a/1s),· 
N 1 JN I 

Finally we obtain by partial integration 

(4.40) 

Combining (4.38) through (4.40) and (4.21) we arrive at (4.32). D 

LEMMA 4.5. If the Assumptions (A) and (B) are satisfied then, uniformly for 

It! slog N and w for which (4.25) is satisfied, 

(4.41) 

. - I . - I 

IE(eitoN sl s;) - {E eitoN sl}{Es; + ~:Esls; + 

+ (it)22[EJ;(vl)-{EJ~(V1)}2]}1 = O(N-1-EltlP(t)e-et\, 
4NoN 

where O < e < ½, s > 0 and Pis a fixed polynomial. 

PROOF. The proof of the statement (4.41) is similar to that of Lemma 4.4 

and we shall only provide a sketch. Throughout, all order symbols will be 

uniform for It! slog N and w for which (4.25) is satisfied. Let, for 
-distinct j and k, h(V.,Vk) = JN(V.)(x(V.-Vk)-V.). Direct computation of 

-I 2 J J J J 
E(exp{itoN s 1}s2) shows 
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-1 -1 

( itoN SI s2) _ ( itoN SI{ M bj }2) 
Ee 2 - Ee r M+l r h(V.,Vk) = 

j=l k=l:j J 

/b,e_t) -1 ~ .... ~ .... 
• TT µNI- + r r E exp{itoN (b.JN(V.)+b JN(V) + 

u.1. • \ aN .J.. -'-. J J r r ,l.rJ, r rrJ SrJ, r 

+ b JN(V ))}h(V.,V )h(V.,V) TT µ (b,e_t)} + 
s s J r J s l=I= j , r, s N oN 

(4. 42) 

( b,e_t) 
• [h(V. ,V )b(Vk,v ) + 2h(V. ,v )h(Vk,V.)] TT µN - + 

J r r J r J l=l:j ,k, r oN 

+ l r E exp{ito; 1(b.JN(V.)+b JN(V ))}h(V.,V) • 
r=l:j,k s=l:j,k,r J J r r J r 

Using Lennna XV 4. I of FELLER (1971), we expand all six exponentials in the 

right-hand side of (4.42) (cf. (4.35)). From (4.31) it follows that for dis­

tinct integers i 1, ..• ,ln where I~ n ~ 4 we have (cf. (4.37)) 

(4. 43) 

With the aid of (4.43) and the expansions of the exponentials we proceed 

as in (4.38). For example, the term involving h(V.,V )h(Vk,V) on the right 
J r r 

in (4.42) equals 
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b.bk [ 
J 2 Eh (V . , V ) h (Vk , V ) + 

(M+l) J r r 

t 2 bjbk 2 2 2 ~2 - } 
+ - 2 III 2 (b.+bk+b )EJN(v 1)Eh(v.,v )h(Vk,v) + 

2aN (j,k,r)# (M+l) J r J r r 

+ o(N-312 iti 3 e-8t2 E{ IJ~(VI) I+ IJNC''J) I+ IJ~(V3) I + 

+ IJN(\\) I+ l}IJN(Vl)JN(V2) 1). 
From the Assumptions (A) and (B) and (4.8) we are able to calculate these 

sums (cf. (4.21) and (4.39)). Note that by partial integration we have 

Following this program, we finally arrive at 

1 2 HI b.bk TT JJN(b,e_t) E exp{ita; 1 (b.JN(V.)+bkJN(Vk)+b JN(V ))}• 
(M+l) (j,k,r)# J {#j,k,r crN J J r r 

-I 
f itcrN s 1}{ ~b.bk 

• h(v.,v )h(Vk,v) = 1E e HI J 2 Eh(v.,v )h(Vk,v) + 
J r r L (j,k,r)# (M+l) J r r 

2 b2.b2 
. ] (it) k 4 2 2 + ~Es 1h(v.,v )h(Vk,v) + 2 .II _L_N [EJN(v 1) -{EJN(v 1)} J + 

CTN J r r 4aN (J,k)# 

2 
+ O(N-l-s ltlP(t)e-8t ), 

where O < 0 < ½, s > 0 and Pis a fixed polynomial. All other terms in the 



right-hand side of (4.42) can be handled in the same way. D 

From Lennnas 4.4 and 4.5 it follows that uniformly for ltl ~ log N and 

w for which (4.25) is satisfied (cf. (4.23)), 

-1 

{ itoN SI}{ (it)2 2 
E e l + 2 [2ES l s2 + 2ES s3 + ES2] + 

2oN 

2 
+ O(N-l-e ltlP(t)e-et ), 

where£> O, 0 < e <½and Pis a fixed polynomial. Using (4.26), Lemmas 

4.1 and 4.2, as well as the fact that Es 1s 4 = 0, we obtain 

2ESIS2 + 2ESIS3 +ES~= o2(SwN) - o2(SI) + O(N-17/15-140/15) = 

2 2 ( ( ) 2\½ -1-70/15 = a (TwN) - a (S 1) + l+ _LI ed. ) O(N ), 
J€ J 

(4. 44) 

23 

uniformly for w satisfying (4.25). Writing h(V 1,v2) = JN(\7i)(x(V 1-v2)-V 1) as 

before, we find by repeated use of Assumptions (A) and (B) (cf. (4.20), 

(4.21) and (4.39)) that, uniformly for w satisfying (4.25), 

where£> 0 and 

(4. 45) 

It follows that uniformly for ltl ~ log N and w satisfying (4.25), 

-1 

{ itoN SI}{ (·t)2 2 2 
plN(t) = Ee I+ 1. 2 [a (TwN)-o (S 1)J + 

2oN 
(4.46) 
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where E > 0, 0 < 8 < ½ and Pis a fixed polynomial. 

Let us turn back to our starting point (4.7). Choose y E (0,1) and 

define the event B = {L, 1 c~. < 1-y} (cf. (4.25)). According to Lemma 3.4, 
P(Rc) = O(N-22/15), so JE J 

itT; [ ( ita; 1{TN-zN-E(TN-zNIQ)} ) 
=Ee = E x(B)E e IQ • 

5 -1-70/3 I 2 From Lemma 3. 3 it follows that EI ZN I = 0 (N ) and E (E (TN-ZN Q)) = 

= O(N-4/ 3-t 4o/I 5)_ Hence by Taylor expansion we obtain 

itT; [ ( ita; 1{TN-ZN-E(TN-zNJQ)} ) 
=Ee = E x(B)E e JQ • 

(4.47) 

uniformly for It! slog N. In view of (4. 15), (4.22) and (4.24) we ~ave, 

uniformly for ltl slog N and w satisfying (4.25) 

( 
ita;1{TN-ZN-E(TN-zNIQ=w)} ) ita;1(TwN-E(TwN)) 

Ee IQ=w =Ee = 

2 l 

P N ct) + o( I t I N - i - 7 a/ 15 ( i + (. I c d . ) )2) = P IN ct) + 
JEl J 

( 4. 48) 

2 l 

+ o( N - 1 -E I t I P ct) ( 1 + (. I c d . ) )2), 
JEl J 
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where£> 0 and Pis a fixed polynomial. 

Before substituting this in (4.47) we shall provide uniform bounds for 

the quantities o~-o2 (T00N) and o2 (T00N)-o2(s 1). Theorem II 3.1.c of HAJEK & 

SIDAK (1967) and Assumption (A) imply that 

where (cf. (4.8)) 

N-m 
M . l I J(NL). 

J=m+ 

It follows from (3.13) that IJ I = O(N-I 3/ 30-7o/IS) and from Assumption (A) 
N 

that IL• 1 cd· I = 0(N1130), hence 
JE J 

2(T ) 1 ( 1 \' 2 ) ~ J2(_i_) + O(N-13/15-140/15) 
o wN = M-J\ - . l c d. • l N M+ 1 ' 

JEl J J=l 
(4.49) 

uniformly in w. Furthermore we know from (3.4) that IJI = O(N-I 3/I 4-o), so 

in view of (2.5) and Assumption (B) we have 

(4. 50) 

+ O(N-13/15-140/15) = O(N-2/5-140/15), 

uniformly in w. 

To obtain the second bound, we argue as in Letmna 3.1 with J and h(t) 
-I 

replaced by JN and hN(t) = h((N+l) (m+(M+l)t)) to conclude that 

1 ~ 2 j 2 + O(N-14/15-140/15). M .l JN(M+l) = EJN(Vl) 
J=l 

One easily verifies that IEJ;(v1) - EJi(V1)1 = O(N-I 3/IS-I 4o/t 5) and 

together with (4.49) and (4.16) this yields 



.'!6 

(4.51) 

uniformly in w. 

We now substitute the random versions of (4.48), (4.46) and (4.28) in 

(4.47). Using (4.50) and (4.51) we find after straightforward computations 

that uniformly for ltl ~ log N 

(4.52) 

C + 
D. 

J 

3 
c. -

J 

2 
o(N-l ltlP(t)e-et) + 

where E > 0, 0 < 8 < ~ and Pis a fixed polynomial. 

A few more facts are needed to complete our calculation of wN(t). First 

we note that for a= (m+l)(N+I)-l = O(N-?/IS), Assumption (B) and (4.8) 

imply that 

a 

J {jJ(t)!k+ JJ(I-t)lk}dt = O(N-7/IS+k/30-7ko/1s), 

0 



fork= 1, ••• ,4 and hence 

(4. <: '1) 

IEJN(V1) I = O(N-13/30-70/1s), 

1-a 

EJ!(v1) = :~! f J2(t)dt + O(N-13/15-140/15), 

a 
1-a 1-a 

f J3(t)dt - 3(:~D2{ f 
a 

+ O(N-13/1O-70/3), 

1-a 

a 

1-a 

J 2(t)dt}{ f J(t)dt} + 

a 

EJ!(V1) = :~! f J4(t)dt + O(N-13/30-70/15). 

a 

Furthermore, Letmna 3.3 yields 

2 2 I 21 I I E(aN-a (TN-ZN Q)) = E(E(ZN Q)) + 2E(E(ZN Q)E(TN-ZN Q)) + 

(4.54) 
+ O(N-4/3-140/15). 
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Combining (4.53) and (4.54) with (4.52) it follows after some computations 

and repeated use of Assumptions (A) and (B) that, uniformly for 

N-3/ 2 ~ ltl ~ log N, 

(4.55) 

where£> 0, 0 < 8 <½,Pis a fixed polynomial and K3N and K4N are given 

by (2.9) and (2.10). 

To conclude the proof of Theorem 2.1 we note that (3.1) implies 

Substituting this in (4.55) we obtain (4.5) with AN as in (4.2) and the 

proof of the theorem is complete. 0 
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5. TWO-SAMPLE LINEAR RANK STATISTICS 

In this section we compare our results with the expansions for the two­

sample linear rank statistics in BICKEL & VAN ZWET (1978). Let I~ n ~ N, 
-I >. = nN and assume that E ~ A ~ 1-E: for some fixed E E (O, ½) and all N. 

I I 

Define c. = (l-1t)/{N1t(l-1t)} 2 , j = 1,2, .•. ,n and c. = -\/{N1t(l-1t)} 2 , 
J J 

j = n+l, ... ,N. It is easy to check that in this case the c· 's satisfy 
J 

Assumption (A) and 

N 
3 1-21t 

N 
4 l-3H31t 2 

I c. = 
I ' I c. = N1t(l-1t) . 

j=I J {N1t(l-\)} 2 j=I J 

'aking a scores generating function J which satisfies Assumption (B), we 

define the two-sample linear rank statistic as in (I.I). For the distribution 

* function FN of the standardized version of this statistic Theorem 2. I 

provides an Edgeworth expansion with remainder o(N- 1): 

if 

(5. l) 

then 

I 

{ I - 21t (J 3 ) 2 qi(x) - cji(x) 1 J (t)dt (x -1) + 
6{N1t(l-1t)} 2 O 

I [ 2 + 24N1t(l-1t) (l-61t+61t ) 

I 

J J 4 (t)dt - 3(1-21t) 2](x3-Jx) + 

0 

* ~ -I sup IFN(x)-FN(x) I = O(N ), 
XEJR 

as N-+ 00 

BICKEL & VAN ZWET (1978) consider the two-sample linear rank statistic 

T~ for an arbitrary vector of scores a= (a 1,a2 , ... ,~), i.e. 

(5. 2) T' = 
N 

where 

N 

I 
j=l 

a .v., 
J J 



if 1 ~ D. ~ n, 
J 

otherwise, 
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for j = 1,2, .•• ,N and where D1,D2, ••• ,DN denote the antiranks. In their 

paper they establish asymptotic expansions for the distribution function of 

Ti under the null-hypothesis as well as under contiguous alternatives. A 

related paper is that of ROBINSON (1978) which deals only with the null­

hypothesis. 

In order ·to compare the results in BICKEL & VAN ZWET (I 978) with Theo­

rem 2. 1 in the present paper we introduce the following assumption on the 

scores a .• 
J 

ASSUMPTION (C). Let aj = J(j/(N+l)) for j=I,2, ••• ,N. This scores generating 

function J is t:wice continuously differentiable on (0,1) and 

(5. 3) · IJ"(t) I l1m sup t(l-t) J'(t) 
t ➔ o, 1 

< 2; 

there exist positive numbers K > 0 and 0 <a< 1/6 such that its first 

derivative J' satisfies 

(5.4) 

Furthermore 

(5.5) 

IJ' Ct) 1 ~ K{t(l-t)}-716+a 

I 

J J(t)dt = O, 

0 

forte: (0,1). 

LEMMA 5.1. If E ~A~ 1-E for some fixed Ee: (O,½) and Assumption (C) are 

satisfied, then as N + 00 

(5. 6) 

where FN is defined in (5.1). 

PROOF. The present lemma is almost an immediate consequence of Corollary 

2.1 of BICKEL & VAN ZWET (1978). Assumption (C) guarantees that there 

exists a positive fraction of the scores which are at a distance of at least 



N- 3/ 2 log N apart from each other. Furthermore, in view of Lemma 3.1 and 

pendix 2 of ALBERS, BICKEL & VAN ZWET (1976), Assumption (C) yields that 

N 

I 
j=l 

N 

I 
j=I 

N 
I 

j=I 

a.= O(Nl/6-S), 
J 

I 
3 I J 3(t)dt a. = N 
J 

0 
I 

N 

I 
j=l 

a~= N + O(Nl/3-213), 
J 

+ O(N!-313), 

4 
J J

4 (t)dt + O(N2/3-4S). a. N 
J 

0 

Substituting this l.Il the expanswn R(x,\) (cf. (2.56) in BICKEL e, VAN ZWET 

( l 978)) and standardizing T~ with the exact variance c/ (T~) the result 

fol lows. 0 

For the two-sample case Lemma 5.1 is clearly a better result than 

Theorem 2. l, as was to be expected. Roughly speaking, Assumption (B) in 

Theorem 2. l. requires a bit more smoothness than Assumption (C) in Lemma 5.1; 

· · f I I 14+s · d f I I 6+s · 1.t also requires J < 00 instea of J < 00 • For practical pur-

poses, however, Assumption (B) is already quite satisfactory. It is gratify­

ing to find that the expansions in the two results coincide. We note that 

some numerical examples are contained in BICKEL & VAN ZWET (1978). 
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