
A geometric multigrid library for quadtree/octree AMR grids coupled to MPI-AMRVAC

J. Teunissena,b,∗, R. Keppensa

aCentre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
bCentrum Wiskunde & Informatica, PO Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

We present an efficient MPI-parallel geometric multigrid library for quadtree (2D) or octree (3D) grids with adaptive refinement.
Cartesian 2D/3D and cylindrical 2D geometries are supported, with second-order discretizations for the elliptic operators. Periodic,
Dirichlet, and Neumann boundary conditions can be handled, as well as free-space boundary conditions for 3D Poisson problems,
for which we use an FFT-based solver on the coarse grid. Scaling results up to 1792 cores are presented. The library can be used to
extend adaptive mesh refinement frameworks with an elliptic solver, which we demonstrate by coupling it to MPI-AMRVAC. Several
test cases are presented in which the multigrid routines are used to control the divergence of the magnetic field in magnetohydro-
dynamic simulations.

Keywords: multigrid; elliptic solver; octree; adaptive mesh refinement; divergence cleaning

1. Introduction

A typical example of an elliptic partial differential equation
(PDE) is Poisson’s equation

∇ · (ε∇φ) = f , (1)

where the right-hand side f and coefficient ε are given and φ has
to be obtained given certain boundary conditions. Equations
like (1) appear in many applications, for example when com-
puting electrostatic or gravitational potentials, or when simu-
lating incompressible flows. An important property of elliptic
equations is that they are non-local: their solution at one lo-
cation depends on the solution and right-hand side elsewhere.
Here we present a library for the parallel solution of elliptic
PDEs on quadtree and octree grids with adaptive mesh refine-
ment (AMR).

Elliptic PDEs can be solved with e.g., fast Fourier transforms
(FFTs), cyclic reduction methods, direct sparse solvers, pre-
conditioned iterative methods, multipole methods and multigrid
methods, see e.g. [1]. These methods differ in their flexibility,
for example in terms of supported mesh types and boundary
conditions, and in whether the coefficient ε in equation (1) is al-
lowed to have a smooth or discontinuous spatial variation. They
also differ in their efficiency. The fastest multigrid methods op-
erate in time O(N), where N denotes the number of unknowns.
FFT-based methods (with or without cyclic reduction) typically
require time O(N log N). Most other methods are more expen-
sive, although their cost is often problem-dependent. Due to the
non-local nature of elliptic equations, there are also significant
differences in how well solvers can be parallelized. A compar-
ison of the performance and scaling of several state-of-the-art
Poisson solvers can be found in [1].

∗Corresponding author.
E-mail address: jannis@teunissen.net

Our motivation was to extend MPI-AMRVAC [2, 3] with an
elliptic solver. MPI-AMRVAC is a parallel AMR framework for
(magneto)hydrodynamics simulations that it is typically used
to study solar and astrophysical phenomena. The framework
has a focus on solving conservation laws with shock-capturing
methods and quadtree/octree AMR. Such AMR grids are ide-
ally suited to geometric multigrid methods, which iteratively
solve elliptic equations by employing a hierarchy of grids. Ge-
ometric multigrid methods can also be highly efficient, with an
ideal O(N) time complexity, and they are matrix-free, which
means that no matrix has to be stored or pre-computed.

There are already a number of AMR frameworks that include
a multigrid solver. Examples are Boxlib [4] (superseded by
AMReX), Maestro [5], Gerris [6], RAMSES [7], NIRVANA [8]
and Paramesh/FLASH [9, 10]. However, the included multigrid
solvers are typically coupled to (and optimized for) the applica-
tion codes, so that they cannot easily be used in other projects.

In recent years, several highly scalable multigrid solvers have
been developed. A combination of geometric and algebraic
multigrid was used in [11] to obtain a matrix-free method that
could scale to 2.6×105 cores. Relevant is also the development
of the open-source HPGMG code [12] (https://hpgmg.org/),
which is aimed at benchmarking HPC systems with geomet-
ric multigrid methods. HPGMG has already been coupled to
Boxlib, but as the code’s primary goal appears to be bench-
marking it was not clear how easily it could be coupled to
MPI-AMRVAC, which is written in Fortran. Another relevant
code is DENDRO [13], which can solve PDEs on finite element
meshes. DENDRO was written in C++ and uses the PETSc li-
brary [14]. Finally, we mention Hypre [15], a library of high
performance multigrid solvers and preconditioners.

Because there appeared to be no geometric multigrid library
that we could easily couple to MPI-AMRVAC, we have developed
such a library ourselves. The main features of the library are:

Preprint submitted to Computer Physics Communications August 26, 2019

ar
X

iv
:1

90
1.

11
37

0v
3

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
3

A
ug

 2
01

9
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301640534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Support for solving elliptic PDEs on quadtree/octree AMR
grids in Cartesian (2D/3D) and axisymmetric (2D) geome-
tries.

• Support for Dirichlet, Neumann and periodic boundary
conditions, as well as free space boundary conditions in
3D.

• MPI-based parallelization that can scale to 103 or more
processors.

• All source code is written in Fortran, under an open source
license (GPLv3). The source code can be found at https:
//github.com/jannisteunissen/octree-mg.

The library is relatively simple and small, with currently less
than 4000 lines of code, but this simplicity also means that there
are a number of limitations:

• Only second-order accurate 5/7-point discretizations of el-
liptic operators are supported for now.

• Polar and spherical grids are not supported. They are not
compatible with the point-wise smoothers used here, see
section 2.2.

• Geometric multigrid is here used as a solver. With libraries
such as PETSc and Hypre multigrid can also be used as a
preconditioner.

• Strong scaling is here demonstrated up to about 2×103 pro-
cessors. For significantly larger runs, a more sophisticated
parallel implementation could be required, see section 2.7.
Multigrid methods that are potentially more suitable for
such large problems can be found in e.g. [1, 12, 15].

Contents of the paper: The design and implementation of the
library are described in section 2. Afterwards, several conver-
gence and scaling tests are presented in section 3. Finally, we
use the library section for divergence cleaning in MHD simula-
tions with MPI-AMRVAC in section 4.

2. Geometric multigrid library

2.1. Introduction to multigrid

Below, we provide only a brief introduction to multigrid
methods. For a more detailed introduction to multigrid, there
exist a number of excellent textbooks and review papers, see
for example [16, 17, 18, 19].

Relaxation methods such as the Gauss-Seidel method and
successive over-relaxation (SOR) can be used to solve ellip-
tic PDEs. However, the convergence rate of such methods de-
creases for larger problem sizes, which can be analyzed by de-
composing the error into different wavelengths. Typically, only
short wavelength errors are effectively damped. One reason for
this is that the solution is locally updated, so that it can take a
large number of iterations for information to propagate through-
out the domain. Because relaxation methods locally smooth
the error, they are also referred to as smoothers. The multigrid

library presented here includes a couple relaxation methods /

smoothers, which are described in section 2.2.
The main idea behind geometric multigrid methods is to ac-

celerate the convergence of a relaxation method by applying
it on a hierarchy of grids. With the relaxation method, short
wavelength errors can effectively be damped on any grid in the
hierarchy. However, a short wavelength on a coarse grid corre-
sponds to a long wavelength on a fine grid. By combining infor-
mation from all grid levels, it is possible to efficiently damp all
of the error wavelengths. The transfer of information between
grid levels is done by prolongation (interpolation) and restric-
tion, which are described in section 2.3. The order in which
relaxation, prolongation and restriction are performed is deter-
mined by the multigrid cycle type. We support two popular
options, namely V-cycles and full multigrid (FMG) cycles, see
section 2.4.

2.2. Included operators and smoothers
When an elliptic PDE is discretized on a mesh with grid spac-

ing h, it can be written in the following form

Lhφh = f h, (2)

where L is an elliptic operator, φ is the solution to be obtained, f
is the right-hand side, and the superscript h indicates that these
quantities are discretized. The multigrid library contains several
predefined elliptic equations, namely:

• ∇ · (∇φ) = f : Poisson’s equation

• ∇ · (ε∇φ) = f : Poisson’s equation with a variable coeffi-
cient ε

• ∇ · (∇φ) − λφ = f : Helmholtz equation with λ ≥ 0

• ∇ · (ε∇φ) − λφ = f : Helmholtz equation with a variable
coefficient ε

These equations are discretized with a standard 5/7-point
second-order accurate discretization, in which the solution and
the right-hand side are defined at cell centers. The library sup-
ports grids with structured adaptive mesh refinement, see sec-
tion 2.5. On such grids, the discretization of Poisson’s equation
in 2D at a cell (i, j) is for example given by

h−2
x (φi−1, j −2φi, j +φi+1, j) + h−2

y (φi, j−1 −2φi, j +φi, j+1) = fi, j, (3)

where hx and hy denote the grid spacing in the x and y direc-
tions, respectively. The generalization to 3D is straightforward
(an extra term for the z-direction appears). With a variable coef-
ficient, we use the following discretization for Poisson’s equa-
tion in 2D

h−2
x

[
ε̄i−1/2, j(φi−1, j − φi, j) + ε̄i+1/2, j(φi+1, j − φi, j)

]
(4)

+ h−2
y

[
ε̄i, j−1/2(φi, j−1 − φi, j) + ε̄i, j+1/2(φi, j+1 − φi, j)

]
= fi, j, (5)

where ε̄ denotes the harmonic mean of the coefficients in neigh-
boring cells. For example, the coefficient between cells (i−1, j)
and (i, j) is defined as

ε̄i−1/2, j =
2 εi, j εi−1, j

εi, j + εi−1, j
.

2

The variation in the coefficients has to be smooth enough for
standard multigrid methods to work, since we adopt no special
treatment for discontinuous coefficients (see for example [19]).

Besides the equations listed above, users can also define their
own elliptic operators. Currently, the library supports discrete
operators with 5-point stencils in 2D and 7-point stencils in 3D.
The advantage of employing such sparse stencils (without di-
agonal elements) is that the amount of communication between
processors is significantly reduced. However, the library could
relatively easily be extended to support 9/27-point stencils in
2D/3D that also use diagonal elements.

When performing multigrid, a smoother (relaxation method)
has to be employed to smooth the error in the solution. We
include point-wise smoothers of the Gauss-Seidel type, which
solve the discretized equations for φi, j while keeping the val-
ues at neighbors fixed. For example, for equation (3) the local
solution φ∗i, j is given by

φ∗i, j =
1

h−2
x + h−2

y

[
h−2

x (φi−1, j + φi+1, j) + h−2
y (φi, j−1 + φi, j+1) − fi, j

]
.

The order in which a smoother replaces the old values φi, j by
φ∗i, j affects the smoothing behavior. Two orderings are provided:

• Standard Gauss-Seidel, which linearly loops over all the
(i, j) indices (in the order they are stored in the computer’s
memory).

• Gauss-Seidel red–black, which first updates all points for
which i + j is even, and then all points for which i + j is
odd.

A downside of point-wise smoothers is that they require
the ‘coupling’ between unknowns to be of similar strength in
all directions, otherwise the convergence rate is reduced (see
e.g. [18]). For a Laplace equation ∇2ψ = 0 on a Cartesian grid,
this means that hx, hy and hz have to be similar, e.g. within a
factor two. This also restricts the geometries in which a point-
wise smoother can be applied. For example, in 3D cylindrical
coordinates the Laplace equation becomes

1
r
∂r(r∂rψ) +

1
r2 ∂

2
φψ + ∂2

zψ = 0.

The 1/r2 factor in front of the ∂2
φ term violates the similar-

coupling requirement, which is why 3D cylindrical coordinates
are not supported in the library. However, a discretization for
a constant-coefficient Poisson equation in a 2D axisymmetric
geometry is provided.

So-called line smoothers or plane smoothers solve for multi-
ple unknowns along a line or a plane simultaneously. They are
typically more robust than point-wise smoothers, and they can
be used to perform multigrid in polar/spherical coordinate sys-
tems [20, 21]. However, line or plane smoothers are incompat-
ible with grid refinement if standard multigrid cycles are used,
because they would have to solve for unknowns at different re-
finement levels.

1/4

1/4
1/2

1/2

1/4

1/4
coarse

ghost cell

Figure 1: Illustration of the prolongation procedure in 2D. Cell-centered values
on the coarse and fine grids are indicated by red and black circles, respectively.
Arrows and weights indicate which coarse grid values are used for the inter-
polation. Near block boundaries, the interpolation makes use of coarse grid
ghost cells, but note that no diagonal ghost cells are used. Formulas for the
interpolation scheme are given in equations (6) and (7).

2.3. Prolongation and restriction

Besides a smoother, multigrid also requires prolongation and
restriction methods, which transfer data from coarse to fine
grids and vice versa. For prolongation we use linear interpo-
lation based on the nearest neighbors, as is also included in
e.g. the Boxlib [4] and Afivo [22] frameworks. The procedure
is illustrated in figure 1 for a 2D case, and can be described by
the following equations:

fx+h/4,y+h/4 =
1
4

(
2 fx,y + fx+h,y + fx,y+h

)
+ O(h2), (6)

fx−h/4,y+h/4 =
1
4

(
2 fx,y + fx−h,y + fx,y+h

)
+ O(h2),

with the schemes for other points following from symmetry. In
3D, the interpolation stencil becomes

fx+h/4,y+h/4,z+h/4 =
1
4

(
fx,y,z + fx+h,y,z + fx,y+h,z + fx,y,z+h

)
+ O(h2),

(7)

fx−h/4,y+h/4,z+h/4 =
1
4

(
fx,y,z + fx−h,y,z + fx,y+h,z + fx,y,z+h

)
+ O(h2).

An advantage of these schemes is that they do not require diag-
onal ghost cells, which saves significant communication costs.
A drawback is that interpolation errors can be larger than with
standard bilinear or trilinear interpolation, somewhat reducing
the multigrid convergence rate.

For restriction, the value of four (2D) or eight (3D) fine grid
values is averaged to obtain a coarse grid value. Besides these
built-in methods, users can also define custom prolongation and
restriction operators.

2.4. Multigrid cycles

Two standard multigrid cycles are included in the library [19,
18, 17]: the V-cycle and the full multigrid (FMG) cycle, which
are illustrated in figure 2. As the name suggests, a V-cycle goes
from the finest grid to the coarsest grid and then back to the

3

smoothing

restriction

prolongation

down up baseV-cycle

FMG cycle

h

initial
restriction

(no smoothing)

2h

4h

8h

Figure 2: Schematic illustration of the V-cycle and FMG cycle for a grid with
four levels. The FMG cycle contains several V-cycles at increasingly finer grids.
At the start of an FMG cycle, the solution and the right-hand side are restricted
to the coarsest grid.

finest grid. To explain the procedure, we introduce some termi-
nology: let v denote the approximate solution, f the right-hand
side, L the elliptic operator, r = f − Lv the residual, P a pro-
longation operator, and R a restriction operator. Furthermore,
superscripts h and H refer to the current and the underlying
coarse grid level.

During the downward part of the V-cycle, Ndown (default:
two) smoothing steps are performed at a grid level. Afterwards,
the residual is computed as

rh = f h − Lh(vh).

The current approximation vh is then restricted to the coarse
grid as vH = R(vh), after which a copy vH

old = vH is stored. This
copy is later used to update the fine-grid solution. The coarse-
grid right-hand side is then updated as

f H = R(rh) + LH(vH), (8)

after which the procedure repeats itself, but now starting from
the underlying coarse grid.

On the coarsest grid, up to Nmax (default: 1000) smoothing
steps are performed until the residual is either below a user-
defined absolute threshold (default: 10−8), or until it is reduced
by a user-defined factor (default: 10−8). When the coarsest grid
contains a large number of unknowns, it can be beneficial to use
a direct solver to solve the coarse grid equations, but we have
not yet implemented this.

In the prolongation steps, the solution is updated with a cor-
rection from the coarse grid as

vh = vh + P(vH − vH
old), (9)

and afterwards Nup (default: two) smoothing steps are per-
formed.

The FMG cycle consists of a number of V-cycles, as illus-
trated in figure 2. Compared to V-cycles, FMG cycles perform
additional smoothing at coarse grid levels. This makes them
a bit more expensive, but the advantage of FMG cycles is that
they can achieve convergence up to the discretization error in
one or two iterations.

Figure 3: Example of a quadtree grid. Each black square represents a grid block
containing 4 × 4 cells. From left to right, the grid is refined in the upper right
corner.

If no initial guess for the solution is given, an initial guess
of zero is used. We use the restriction and prolongation opera-
tors described in section 2.3 for both V-cycles and FMG cycles.
Whenever necessary, for example after restriction/prolongation
or after a smoothing step, ghost cells are updated, see section
2.6.

2.5. Grid structure

The library supports quadtree/octree grids with Cartesian
2D/3D or cylindrical 2D (r, z) geometries, see e.g. [23].
Quadtree grids consist of blocks of Nx × Ny cells, which can be
refined by covering them with four refined blocks (their ‘chil-
dren’), which each also contain Nx × Ny cells but have half the
grid spacing. An example of a quadtree grid is shown in fig-
ure 3. Octrees are the 3D equivalent of quadtrees, so that the
refinement of a block creates eight ‘children’. The multigrid
library requires that the difference in refinement between adja-
cent blocks is at most one level; such quadtree/octree grids are
called 2:1 balanced.

When the multigrid library is coupled to an application code,
it constructs a copy of the full AMR hierarchy of the applica-
tion code together with additional coarse grid levels. Applica-
tions codes therefore only need to contain fine grid data, and
not the underlying coarse grid data. The library also contains
its own routines for parallel communication and the filling of
ghost cells, as described in sections 2.6 and 2.7.

The grid construction is performed in several steps. First,
a user indicates the quadtree/octree block size and the size of
the unrefined computational domain in the application code (in
number of cells). The library will then internally construct ad-
ditional coarse grid levels, as illustrated below. Afterwards, the
refinement levels present in the application code are copied to
the multigrid library.

2.5.1. Construction of additional coarse grids
Suppose that a 2D application uses blocks of 82 cells and

that its level one grid contains 192 × 96 cells, see figure 4. The
library will then first construct the additional coarse grids given
in table 1. The block size is kept at 8 × 8 down to level −1.
For levels −2 to −4, the block size is reduced all the way down
to 1 × 1 blocks. These extra grids are constructed to obtain a
coarsest grid with a small number of unknowns. On such a grid,
a solution can directly be obtained with a modest number of
iterations of the smoother. A coarsest grid with few unknowns
can be obtained when the level one grid size is a small number
(e.g., 1, 3 or 5) times a power of two.

4

Figure 4: Example of a 2D grid with two levels of refinement, to help explain
the construction of grids in the multigrid library. The base grid contains 192×96
cells, which corresponds to 24 × 12 blocks (shown in red) of 8 × 8 cells. Table
1 lists the additional coarse grids that the multigrid library would construct.

grid level mg application grid size block size Nblocks

3 X X irregular 8 × 8 80
2 X X irregular 8 × 8 144
1 X X 192 × 96 8 × 8 24 × 12
0 X 96 × 48 8 × 8 12 × 6
-1 X 48 × 24 8 × 8 6 × 3
-2 X 24 × 12 4 × 4 6 × 3
-3 X 12 × 6 2 × 2 6 × 3
-4 X 6 × 3 1 × 1 6 × 3

Table 1: Example of the additional coarse grids that would be constructed for
an unrefined domain of 192 × 96 cells with blocks of size 82, see figure 4. The
check marks indicate whether the grid level is present in the multigrid library
and in the calling application. Nblocks denotes the number of blocks per level in
the multigrid hierarchy, so including blocks covered by refinement.

2.5.2. Copying the application’s grid refinement
After the unrefined (level one) grid has been constructed in

the multigrid library, it can be linked to the application’s unre-
fined grid. In the application code, each grid block has to store
an integer indicating the index of that grid block in the multi-
grid library. Similarly, grid blocks in the multigrid library store
pointers to the application’s code grid blocks.

After the unrefined grids have been linked, the AMR struc-
ture can be copied from the application code by looping over
its grid blocks, starting at level one. Refined blocks can be
added to the multigrid library by calling built-in refinement pro-
cedures, after which these refined blocks again have to be linked
between the two codes. An example of the coupling procedure
can be found in the coupling module provided for MPI-AMRVAC.

2.5.3. Adapting the grid structure
When the mesh in the calling application changes, the mesh

in the multigrid library can be adapted in the same way, or it
can be constructed again from scratch. To adapt an existing
mesh the calling application should inform the library about all
blocks that were added, removed or transferred between pro-
cessors (for load balancing, see section 2.7). The computa-
tional cost of constructing a new mesh is relatively modest: for
the uniform-grid scaling tests in section 3.3, it took about 0.3 s
to construct a 10243 grid consisting of octree blocks with 163

cells.

block size 1 ghost cell 2 ghost cells 3 ghost cells
82 1.56 2.25 3.06
162 1.27 1.56 1.89
322 1.13 1.27 1.41
83 1.95 3.38 5.36
163 1.42 1.95 2.60
323 1.20 1.42 1.67

Table 2: Memory cost of using grid blocks of given size with ghost cells, rela-
tive to the cost without ghost cells. The values are computed as (N+2Ngc)D/ND,
where N is the block size, Ngc the number of ghost cells, and D the problem
dimension.

2.6. Ghost cells and boundary conditions
In the multigrid library all grid blocks have a layer of ghost

cells around them, which can contain data from neighboring
blocks (potentially at a different refinement level) or special
values for boundary conditions. The usage of ghost cells sim-
plifies the implementation of numerical methods, since they do
not need to take block boundaries into account. For simplicity
and efficiency, the library currently uses only a single layer of
ghost cells, without diagonal and/or edge (in 3D) cells. Since
the multigrid library uses its own ghost cell routines, these re-
strictions do not apply to application codes, which can use any
number of ghost cells.

The downside of ghost cells is that additional memory is re-
quired, as illustrated in table 2. Some AMR codes, such as
Paramesh [24], therefore provide the possibility to compute
ghost values when they are required instead of permanently
storing them. However, this adds some complexity in the imple-
mentation of algorithms, for example because ghost cells can-
not be reused in two separate steps.

Ghost cells can be filled in three different ways. If there is
a neighboring block (at the same refinement level), ghost cells
are simply copied from the corresponding region. This is also
performed at periodic boundaries.

Ghost cells near physical boundaries. If there is a physical
boundary, ghost cells are set so that the boundary condition
is satisfied at boundary cell faces. If the interior cell-centered
value is φi and the ghost value is φg, then a Dirichlet boundary
condition φ = a at the cell face is set as φg = 2a − φi. A Neu-
mann boundary condition ∂xφ = b is set as φg = φi±hx b, where
hx is the grid spacing and the sign depends on the direction the
boundary is facing. For free space boundary conditions (φ→ 0
for r → ∞), we make use of a FFT-based solver to set boundary
conditions, see section 2.8.

Ghost cells near refinement boundaries. Near refinement
boundaries, we employ the scheme illustrated in figure 5a to
fill ghost cells. The value B’ is obtained by using the central-
difference slope in the coarse grid cell. The value at the cell
face c’ is obtained by local extrapolation using two points, and
finally the ghost cell value g is the average of B’ and c’. For
the other ghost value h the procedure is geometrically identical.
The approach extends naturally to 3D, in which two central-
difference slopes are used in the coarse cells to obtain the equiv-
alent of B’, as illustrated in figure 5b. An important property of

5

c'

A

c

d

g

B'

a

b

BC

B' = B + (C-A)/8

g = (B' + c')/2

c' = c +(c-d)/2

h

D

BC A

F

G

B'

B' = B + (C+F-A-G)/8

a) b)

Figure 5: a) Illustration of the ghost cell scheme near a refinement boundary in 2D. Fine-grid values are indicated by a to d. The ghost cell next to c is located at g,
and the nearest coarse-grid value is indicated by B. The quantities at B’ and c’ are shown to help explain how a value for g is obtained. Note that the coarse values
A or C can be inside ghost cells of the block containing B; values at such ghost cells are always available in our implementation. b) In 3D, the procedure is almost
identical. The only difference is how the equivalent of B’ is determined, which is illustrated here.

this ghost cell scheme, which is similar to the scheme presented
in [22], is that it gives the same coarse and (average) fine gra-
dient across the refinement boundary. In other words, we have
that

D − B = (c − g)/2 + (a − h)/2, (10)

where D = (a + b + c + d)/4 is the restriction of the fine cells.
For a constant-coefficient Poisson equation such as (1), the di-
vergence theorem ∫

f dV =
{

ε∇φ · ~dS . (11)

then shows that the integrated right-hand side is equal on the
refined patch and on the underlying coarse grid approximation.

Near refinement boundaries, ghost cell values depend on the
interior values of the refined block, as illustrated in figure 5.
Since ghost cells are updated after (and not during) a smoothing
step, a somewhat slower damping of errors is to be expected
near refinement boundaries.

2.7. Parallelization
We have made a number of choices to keep the parallel im-

plementation of the multigrid library relatively simple.
First, the full mesh geometry is stored on every processor.

Of course, each processor only allocates storage for the mesh
data that it ‘owns’. A more sophisticated approach would be to
only store information about the local mesh neighborhood for
each processor. That would save memory, but also significantly
complicate e.g. mesh construction, mesh adaptation and load
balancing.

Second, the multigrid library copies the mesh structure from
the calling AMR application, and it is assumed that 2:1 balance
is already satisfied.

Third, the load balancing is also copied from the calling
AMR application, which means that all leaves (i.e., blocks with
no further refinement) are on the same processors in the library
as in the calling application. Copying data between the calling
application and the library on the leaf blocks therefore involves

no communication. This also means that the library only needs
to perform load balancing for parent blocks. Our implemen-
tation assigns each parent block to the processor that contains
most of its children, which is applied recursively by going from
finer to coarser grids. In case of ties, the processor which has
the fewest blocks at a refinement level is selected. This type of
load balancing minimizes the communication between children
and parent blocks.

On the coarsest grids in a multigrid hierarchy, there are too
few unknowns to keep all processors busy. Furthermore, the
cost of communication on such grids is often higher than com-
putational costs. We therefore store the coarsest grids on a sin-
gle processor, more precisely those for which the number of
cells is not divisible by the block size. For the example of table
1, these are the grids with block size 4 × 4 and smaller.

Parallel communication. As illustrated in figure 2, performing
a multigrid cycle involves quite a lot of communication between
processors. After performing a smoothing step, ghost cells have
to be updated. Prolongation and restriction also require data to
be transferred between grid levels, as well as an update of the
ghost cells. For this reason, the multigrid library comes with
efficient routines for filling ghost cells and communicating data.

The following data is communicated for the ghost cell, pro-
longation and restriction routines:

• For ghost cell exchanges at the same refinement level, the
corresponding interior cell region is sent from both sides.

• For ghost cells near a refinement boundary, the coarse-side
processor interpolates values ‘in front of’ the cells of its
fine grid neighbor, see figure 5. These values are then sent
from coarse to fine; there is no communication from fine
to coarse.

• For prolongation, the coarse grid data is first interpolated
and then sent to its children1.

1It is more efficient to send coarse data and to perform interpolation after-

6

• For restriction, the fine grid data is first restricted and then
sent to the underlying coarse grid.

For each of the above cases, the size of the data transferred de-
pends only on the block size and the problem dimension. We
avoid communication on the coarsest grids, for which the block
size is reduced, since these grids are stored on a single proces-
sor.

The actual data transfer is performed using buffers, so that
only a single send and/or receive is performed between commu-
nicating processors. The size of these buffers is computed after
constructing the AMR grid; then it is known how much data is
sent and received between processors in the various operations.
Furthermore, the data in the send buffers is sorted so that it is
in ‘natural’ order for the receiving processor. This sorting is
possible because each grid block is identified by a global index,
which determines the order in which processors loop over the
blocks.

After the sorted data has been received, operations such as
the filling of ghost cells, prolongation or restriction can be per-
formed. Whenever data from another processor is required, it
is unpacked from the buffer corresponding to that processor. If
data from the same processor is required, it is locally prepared
as described above. The advantage of this buffered approach for
exchanging data is that it limits the number of MPI calls, which
could otherwise lead to significant overhead. In section 3.3, we
demonstrate the parallel scaling of our approach.

2.8. Free space boundary conditions in 3D

Poisson’s equation sometimes has to be solved with free
space boundary conditions, i.e., φ → 0 at infinity, for exam-
ple when computing the gravitational potential of an isolated
system. Because of the 1/r decay of the free-space Green’s
function, enlarging the computational domain (and applying a
Dirichlet zero boundary condition) gives a poor approximation
of the free-space solution.

A number of techniques exist to directly compute free-space
solutions, see e.g. [25, 26]. The most efficient techniques rely
on the fast Fourier transform (FFT), so they can only be ap-
plied to uniform grids. To incorporate free boundary conditions
into our AMR-capable multigrid solver, we therefore employ
the following strategy. First, a free-space solution is computed
on a uniform grid, which can have a significantly lower reso-
lution than the full AMR grid. Then standard multigrid is per-
formed, using Dirichlet boundary conditions interpolated from
the uniform grid solution.

We use the 3D uniform-grid solver described in [25, 27],
which employs interpolating scaling functions and FFTs to ob-
tain high-order solutions of free-space problems. The solver
is written in Fortran, licensed under a GPL license, and it
uses MPI-parallelism, which simplified its integration with our
multigrid library.

wards, but this approach is less flexible; for a variable coefficient problem, it
can for example be beneficial to change the interpolation scheme depending on
the local coefficients.

In our implementation the uniform grid always corresponds
to one of the fully refined grid levels (so excluding partially
refined levels). Users can control the cost of the uniform grid
solver with a parameter c, which should lie between zero and
one. The uniform grid then corresponds to AMR level l for
which N(l) ≤ c Ntotal, where N(l) denotes the number of un-
knowns at AMR level l, and Ntotal denotes the total number of
unknowns.

After constructing the uniform grid, including a layer of
ghost cells, the right-hand side of the problem is restricted to
it. The direct solver then computes the free-space solution in
parallel, using eight-order accurate interpolating scaling func-
tions. We extract the boundary planes, and linearly interpolate
them to obtain Dirichlet boundary conditions for the multigrid
solver at all grid levels. Afterwards, one or more FMG or V-
cycles can be performed to obtain a solution on the full AMR
grid, using the uniform grid solution as an initial guess.

The coupled approach described above has two advantages:
it can handle AMR grids, it can be more efficient and scale bet-
ter than a direct solver, and it requires no modification of the
multigrid routines. Potential drawbacks are that the multigrid
solution is only second order accurate, and that the accuracy
near boundaries is reduced when a too coarse grid is used for
the direct solver. How fine the uniform grid needs to be com-
pared to the full AMR grid depends on the application, e.g., on
the distance between sources and the domain boundary, and on
the required accuracy near the boundary.

3. Testing the library

3.1. Convergence test

To study the convergence behavior of the multigrid solver,
we solve the following 3D test problem on a unit cube centered
at the origin:

∇2φ = f ,

f = ∇2φsol, (12)

φsol = cos(π~n · ~x) + 10 exp(−100|~x|2),

with ~n = (1, 2, 3). The right-hand side f is computed analyti-
cally, and Dirichlet boundary conditions are imposed using the
solution values at the boundary. We consider three types of nu-
merical grid. The base case has uniform refinement using 643

cells. To test the effect of refinement boundaries on the conver-
gence behavior, we add two extra levels of refinement cover-
ing a volume of 0.53 and 0.253, respectively (so that each level
again contains 643 cells). These refinements are either placed
at the center of the domain, or around (−0.25,−0.25,−0.25). In
the latter case, the refinement is in the ‘wrong’ place, as it leads
to a refinement corner at the center of the domain, where the
solution has a sharp peak.

Figure 6 shows the residual r = f − ∇2φ versus FMG iter-
ation. Two downward and two upward smoothing steps were
taken per iteration. The residual reduction factor per iteration
is reduced when refinement is present. This is a result of our
ghost cell procedure near refinement boundaries, see section

7

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

2 4 6 8 10

re
si
d
u
a
l
(L

2
)

FMG iteration

uniform
center
corner

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

2 4 6 8 10 12

re
si
d
u
a
l
(L

∞
)

FMG iteration

uniform
center
corner

0.001

0.01

1 2 3 4

er
ro
r
(L

2
)

FMG iteration

uniform
center
corner

0.001

0.01

0.1

1 2 3 4

er
ro
r
(L

∞
)

FMG iteration

uniform
center
corner

Figure 6: Convergence test results for the test problem of equation (12) with a sharp Gaussian peak. Top row: the residual in L2 norm (left) and L∞ norm (right)
versus FMG iteration. After about 10 iterations the residual is reduced up to machine precision, see the text for details. Bottom row: the L2 norm and L∞ norm of
the solution error. After two FMG iterations, the error has converged to the discretization error, which is why it is no longer decreasing. The uniform case contains
643 cells, and the ‘center’ and ‘corner’ cases contain two additional levels of refinement, which if placed properly (the ‘center’ case) indeed decreases the error.

2.6, which reduces the convergence rate. The residual is re-
duced up to machine precision after about 10 iterations. Due to
the algorithmic steps involved, such as evaluating expressions
like equation (3), the minimum residual that can be obtained
is proportional to εmachh−2|φ|, where εmach ≈ 10−16 is the ma-
chine’s precision, h is the mesh spacing and |φ| is the local am-
plitude of the computed solution.

Regardless of the lower reduction factor with refinement
boundaries, figure 6 shows that the discretization error is
reached in one or two FMG iterations. The test problem has
a steep Gaussian at the center, which is where the largest dis-
cretization errors occur for the uniform grid case. With the cen-
tered refinement errors are indeed significantly reduced. In the
L∞ norm, the error is reduced by a factor 20, slightly more than
the factor 16 expected from a second-order discretization with
two levels of refinement. With the corner refinement, the errors
hardly change, showing that ‘wrongly’ placed refinements are
handled well by our approach.

3.2. Free space solutions in 3D

To test our method with free space boundary conditions in
3D, see section 2.8, we solve a free space Poisson problem with
a Gaussian right-hand side

∇2φ = f , (13)

f (~r) =
−1

σ3π3/2 exp(−|~r − ~r0|
2/σ2),

where ~r0 is the center of the Gaussian and σ controls its width.
The solution is then given by

φ(~r) =
1

4π
erf(|~r − ~r0|/σ)/|~r − ~r0|, (14)

where erf denotes the error function. The computational do-
main is again a unit cube centered at the origin, and the Gaus-
sian is located at the origin with σ = 0.1. Figure 7 shows the
L2-norm of the error after two FMG cycles versus the grid res-
olution. Two curves are shown, for which the direct solver is
called on levels lmax − 1 and lmax − 2 respectively, where lmax
denotes the highest grid level. For grids larger than 643, there
is hardly any difference between the two curves, and they show
second order convergence. For simplicity, uniformly refined
grids are used, but the multigrid solver also works for AMR
meshes.

The cost of the direct solver is relatively small, because it
is only called once per right-hand side on a coarser grid, and
because the direct solver itself is quite efficient [25].

3.3. Strong scaling tests
We now look at the performance and scaling of the geometric

multigrid library, by solving Poisson’s equation with unit right-
hand side

∇2φ = 1, (15)

on a unit cube, with φ set to zero at the boundaries. We measure
the time per multigrid cycle for both FMG and V-cycles by aver-
aging over 100 cycles. For both types of cycles two upward and

8

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

10 100 1000

er
ro
r

Nx

lmax − 1, L∞
lmax − 1, L2

lmax − 2, L∞
lmax − 2, L2

Figure 7: L2 and L∞ norms of the error for the 3D free-space test problem
given by equation (13). The error is shown versus the number of grid points
per dimension. The labels lmax − 1 and lmax − 2 indicate at which grid level
the direct free-space solver was called to obtain boundary conditions for the
multigrid procedure, where lmax denotes the highest grid level.

two downward smoothing steps with a Jacobi smoother were
performed, and octree blocks of size 163 were used. The scaling
results presented below were obtained on nodes with two 14-
core Intel Xeon E5-2680v4 processors, for a total of 28 cores
per node. In all tests, one MPI process per core was used. We
present strong scaling results, which means that the problem
size is kept fixed but the number of processors is increased.

Normally, the library copies its load balancing from another
application, as discussed in section 2.7. For the tests presented
below, the library was used by itself, in which case it performs
a division of blocks over processors similar to a Morton order,
which is also used in MPI-AMRVAC [28, 23].

Figure 8 shows strong scaling results for a uniform grid con-
taining either 5123 or 10243 cells. For the 5123 case, scaling
results look good up to 448 cores, but with 1792 cores the per-
formance is worse than with 896 cores. This makes sense: even
on the finest grid, the number of unknowns is only about 423

using 1792 cores. For the 10243 test case, scaling is closer to
ideal (i.e., closer to a straight line in the figure), even using 1792
cores. The figure also shows that the cost of a V-cycle is lower
than that of an FMG cycle. The difference increases with the
number of cores, due to the extra work on coarse grids with
FMG cycles, see figure 2.

A breakdown of the relative cost of an FMG cycle for the
10243 case is also shown in figure 8. Shown is the percentage of
time spent on the transfer to coarse grids, the smoother (exclud-
ing communication), the ghost cell exchange during smooth-
ing steps (labeled smoother g.c.), and the prolongation to finer
grids. With an increasing number of cores, less time is spent on
computation compared to communication.

Figure 9 shows strong scaling results on a refined grid with
a total of five levels. Each grid level contains either 5123 or
10243 cells, and the refinements are placed at the center of the
domain, as illustrated in the figure. Compared to the uniform
grid cases, there are about five times as many unknowns. The
duration of V-cycles is indeed about five times longer, although

the parallel scaling is improved due to the larger total number of
unknowns. The difference in cost between V-cycles and FMG
cycles is larger than for the uniform grid case, due to the ex-
tra work the FMG cycles perform on coarse grids, which now
contain a significant number of unknowns.

4. Divergence cleaning

This section is specifically about divergence cleaning in mag-
netohydrodynamic (MHD) simulations. For readers not inter-
ested in this particular application, we provide a short summary
of the main results below:

• We compare elliptic, hyperbolic, and parabolic divergence
cleaning for several test cases in 2D/3D Cartesian and
2.5D cylindrical geometries, with AMR.

• With the multigrid library, divergence cleaning up to ma-
chine precision requires the magnetic field to be defined at
cell faces. However, in MPI-AMRVAC the field is defined at
cell centers, and we show that elliptic divergence cleaning
can then still be applied successfully.

• We show that a fourth-order discretization of the right-
hand side (∇ · ~B) can be beneficial for elliptic divergence
cleaning.

• The tests demonstrate the coupling of the multigrid solver
to MPI-AMRVAC. The cost of runs was not significantly in-
creased (by less than 10%) when elliptic divergence clean-
ing was performed once per time step.

• The tests show that for typical problems, divergence clean-
ing methods play a similar role as the slope limiters: dif-
ferent methods give slightly different results and there is
no single best method.

Maxwell’s equations state that ∇ · ~B = 0, but this con-
straint does not automatically hold in numerical MHD compu-
tations [29]. If no special care is taken, ∇ · ~B can grow at each
step through discretization errors, leading to unphysical results.
Therefore, a number of methods has been developed to ensure
∇ · ~B remains small compared to discretization and truncation
errors.

With the Hodge–Helmholtz projection method [29, 30], the
divergence is cleaned by solving Poisson’s equation:

∇ · ∇φ = ∇ · ~Bold, (16)

~Bnew = ~Bold − ∇φ. (17)

Below, we call this approach elliptic divergence cleaning, and
we will use multigrid to solve Poisson’s equation. Another ap-
proach is to add source terms to the MHD equations to control
∇ · ~B errors, as is done in the eight-wave formulation of Pow-
ell [31], or its variants which only affect the induction equa-
tion [32, 33]. The MHD equations can also be modified to en-
sure transport and/or damping of ∇ · ~B errors. The extra terms
can have a parabolic (diffusive) character, as in the ‘diffusive’
method described in [34] which only adds a diffusion term to

9

0.01

0.1

1

10

10 100 1000

ti
m
e/
cy
cl
e
(s
)

CPU cores

uniform grid

5123 FMG
V-cycle

10243 FMG
V-cycle

0

10

20

30

40

50

60

100 1000

re
la
ti
ve

co
st

(%
)

CPU cores

coarsen
smoother

smoother g.c.
prolong

Figure 8: Left: strong scaling results for a problem size of 5123 and 10243, showing the time per FMG cycle and per V-cycle. Right: breakdown of the computational
cost of an FMG cycle for a 10243 grid versus the number of CPU cores used.

0.01

0.1

1

10

100

10 100 1000

ti
m
e/
cy
cl
e
(s
)

CPU cores

AMR grid (5 levels)

512 FMG
V-cycle

1024 FMG
V-cycle

Figure 9: Strong scaling results on an AMR grid with 5 levels, with each level containing 5123 or 10243 cells. The grid structure is illustrated on the right.

the induction equation. When using an extended version of the
MHD equations with a variable that links to ∇· ~B error damping
and transport, the method can also have a hyperbolic charac-
ter, as in the Generalized Lagrange multiplier (GLM) method
described in [35] and the recently derived ideal GLM-MHD
scheme presented in [36].

Constrained transport (CT) methods [37, 38, 39] were de-
signed to preserve ∇ · ~B = 0 up to machine precision, typi-
cally by defining the magnetic field at cell faces and the elec-
tric field at cell corners. Variants that do not rely on a stag-
gered representation of the magnetic field have been discussed
in [40] . CT methods have been made compatible with adap-
tive mesh refinement [41, 42, 43, 44, 45], but their implemen-
tation is non-trivial. Moreover, while CT methods ensure one
particular discretization of the monopole constraint in machine
precision, any other discretization will show truncation errors
in places of large gradients, and especially at discontinuities.
For mesh-free computations, [46] recently advocated the use
of a constrained-gradient method, which in essence uses an it-
erative least-square minimization involving the magnetic field
gradient tensor. Mesh-free smoothed-particle MHD imple-

mentations have also successfully devised constrained hyper-
bolic/parabolic divergence cleaning methods, where the wave
cleaning speeds become space and time dependent [47].

An extensive comparison of ∇ · ~B cleaning techniques was
performed in [40], where a suite of rigorous test problems on
uniform Cartesian grids showed that a projection scheme could
rival central difference and constrained transport schemes in
accuracy and reliability. Further comparisons have been per-
formed in e.g. [48, 4], where especially [48] demonstrates some
deficiencies in using divergence cleaning steps versus CT, when
applied to supernova-induced MHD turbulence.

In the tests below, we compare elliptic, parabolic and
hyperbolic divergence cleaning. ‘Elliptic’ refers to the
multigrid-based projection method described in the next sec-
tion, ‘parabolic’ to the diffusive approach of [34], and ‘hyper-
bolic’ to the EGLM-MHD method described in [35]. For the
EGLM-MHD approach, we set the parameter ch to the globally
fastest wave speed, and we use c2

p/ch = 2h to balance decay and
transport of the ψ variable, where h is the finest grid spacing.

Below, a suffix 4th indicates that ∇ · ~B terms have been com-
puted with a fourth-order accurate scheme, which is relevant for

10

the elliptic and parabolic methods.

4.1. Elliptic divergence cleaning

In MPI-AMRVAC, the magnetic field is defined at cell centers.
To compute its divergence in a Cartesian geometry, we con-
sider two discretizations for ∇ · ~B = ∂xBx + ∂yBy + ∂zBz. Each
derivative can either be approximated with second order central
differences

∂xBx ≈
Bx,i+1 − Bx,i−1

2∆x
, (18)

or with a fourth-order differencing scheme

∂xBx ≈
−Bx,i+2 + 8Bx,i+1 − 8Bx,i−1 + Bx,i−2

12∆x
. (19)

Afterwards, we update the magnetic field according to equation
(17), and update the energy density as

enew = eold +
1
2

(
B2

new − B2
old

)
, (20)

which keeps the thermal pressure constant [40], which can be
important to avoid negative pressures. A downside is that equa-
tion (20) does not conserve total energy. For the correction step,
we evaluate ∇φ with second-order central differences.

The multigrid solver described in this paper is cell-centered,
and with its standard 5/7-point stencil the divergence ∇ · ∇φ
is computed from a face-centered quantity (∇φ). Since in
MPI-AMRVAC ∇ · ~B is the divergence of a cell-centered quan-
tity, the two divergences do not exactly match2. This means
that after the projection step, ∇ · ~B will be non-zero in both the
second and fourth order schemes, although differences will be
small for smooth profiles. Based on the results presented here
and those of [40], we think this is not necessarily a problem.

With a staggered discretization, in which the magnetic field
is defined at cell faces, the two divergences in equation (16)
exactly match. Divergence cleaning can then be performed up
to machine precision. The multigrid library is currently used in
the BHAC code [45], which employs such a staggered discretiza-
tion, to ensure that initial magnetic fields are divergence-free up
to machine precision.

4.2. Field loop advection

We first consider the 2D field loop advection test described
in [49], which was also used more recently in e.g. [46]. A weak
magnetic field loop is advected through a periodic domain given
by x ∈ [−1, 1] and y ∈ [−1/2, 1/2]. The initial conditions are
ρ = 1, p = 1, (vx, vy) = (2, 1), and the magnetic field is com-
puted from a vector potential whose only non-zero component
is

Az =

A0(R0 −
√

x2 + y2) for x2 + y2 ≤ R2
0

0 for x2 + y2 > R2
0

,

2In principle, it is possible to use an operator with a wider stencil to ensure
∇ · ~B = 0 up to machine precision. However, this would make the solver more
costly and also lead to a decoupling of unknowns, as discussed in e.g. [48].

where A0 = 10−3 and R0 = 0.3. We numerically evaluate
Bx = ∂yAz and By = −∂xAz using second-order central dif-
ferencing. Inside the magnetized field loop the plasma beta is
β = 2p/B2 = 2 · 106, so that this is effectively a hydrodynamics
problem in which the magnetic field is a passive scalar. Never-
theless, its solution can be sensitive to the divergence cleaning
method used [49, 46].

We simulate this system up to t = 10 on a uniform 256× 128
grid (AMR tests follow in the next subsection), with a grid spac-
ing h = 1/128. An example of the evolution is shown in figure
10, which was obtained using the parabolic approach. Fluxes
were computed with the HLL scheme, using a CFL number of
0.5. For figure 10, a Čada limiter [50] was used to reconstruct
cell face values for flux computations. At t = 10, the field loop
has moved through the system 10 times. We run simulations
with several combinations of slope limiters and ∇ · ~B meth-
ods, always employing the same HLL scheme. These slope
limiters are used in MPI-AMRVAC to reconstruct cell-face values
from cell-centered ones for the flux computation [23]. Figure
11 shows the magnetic field strength |~B| at t = 10 for three types
of limiters, described in [50] (‘Čada’), [51] (‘Koren’), and [52]
(‘van Leer’), for five different cleaning approaches.

The computational cost of the MPI-AMRVAC runs hardly de-
pended on the divergence cleaning method that was used, with
run times differing by less than 10%. The choice of limiter had
a greater impact. Runs with the more complex ‘Čada’ limiter
took up to 40% longer than those with the simple van Leer lim-
iter (which is symmetric), and runs with the Koren limiter were
in between.

With a second-order evaluation of ∇ · ~B, elliptic and hyper-
bolic divergence cleaning give similar results, somewhat worse
than those obtained with hyperbolic cleaning. With a fourth-
order evaluation of ∇ · ~B, elliptic cleaning gives the best results,
which also appear to be less sensitive to the limiter used. It is
to be noted that more structure is visible in Fig. 11 outside the
loop than shown in e.g. [46], but this is due to the combination
of using a different color scheme (our color legend is indicated
in the figure), and because we show |~B| instead of B2.

Figure 12 shows the L2-norm of ∇ · ~B, defined as

|∇ · ~B|2 =

√
1
V

∫
|∇ · ~B|2dV , (21)

using a second-order and a fourth-order cell-centered evalu-
ation. The elliptic schemes give the smallest |∇ · ~B|2 when
the same second/fourth-order discretization is used to evaluate
|∇ · ~B|2 and the right-hand side of Eq. (16). However, ∇· ~B being
small in one discretization does not mean it is small in another
one, as was as observed in [40].

The L2-norm of |~B − ~Bsol| is shown in figure 13, where ~Bsol
is the approximate solution to the problem, only taking into ac-
count advection of the initial condition. From this comparison,
the elliptic-4th and parabolic-4th schemes give the best results,
whereas the standard elliptic and parabolic schemes perform a
bit worse than other methods. Since the cost of a fourth-order
evaluation of ∇ · ~B is negligible, the results suggest that such
an evaluation can be recommended. In conclusion, we find that

11

t = 0 t = 2 t = 4 t = 6 t = 8 t = 10

Figure 10: Example of the evolution of the magnetic field strength for the advected field loop test with parabolic divergence cleaning and the Čada slope limiter. At
t = 10, the loop has translated 10 times (horizontally and vertically). The figures show half of the computational domain, namely x ∈ [−1/2, 1/2] and y ∈ [−1/2, 1/2].

elliptic elliptic-4th parabolic parabolic-4th hyperbolic

Č
a
d

a
K

o
re

n
v
a
n

L
ee

r

Figure 11: Magnetic field strength at t = 10 for the advected field loop test. The columns correspond to different divergence-cleaning methods, and a suffix 4th

indicates a fourth-order scheme is used to evaluate ∇ · ~B terms. The rows correspond to different slope limiters. The figures show half of the computational domain,
namely x ∈ [−1/2, 1/2] and y ∈ [−1/2, 1/2].

elliptic divergence cleaning works well to control monopole er-
rors for this test case.

4.3. Advecting a current-carrying cylinder (mach 0.5)
Although the previous setup became a popular test for mag-

netic divergence control, it is not a realistic test case for MHD
applications since it only probes the very high plasma beta (or-
der one million to infinity) regime. Moreover, the initial con-
dition is not a true MHD equilibrium, has an infinite current at
r = 0 together with a current sheet at its boundary R0, and the
radially inward Lorentz force must actually set up sausage type
compressions of the loop, which could well be responsible for
the fluctuations seen in the environment of the advected loop in
Fig. 10.

Below, we introduce a more realistic advection test, which
can be used to demonstrate a number of typical computational
challenges in MHD applications: (1) combining high and low
plasma beta regimes, (2) ensuring force balance, and (3) han-
dling surface current contributions in AMR evolutions.

4.3.1. Description of the general test case
We set up a current-carrying magnetic flux tube embedded

in a uniform, magnetized external medium, ensuring that a true
MHD equilibrium is realized. This is then further combined
with a uniform flow field, that addresses whether Galilean in-
variance is obtained.

Using the scale invariance of the MHD equations [53], we
exploit units where the radius of the flux tube is equal to unity,

where the density external to the loop is fixed at ρext = 1, while
the external plasma pressure is pext = 1/γ. This makes the
external sound speed and its unit length crossing time the ref-
erence speed and time unit, respectively. The initial flow field
is then controlled fully by its Mach number M0 and orientation
angles ϕ0 and θ0, such that the constant speed components are
found from

vx(t = 0) = M0 sin θ0 cosϕ0 , (22)
vy(t = 0) = M0 sin θ0 sinϕ0 , (23)
vz(t = 0) = M0 cos θ0 . (24)

We align the flux tube with the z-direction, and use a [−L, L]2

fully periodic domain, where we resort to a 2.5D (invariance
in z) computation, although the problem can also be simulated
in full 3D. The external medium has a uniform magnetization,
which is determined by the corresponding inverse plasma beta

parameter β−1
ext as Bz,ext =

√
2β−1

ext/γ.

The flux tube itself has internal variation, and is a force-free
cylindrical equilibrium introduced in [54], where the physics of
solar flares was discussed. For solar coronal applications, en-
suring a force-free equilibrium, which guarantees ~J × ~B = ~0
without enforcing a vanishing current ~J = ∇ × ~B, is a typ-
ical computational challenge. The internal variation for r =

12

1e-07

1e-06

1e-05

1e-04

1e-03

0 2 4 6 8 10
time

|∇ · ~B|2 (second order)

1e-07

1e-06

1e-05

1e-04

1e-03

0 2 4 6 8 10
time

|∇ · ~B|2 (fourth order)

elliptic
elliptic-4th
parabolic

parabolic-4th
hyperbolic

Figure 12: The L2-norm of ∇ · ~B versus time for the advected field loop test on a uniform 256 × 128 grid. We only show the results for the Čada limiter. On the left,
the L2-norm is computed using a second order scheme for ∇ · ~B, on the right using a fourth order scheme.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10

|∆
~ B
| 2/

A
0

time

elliptic
elliptic-4th

parabolic
parabolic-4th

hyperbolic

Figure 13: The L2-norm of the error in the magnetic field |~B − ~Bsol | divided by
the initial amplitude A0 = 10−3, shown for the advected field loop test with the
Čada limiter.

√
x2 + y2 ≤ 1 is given by

ρint(r) = ρ0(1 − (1 − d)r2) , (25)

Bz,int(r) =
B0

1 + c2r2 , (26)

Bθ,int(r) =
crB0

1 + c2r2 . (27)

The parameters ρ0, B0 and c are best controlled by dimension-
less numbers which quantify the pitch and strength of the mag-
netic field variation. The d parameter quantifies the internal
density contrast d = ρ(1)/ρ(0). Introducing the q-factor at the
tube radius

q(1) =
πBz(1)
LBθ(1)

,

along with the plasma beta at the flux tube radius β(1), as well
as the ratio R of the Alfvén speed at r = 0 to the external sound

speed, we can deduce that

c =
π

Lq(1)
, (28)

pint =
β(1)(1 + β−1

ext)
γ(β(1) + 1)

, (29)

B0 =

√
2pint(1 + c2)

β(1)
, (30)

ρ0 =
B2

0

R2 . (31)

The flux tube is internally force-free and represents a nonlinear
force-free field configuration where ~J = [2c/(1+c2r2)]~B, while
there is a constant pitch q(r) = q(1). The embedded configu-
ration is fully force-balanced since the above relations enforce
the total pressure balance across the loop radius.

Any combination of input parameters M0, θ0, ϕ0, β−1
ext, q(1),

β(1), d, and R represents a meaningful test for which the ex-
act solution is known: the flux tube will be advected at the
prescribed constant speed. These parameters could explore
regimes that are particularly challenging for numerical treat-
ments, like taking the pitch such that the flux tube is liable to
kink instability, or advecting at highly supersonic speeds, or
verifying very low beta behavior, etc. The edge of the flux tube
carries a surface current, where density, pressure and magnetic
field components change discontinuously. This is typical for
many solar, astrophysical or laboratory plasma configurations.

4.3.2. Results for a particular sets of parameters
We here focus on the particular case where L = 2, d = 0.05,

M0 = 0.5 (i.e. Mach 0.5 advection), φ0 = 45◦, θ0 = 70◦,
β(1) = 0.05 (i.e. a truly low beta flux tube), q(1) = 1.2 (such
that it is stable to external kink modes through the Kruskal–
Shafranov limit), R = 1, and taking β−1

ext = 0.05 (i.e. a high
beta surrounding medium). We perform 2.5D simulations us-
ing a three-step Runge-Kutta integrator with the HLL scheme
combined with a Koren limiter, and a Courant parameter of 0.8.
Parabolic and elliptic divergence cleaning is applied, using a

13

B - Bsol

1234
refinement level

0.5

0.25

0

-0.25

-0.5

Figure 14: The error in the magnetic field magnitude at t = 10 for the Gold–
Hoyle force-free flux rope advection test, shown in the full [−2, 2]2 domain.
The errors are localized at the surface of the flux rope, where there is a surface
current and a jump in density. The figure shows results for the multigrid ap-
proach (elliptic-4th). The four refinement levels are indicated by gray-to-white
colors, with the finest (white) grid having a spacing of about 4 × 10−3.

fourth order discretization of ∇ · ~B terms. We use a base resolu-
tion per direction of 128 with four grid levels, which effectively
gives a 10242 resolution. We run until normalized time t = 10,
at which time the flux tube is almost advected back to its origi-
nal position. Grid refinement is handled as follows: we enforce
the maximal refinement level to resolve the region that is ini-
tially between 0.9 < r < 1.1, to accurately treat the surface
discontinuities during the entire evolution.

Figure 14 shows the error in the magnetic field strength at t =

10 using elliptic divergence cleaning. The error is concentrated
at the boundary of the flux rope, where there is a surface current
and a jump in density. The grid structure at t = 10 is also shown
in figure. With the parabolic approach, the results are nearly
identical.

Figure 15 shows the average magnitude of ~J× ~B in the region
inside, outside and at the boundary of the flux rope. Results are
shown for both the elliptic and parabolic approach, but only
small differences between the two methods can be observed.
Note that the simulation is nearly force-free inside and outside
the flux rope. At the edge of the flux rope ~J × ~B is significantly
larger, due to the numerical discretization errors at the flux rope
boundary.

We remark that with hyperbolic divergence cleaning, we ob-
tain nearly identical results. In conclusion, this test case shows
that for a physically realistic test case, the type of divergence
cleaning has less effect than for the test problem of section 4.2.
It also demonstrates that our divergence cleaning methods, and
more specifically the elliptic approach, can handle adaptive
mesh refinement.

4.4. Modeling magnetized jets (2.5D and 3D)
A final demonstration of the multigrid-based divergence

cleaning methodology focuses on a typical astrophysical appli-

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

10.00000

0 1 2 3 4 5 6 7 8 9 10

edge

inside

outside

|J
x
B
|/
V

time

parabolic-4th

elliptic-4th

Figure 15: The average magnitude of ~J × ~B in three regions: the region outside
the flux rope (r > 1.1), the region inside the flux rope (r < 0.9) and the region
in between (0.9 < r < 1.1), where r = 0 corresponds to the center of the flux
rope.

cation: the propagation of a strongly magnetized, supersonic
and super-Alfvénic jet. We perform both 2.5D axisymmetric
and 3D Cartesian simulations. The configuration is borrowed
from [55], where relativistic jets with helical field topologies
were studied in axisymmetry. We here use the same mag-
netic field topology in the initial conditions, and evolve purely
Newtonian cases, so we take parameters similar to the non-
relativistic jet case from [55].

4.4.1. Description of the test case
At t = 0, the jet occupies a finite region R < R j and Z < Z j

where the (normalized) density is ρ j = 1, while the surrounding
medium has a higher density ρc = 10: the under-dense jet is
entering a denser ‘cloud’ region. We take the domain size as
follows: R ∈ [0, 30] and Z ∈ [0, 90], while R j = 1.5 and Z j =

3.0. The jet itself has a twisted field topology with an azimuthal
field component in the jet region given by

Bϕ = tanh
R
5
, (32)

while this azimuthal field vanishes in the surroundings. Note
again how this setup thereby necessarily involves surface cur-
rent distributions (located at the edge of the jet region). The
other magnetic field components are

BR = 2
R j

Z j

(
Z
Z j

)3
tanh

(
Z
Z j

)4
tanh

(
R
R j

)2

R
R j

cosh
(

Z
Z j

)4 , (33)

BZ = Bc +
1[

cosh
(

R
R j

)2
]2

cosh
(

Z
Z j

)4
. (34)

This magnetic field setup is analytically divergence-free (as it
should), and ensures that the jet is entering an almost uniformly
magnetized cloud region where the initial field strength has the

14

‘cloud’ value Bc = 0.01. The initial pressure distribution fol-
lows from

p = p j +
1
2
−

1
2

(
B2
ϕ(R,Z) + B2

Z(R,Z)
)
, (35)

where we take the jet pressure parameter p j = 2: this makes
the internal jet region slightly under-pressured with respect to
the external medium, and an order of magnitude hotter than its
surroundings. Finally, the flow field ~v vanishes at t = 0 outside
the jet region, but within the jet follows from

vR = 0 , (36)

vZ = α
Bϕ

(R/5)√ρ j
, (37)

vϕ =
Bϕ
√
ρ j
. (38)

The parameter α = 6.0. These choices turn the jet Mach num-
ber vZ/cs ≈ 3 while its Alfvén Mach number vZ/vA ≈ 6 (both
of these quantities vary with radius and relate to the local sound
speed cs =

√
γp/ρ and Alfvén speed vA = B/

√
ρ). The ratio

of specific heats is fixed at γ = 5/3. In accord with the fre-
quently invoked equipartition argument for astrophysical jets,
the plasma beta internal to the jet is of order β = 2p/B2 ≈ 4,
while it is about 50000 in the cloud region.

4.4.2. Computational domain and refinement
In 2.5D, the resolution uses a coarse 32 × 64 base grid, al-

lowing a total of 6 AMR levels (i.e. an effective resolution of
1024 × 2048). Refinement uses the Lohner estimator, this time
taking in weighted information from ρ, mR = ρvR and Bϕ in a
0.5−0.25−0.25 ratio. Maximal resolution is enforced within the
region R < 3R j and Z < 3Z j. Boundary conditions use the usual
(a)symmetric combinations to handle the R = 0 symmetry axis
and extrapolate all variables at side and top in a zero-gradient
fashion. The bottom boundary uses the analytic initial condi-
tions within R < R j, and adopts a reflective boundary beyond.

In 3D, our setup adopts the same physical parameters, but
this time in a 3D Cartesian (x, y, z) box of size [−30, 30] ×
[−30, 30] × [0, 90], where the z axis coincides with the sym-
metry axis employed in the 2.5D runs (making R =

√
x2 + y2).

To avoid an artificial m = 2 selection effect in the way non-
axisymmetric modes with azimuthal mode number m , 0 de-
velop from the noise (inherent to doing cylindrical problems on
a Cartesian grid), we used a deterministic incompressible ve-
locity perturbation consisting of 7 mode numbers m = 1, . . . , 7
derived from ψ =

∑
m Am cos(mϕ+φm) exp(−[(R−0.75R j)/R j]2)

such that δ~v = ∇ × ψ(x, y)êz. This is applied in the ghost cells
at the bottom (z = 0) boundary only, where we add it to the
fixed velocity field providing the jet conditions. The 7 ampli-
tudes are chosen such that a maximal amplitude for each mode
is Am ≤ 0.05. In 3D, our base resolution is 64 × 64 × 96, with
5 refinement levels to get to 1024 × 1024 × 1536 effectively.
Refinement in 3D is based on density only, augmented with
user-enforced geometric criteria, where e.g. the maximal reso-
lution is always attained within the region R < 3R j and Z < 3Z j.
Boundary conditions at all sides and top extrapolate primitive

elliptichyperbolic

r
0 10 20-10-20

z

10

20

30

40

50

60

70

80

10log(ρ)

1.3-1.1 -0.5 0.70.1 0.10.0-0.1 -0.05 0.05

div B

elliptichyperbolic

r
0 10-10

(a) (b)

Figure 16: (a) The logarithm of the density at t = 60 for the helically mag-
netized jet in axisymmetric conditions, using the hyperbolic (left) versus the
multigrid-based elliptic (right) treatment for monopole control. (b) The numer-
ical value of ∇ · ~B, evaluated with a second order central difference formula, at
t = 60 for the hyperbolic and elliptic approach.

variables using Neumann zero-gradient prescriptions. The bot-
tom boundary fixes the entire initial condition, augmented with
the δ~v addition, within the jet zone, while reflective boundaries
are used beyond R > R j.

4.4.3. Results
We run till time t = 60, such that the jet progressed up to

about z ≈ 60. We use a strong-stability preserving Runge-
Kutta scheme (its implementation in MPI-AMRVAC is demon-
strated in [3]), an HLLC discretization, and Piecewise Parabolic
(PPM) reconstruction. Runs differ only in their divergence
cleaning approach. We anticipate many turbulent features re-
lated to fluid instabilities, waves, rarefactions and shocks, as
typical for under-dense supersonic jets, but all differences in
the jet morphology here entirely relate to the error control on
magnetic monopoles.

In Fig. 16(a), we show the density distribution for the ax-
isymmetric simulations at t = 60, comparing the hyperbolic
with the elliptic method for divergence control. Naturally, many
details differ between the two cases, although both recover the
richness in internal jet beam shocks, fluid instabilities develop-
ing at the leading contact interface between jet and surround-
ings, and the turbulent backflows where many vortical struc-
tures exist. The shocked cloud matter is riddled with shocks.
Repeated deformations of the contact interface shed plasma into
the backflow surrounding the jet spine.

A direct comparison of the monopole errors at t = 60 is given
in Fig. 16(b). We here show a second order central difference
evaluation of ∇ · ~B (we also used the second order evaluation
of the source term in the cleaning methods). With the ellip-
tic cleaning there are fewer cells with significant ∇ · ~B values.

15

All monopole errors concentrate near the many discontinuities,
as expected. Overall, the jet progressed to about the same dis-
tance.

The same simulation in full 3D allows for non-axisymmetric
deformations, which can come about from current-driven kink
instabilities mediated by the helical magnetic field of the jet,
or by the many shear-flow driven events. The state at t = 60
is shown in Fig. 17, where we now compare the elliptic ap-
proach to the parabolic one. The cross-sectional temperature
view (left), and the line-of-sight integrated density views (mid-
dle) cover the full extent in z ∈ [0, 90], while the integrated
pressure view shows the entire x − y cross-section [−30, 30]2.
The turbulent cocoon that develops around the jet spine aids in
retaining a coherent jet over the distance simulated: the turbu-
lence in the backflow region seems to prevent large deforma-
tions of the jet. The overall morphology of the 3D helical jet
is very similar with both monopole corrections. A more in-
depth discussion of the physics in the context of astrophysical
jet propagation is deferred to future work. Fig. 17 shows that
the temperature, density, and pressure variations are all very
well recovered with either method for monopole control.

5. Conclusions

We have presented an MPI-parallel geometric multigrid li-
brary. The library can be used to extend octree-based adap-
tive mesh refinement frameworks with an elliptic solver. The
library supports multigrid V-cycles and FMG cycles, and em-
ploys standard second-order discretizations. Cartesian 2D/3D
and cylindrical 2D grid geometries can be used, with periodic,
Dirichlet, or Neumann boundary conditions. For 3D Poisson
problems free-space boundary conditions are also supported, by
using an FFT-based solver on the coarse grid. The convergence
and scaling of the library has been demonstrated with multiple
test problems.

We have demonstrated the coupling of the library to
MPI-AMRVAC, an existing AMR code, by using the multigrid
routines for divergence cleaning in MHD simulations. We have
compared three approaches: elliptic, hyperbolic and parabolic
divergence cleaning. Several test cases were presented, in 2D
and 3D Cartesian as well as axisymmetric geometries. Elliptic
divergence cleaning (i.e., using a projection method) was found
to work satisfactorily in all cases, although the other methods
generally performed similarly well.

Acknowledgments. JT is supported by postdoctoral fellowship
12Q6117N from Research Foundation – Flanders (FWO). RK
acknowledges support by FWO-NSFC grant G0E9619N.

The computational resources and services used in this work
were provided by the VSC (Flemish Supercomputer Center),
funded by the Research Foundation – Flanders (FWO) and the
Flemish Government – department EWI.

References

[1] A. Gholami, D. Malhotra, H. Sundar, G. Biros, FFT, FMM, or multigrid?
A comparative study of state-of-the-art Poisson solvers for uniform and

nonuniform grids in the unit cube, SIAM Journal on Scientific Computing
38 (3) (2016) C280–C306. doi:10.1137/15m1010798.
URL http://dx.doi.org/10.1137/15M1010798

[2] C. Xia, J. Teunissen, I. E. Mellah, E. Chané, R. Keppens, MPI-AMRVAC
2.0 for solar and astrophysical applications, The Astrophysical Journal
Supplement Series 234 (2) (2018) 30. doi:10.3847/1538-4365/aaa6c8.
URL http://dx.doi.org/10.3847/1538-4365/aaa6c8

[3] O. Porth, C. Xia, T. Hendrix, S. P. Moschou, R. Keppens, MPI-AMRVAC
for solar and astrophysics, The Astrophysical Journal Supplement Series
214 (1) (2014) 4. doi:10.1088/0067-0049/214/1/4.
URL http://dx.doi.org/10.1088/0067-0049/214/1/4

[4] W. Zhang, A. Almgren, M. Day, T. Nguyen, J. Shalf, D. Unat,
Boxlib with tiling: An adaptive mesh refinement software framework,
SIAM Journal on Scientific Computing 38 (5) (2016) S156–S172.
doi:10.1137/15m102616x.
URL http://dx.doi.org/10.1137/15M102616X

[5] A. S. Almgren, J. B. Bell, A. Nonaka, M. Zingale, A new low Mach
number approach in astrophysics, Computing in Science & Engineering
11 (2) (2009) 24–33. doi:10.1109/mcse.2009.21.
URL http://dx.doi.org/10.1109/MCSE.2009.21

[6] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible
Euler equations in complex geometries, Journal of Computational Physics
190 (2) (2003) 572–600. doi:10.1016/s0021-9991(03)00298-5.
URL http://dx.doi.org/10.1016/S0021-9991(03)00298-5

[7] R. Teyssier, Cosmological hydrodynamics with adaptive mesh refine-
ment, A&A 385 (1) (2002) 337–364. doi:10.1051/0004-6361:20011817.
URL http://dx.doi.org/10.1051/0004-6361:20011817

[8] U. Ziegler, The NIRVANA code: Parallel computational MHD with adap-
tive mesh refinement, Computer Physics Communications 179 (4) (2008)
227–244. doi:10.1016/j.cpc.2008.02.017.
URL http://dx.doi.org/10.1016/j.cpc.2008.02.017

[9] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb,
P. MacNeice, R. Rosner, J. W. Truran, H. Tufo, Flash: An adaptive mesh
hydrodynamics code for modeling astrophysical thermonuclear flashes,
The Astrophysical Journal Supplement Series 131 (1) (2000) 273–334.
doi:10.1086/317361.
URL http://dx.doi.org/10.1086/317361

[10] P. M. Ricker, A direct multigrid Poisson solver for oct-tree adap-
tive meshes, Astrophys J. Suppl. S. 176 (1) (2008) 293–300.
doi:10.1086/526425.
URL http://dx.doi.org/10.1086/526425

[11] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, G. Stadler, Paral-
lel geometric-algebraic multigrid on unstructured forests of octrees, 2012
International Conference for High Performance Computing, Networking,
Storage and Analysisdoi:10.1109/sc.2012.91.
URL http://dx.doi.org/10.1109/SC.2012.91

[12] M. Adams, HPGMG 1.0: A benchmark for ranking high performance
computing systems, Lawrence Berkeley National Laboratory (2014)
LBNL–6630E.
URL https://escholarship.org/uc/item/00r9w79m

[13] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, G. Biros, Dendro:
Parallel algorithms for multigrid and AMR methods on 2:1 balanced oc-
trees, 2008 SC - International Conference for High Performance Comput-
ing, Networking, Storage and Analysisdoi:10.1109/sc.2008.5218558.
URL http://dx.doi.org/10.1109/SC.2008.5218558

[14] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-
man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp,
P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web
page, http://www.mcs.anl.gov/petsc (2018).
URL http://www.mcs.anl.gov/petsc

[15] R. D. Falgout, U. M. Yang, Hypre: A library of high performance pre-
conditioners, in: Proceedings of the International Conference on Compu-
tational Science-Part III, ICCS ’02, Springer-Verlag, London, UK, UK,
2002, pp. 632–641.
URL http://dl.acm.org/citation.cfm?id=645459.653635

[16] W. Hackbusch, Multi-grid methods and applications, Springer Series in
Computational Mathematicsdoi:10.1007/978-3-662-02427-0.
URL http://dx.doi.org/10.1007/978-3-662-02427-0

[17] U. Trottenberg, C. Oosterlee, A. Schuller, Multigrid, Elsevier Science,
2000.

16

elliptic elliptic

elliptic

parabolic

parabolicparabolic

Figure 17: Several views on the 3D jet simulation at t = 60, where we used the parabolic and elliptic approach for divergence control. We show a cross-section of
the temperature (left), a line-integrated side view of the density (middle) and a line-integrated top view of the pressure (right).

[18] W. L. Briggs, V. E. Henson, S. F. McCormick, A Multigrid Tutorial (2nd

Ed.), Society for Industrial & Applied Mathematics, Philadelphia, PA,
USA, 2000.

[19] A. Brandt, O. E. Livne, Multigrid Techniques, Society for Industrial &
Applied Mathematics (SIAM), 2011. doi:10.1137/1.9781611970753.
URL http://dx.doi.org/10.1137/1.9781611970753

[20] S. R. Barros, The Poisson equation on the unit disk: a multigrid solver
using polar coordinates, Applied Mathematics and Computation 25 (2)
(1988) 123–135. doi:10.1016/0096-3003(88)90110-5.
URL http://dx.doi.org/10.1016/0096-3003(88)90110-5

[21] S. R. Barros, Multigrid methods for two- and three-dimensional Poisson-
type equations on the sphere, Journal of Computational Physics 92 (2)
(1991) 313–348. doi:10.1016/0021-9991(91)90213-5.
URL http://dx.doi.org/10.1016/0021-9991(91)90213-5

[22] J. Teunissen, U. Ebert, Afivo: A framework for quadtree/octree
AMR with shared-memory parallelization and geometric multigrid
methods, Computer Physics Communications 233 (2018) 156–166.
doi:10.1016/j.cpc.2018.06.018.
URL http://dx.doi.org/10.1016/j.cpc.2018.06.018

[23] R. Keppens, Z. Meliani, A. van Marle, P. Delmont, A. Vlasis, B. van der
Holst, Parallel, grid-adaptive approaches for relativistic hydro and magne-
tohydrodynamics, Journal of Computational Physics 231 (3) (2012) 718–
744. doi:10.1016/j.jcp.2011.01.020.
URL http://dx.doi.org/10.1016/j.jcp.2011.01.020

[24] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein,
C. Packer, Paramesh: A parallel adaptive mesh refinement community
toolkit, Computer Physics Communications 126 (3) (2000) 330–354.
doi:10.1016/s0010-4655(99)00501-9.
URL http://dx.doi.org/10.1016/S0010-4655(99)00501-9

[25] L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, G. Beylkin, Efficient
solution of Poisson’s equation with free boundary conditions, The Journal
of Chemical Physics 125 (7) (2006) 074105. doi:10.1063/1.2335442.
URL http://dx.doi.org/10.1063/1.2335442

[26] M. M. Hejlesen, J. T. Rasmussen, P. Chatelain, J. H. Walther, A high or-
der solver for the unbounded Poisson equation, Journal of Computational
Physics 252 (2013) 458–467. doi:10.1016/j.jcp.2013.05.050.
URL http://dx.doi.org/10.1016/j.jcp.2013.05.050

[27] L. Genovese, T. Deutsch, S. Goedecker, Efficient and accurate three-
dimensional Poisson solver for surface problems, The Journal of Chemi-
cal Physics 127 (5) (2007) 054704. doi:10.1063/1.2754685.
URL http://dx.doi.org/10.1063/1.2754685

[28] G. Morton, A computer oriented geodetic data base; and a new technique
in file sequencing, IBM Research Report.

[29] J. Brackbill, D. Barnes, The effect of nonzero ∇ · B on the numerical so-
lution of the magnetohydrodynamic equations, Journal of Computational
Physics 35 (3) (1980) 426–430. doi:10.1016/0021-9991(80)90079-0.

URL http://dx.doi.org/10.1016/0021-9991(80)90079-0

[30] B. Marder, A method for incorporating Gauss law into electromag-
netic PIC codes, Journal of Computational Physics 68 (1) (1987) 48–55.
doi:10.1016/0021-9991(87)90043-x.
URL http://dx.doi.org/10.1016/0021-9991(87)90043-X

[31] K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, D. L.
De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydro-
dynamics, Journal of Computational Physics 154 (2) (1999) 284–309.
doi:10.1006/jcph.1999.6299.
URL http://dx.doi.org/10.1006/jcph.1999.6299

[32] P. Janhunen, A Positive Conservative Method for Magnetohydrodynamics
Based on HLL and Roe Methods, Journal of Computational Physics 160
(2000) 649–661. doi:10.1006/jcph.2000.6479.

[33] P. J. Dellar, A Note on Magnetic Monopoles and the One-Dimensional
MHD Riemann Problem, Journal of Computational Physics 172 (2001)
392–398. doi:10.1006/jcph.2001.6815.

[34] R. Keppens, M. Nool, G. Tóth, J. Goedbloed, Adaptive mesh re-
finement for conservative systems: multi-dimensional efficiency eval-
uation, Computer Physics Communications 153 (3) (2003) 317–339.
doi:10.1016/s0010-4655(03)00139-5.
URL http://dx.doi.org/10.1016/S0010-4655(03)00139-5

[35] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer,
M. Wesenberg, Hyperbolic divergence cleaning for the MHD equa-
tions, Journal of Computational Physics 175 (2) (2002) 645–673.
doi:10.1006/jcph.2001.6961.
URL http://dx.doi.org/10.1006/jcph.2001.6961

[36] D. Derigs, A. R. Winters, G. J. Gassner, S. Walch, M. Bohm, Ideal GLM-
MHD: About the entropy consistent nine-wave magnetic field divergence
diminishing ideal magnetohydrodynamics equations, Journal of Compu-
tational Physics 364 (2018) 420–467. doi:10.1016/j.jcp.2018.03.002.
URL http://dx.doi.org/10.1016/j.jcp.2018.03.002

[37] C. R. Evans, J. F. Hawley, Simulation of magnetohydrodynamic flows - a
constrained transport method, The Astrophysical Journal 332 (1988) 659.
doi:10.1086/166684.
URL http://dx.doi.org/10.1086/166684

[38] D. S. Balsara, D. S. Spicer, A staggered mesh algorithm using high order
Godunov fluxes to ensure solenoidal magnetic fields in magnetohydro-
dynamic simulations, Journal of Computational Physics 149 (2) (1999)
270–292. doi:10.1006/jcph.1998.6153.
URL http://dx.doi.org/10.1006/jcph.1998.6153

[39] D. Ryu, F. Miniati, T. W. Jones, A. Frank, A divergence-free upwind
code for multidimensional magnetohydrodynamic flows, The Astrophys-
ical Journal 509 (1) (1998) 244–255. doi:10.1086/306481.
URL http://dx.doi.org/10.1086/306481

[40] G. Tóth, The ∇ · B constraint in shock-capturing magnetohydrodynam-
ics codes, Journal of Computational Physics 161 (2) (2000) 605–652.

17

doi:10.1006/jcph.2000.6519.
URL http://dx.doi.org/10.1006/jcph.2000.6519

[41] D. S. Balsara, Divergence-Free Adaptive Mesh Refinement for Magneto-
hydrodynamics, Journal of Computational Physics 174 (2001) 614–648.
doi:10.1006/jcph.2001.6917.

[42] S. Fromang, P. Hennebelle, R. Teyssier, A high order Godunov scheme
with constrained transport andadaptive mesh refinement for astrophysical
magnetohydrodynamics, Astronomy & Astrophysics 457 (2) (2006) 371–
384. doi:10.1051/0004-6361:20065371.
URL http://dx.doi.org/10.1051/0004-6361:20065371

[43] A. J. Cunningham, A. Frank, P. Varnière, S. Mitran, T. W. Jones, Sim-
ulating Magnetohydrodynamical Flow with Constrained Transport and
Adaptive Mesh Refinement: Algorithms and Tests of the AstroBEAR
Code, Astrophysical Journal Supplement Series 182 (2009) 519–542.
arXiv:0710.0424, doi:10.1088/0067-0049/182/2/519.

[44] F. Miniati, D. F. Martin, Constrained-transport magnetohydrodynamics
with adaptive mesh refinement in Charm, The Astrophysical Journal Sup-
plement Series 195 (1) (2011) 5. doi:10.1088/0067-0049/195/1/5.
URL http://dx.doi.org/10.1088/0067-0049/195/1/5

[45] H. Olivares, O. Porth, Y. Mizuno, The Black Hole Accretion
Code: adaptive mesh refinement and constrained transport, arXiv e-
printsarXiv:1802.00860.

[46] P. F. Hopkins, A constrained-gradient method to control divergence errors
in numerical MHD, Monthly Notices of the Royal Astronomical Society
462 (1) (2016) 576–587. doi:10.1093/mnras/stw1578.
URL http://dx.doi.org/10.1093/mnras/stw1578

[47] T. S. Tricco, D. J. Price, M. R. Bate, Constrained hyperbolic diver-
gence cleaning in smoothed particle magnetohydrodynamics with vari-
able cleaning speeds, Journal of Computational Physics 322 (2016) 326–
344. arXiv:1607.02394, doi:10.1016/j.jcp.2016.06.053.

[48] D. S. Balsara, J. Kim, A comparison between divergence-cleaning and
staggered-mesh formulations for numerical magnetohydrodynamics, The
Astrophysical Journal 602 (2) (2004) 1079–1090. doi:10.1086/381051.
URL http://dx.doi.org/10.1086/381051

[49] T. A. Gardiner, J. M. Stone, An unsplit Godunov method for ideal
MHD via constrained transport, Journal of Computational Physics 205 (2)
(2005) 509–539. doi:10.1016/j.jcp.2004.11.016.
URL http://dx.doi.org/10.1016/j.jcp.2004.11.016

[50] M. Čada, M. Torrilhon, Compact third-order limiter functions for fi-
nite volume methods, Journal of Computational Physics 228 (11) (2009)
4118–4145. doi:10.1016/j.jcp.2009.02.020.
URL http://dx.doi.org/10.1016/j.jcp.2009.02.020

[51] B. Koren, A robust upwind discretization method for advection, diffu-
sion and source terms, in: C. Vreugdenhil, B. Koren (Eds.), Numerical
Methods for Advection-Diffusion Problems, Braunschweig/Wiesbaden:
Vieweg, 1993, pp. 117–138.

[52] B. Van Leer, Towards the ultimate conservative difference scheme
III. upstream-centered finite-difference schemes for ideal compress-
ible flow, Journal of Computational Physics 23 (3) (1977) 263–275.
doi:10.1016/0021-9991(77)90094-8.
URL http://dx.doi.org/10.1016/0021-9991(77)90094-8

[53] J. P. H. Goedbloed, S. Poedts, Principles of Magnetohydrodynamics,
Cambridge University Press, 2004.

[54] T. Gold, F. Hoyle, On the origin of solar flares, Monthly No-
tices of the Royal Astronomical Society 120 (2) (1960) 89–105.
doi:10.1093/mnras/120.2.89.
URL http://dx.doi.org/10.1093/mnras/120.2.89

[55] R. Keppens, Z. Meliani, B. van der Holst, F. Casse, Extragalactic jets
with helical magnetic fields: relativistic MHD simulations, Astronomy &
Astrophysics 486 (2008) 663–678. arXiv:0802.2034, doi:10.1051/0004-
6361:20079174.

18

