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any finite number of the largest clusters. Finally, we show that any weak limit of the
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ical percolation on the high-dimensional torus is the same as for critical Erd6s-Rényi
random graphs.
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1 Introduction
1.1 The model

For bond percolation on a graph G we make any edge (or ‘bond’) occupied with prob-
ability p, independently of each other, and otherwise leave it vacant. The connected
components of the random subgraph of occupied edges are called clusters. For a ver-
tex v we denote by C(v) the unique cluster containing v, and by |C(v)| the number
of vertices in that cluster. For our purposes it is important to consider clusters as sub-
graphs (thus not only as a set of vertices). Our main interest is bond percolation on
high-dimensional tori, but our techniques are based on a comparison with Z¢ results.
We describe the Z¢-setting first.

1.1.1 Bond percolation on 7

For G = Z4, we consider two sets of edges. In the nearest-neighbor model, two ver-
tices x and y are linked by an edge whenever |x — y| = 1, whereas in the spread-out
model, they are linked whenever 0 < ||x — || < L. Here, and throughout the paper,
we write || + ||oo for the supremum norm, and | - | for the Euclidean norm. The integer
parameter L is typically chosen large.

The resulting product measure for percolation with parameter p € [0, 1] is denoted
by P, ,, and the corresponding expectation [E;, ,. We write {0 <> x} for the event that
there exists a path of occupied edges from the origin O to the lattice site x (alternatively,
0 and x are in the same cluster), and define

75, p(x) == Py (0 < x) (1.1)

to be the two-point function. By

Xxz(p) = D T p(x) =Ez ,[C0)]

xeZd
we denote the expected cluster size on Z¢. The degree of the graph, which we denote
by 2, is = 2d in the nearest-neighbor case and 2 = (2L + 1)¢ — 1 in the spread-out
case.

Percolation on Z? undergoes a phase transition as p varies, and it is well known
that there exists a critical value

pe(Zh) = inf{p: P; ,(IC(0)] = 00) > 0} = sup{p: xz(p) < oo}, (1.2)
where the last equality is due to Aizenman and Barsky [2] and Menshikov [17].
1.1.2 Bond percolation on the torus

By T, 4 we denote a graph with vertex set {—|[r/2], ..., [r/2] — 1}4 and two related
sets of edges:
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Random graph asymptotics on high-dimensional tori IT

(i) The nearest-neighbor torus: an edge joins vertices that differ by 1 (modulo ) in
exactly one component. For d fixed and r large, this is a periodic approximation
to Z4. Here Q = 2d for r > 3. We study the limit in which » — oo withd > 6
fixed, but large.

(ii) The spread-out torus: an edge joins vertices x = (x1,...,xg7) and y =
V15 ..., ya) i 0 < max;=1,_ 4 |xi — yil, < L (with | - |, the metric on Z,).
We study the limit r — oo, with d > 6 fixed and L large (depending on d) and
fixed. This gives a periodic approximation to range-L percolation on Z¢. Here
Q= Q2L+ l)d — 1 provided that » > 2L + 1, which we will always assume.

We write V = r¢ for the number of vertices in the torus. We consider bond percolation
on these tori with edge occupation probability p and write Py , and Er ,, for the prod-
uct measure and corresponding expectation, respectively. We use notation analogously
to Z4-quantities, e.g.

xe(p) = D Pr,(0 < x) =Eq ,[CO)]

XET,vd

for the expected cluster size on the torus.
1.1.3 Mean-field behavior in high dimensions

In the past decades, there has been substantial progress in the understanding of perco-
lation in high-dimensions (see e.g. [3,5,9-14,20] for detailed results on high-dimen-
sional percolation), and the results show that percolation on high-dimensional infinite
lattices is similar to percolation on infinite trees (see e.g., [8, Sect. 10.1] for a discus-
sion of percolation on a tree). Thus, informally speaking, the mean-field model for
percolation on Z¢ is percolation on the tree.

More recently, the question has been addressed what the mean-field model is of
percolation on finite subsets of Z¢, such as the torus. Aizenman [1] conjectured that
critical percolation on high-dimensional tori behaves similarly to critical Erd6s-Rényi
random graphs, thus suggesting that the mean-field model for percolation on a torus
is the Erd6s-Rényi random graph. In the past years, substantial progress was made
in this direction, see in particular [6,7,15]. In this paper, we bring this discussion to
the next level, by showing that large critical clusters on various high-dimensional tori
share many features of the Erdés-Rényi random graph.

1.2 Random graph asymptotics on high-dimensional tori
We investigate the size of the maximal cluster on the torus T, 4, i.e.,

|Cmax | := max ICOI, (1.3)

xellyqd

at the critical percolation threshold p.(Z%). We start by improving the asymptotics of
the largest connected component as proved in [15]:
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Theorem 1.1 (Random graph asymptotics of the largest cluster size) Fix d > 6 and
L sufficiently large in the spread-out case, or d sufficiently large for nearest-neighbor
percolation. Then there exists a constant b > 0, such that for all w > 1 and all r > 1,

b
Py zt) (arlvz/3 < |Comax| < wV2/3) >1- 2. (1.4)
k] c a)

The constant b can be chosen equal to b in [6, Theorem 1.3]. Furthermore, there are
positive constants ¢y and ¢ such that

Cl _
]PT,PC(Zd) (|Cmax| > wV2/3) < 2 e 2, (1.5)

Werecall that r is present in (1.4) in two ways: We consider the percolation measure on
T,4,and V = r? is the volume of the torus. The upper bound in (1.4) in Theorem 1.1
is already proved in [15, Theorem 1.1], whereas the lower bound in [15, Theorem 1.1]
contains a logarithmic correction, which we remove here by a more careful analysis.

We next extend the above result to the other large clusters. For this, we write C;
for the it largest cluster for percolation on T 4, so that C;y = Cpmax and [Cp)| < |Cyy)]
is the size of the second largest component; etc.

Theorem 1.2 (Random graph asymptotics of the ordered cluster sizes) Fixd > 6 and
L sufficiently large in the spread-out case, or d sufficiently large for nearest-neighbor

percolation. For everym = 1,2, ... there exist constants by, ..., b, > 0, such that
forallw > 1,r > l,andalli =1, ..., m,
—1y2/3 2/3 bi
Py pe(Z4) (a) VI <ICpl £ 0V ) >1—-—. (1.6)
s HC w

Consequently, the expected cluster sizes satisfy E, , 74)|Cq)| = b; V23 for certain
constants b; > 0. Moreover, |Cmax|V_2/ 3 is not concentrated.

By the tightness of |Cmax |V ~2/3 proved in Theorem 1.1, |Cmax |V ~2/3 not being
concentrated is equivalent to the statement that any weak limit of |Cmax|V_2/ 3 s
non-degenerate.

Nachmias and Peres [19] proved a very handy criterion establishing bounds on
diameter and mixing time of lazy simple random walk of the large critical clusters for
random graphs obeying (1.4)/(1.6). The following corollary states the consequences of
the criterion for the high-dimensional torus. To this end, we call a lazy simple random
walk on a finite graph G = (V, £) a Markov chain on the vertices }V with transition
probabilities

1/2 ifx =y;
PO, Y) = rqgen if (6 0) € &5 (1.7)
0 otherwise,
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where deg(x) denotes the degree of a vertex x € V. The stationary distribution of this
Markov chain 7 is given by 7 (x) = deg(x)/(2|€]). The mixing time of lazy simple
random walk is defined as

Thix(G) = min {n: Ip" (x, ) —7w()|lrv < 1/4forall x € V}, (1.8)
with p” being the distribution after n steps (i.e., the n-fold convolution of p), and
I - ltv denoting the total variation distance. We write diam(C) for the diameter of the
cluster C.

Corollary 1.3 (Diameter and mixing time of large critical clusters [19]) Fixd > 6
and L sufficiently large in the spread-out case, or d sufficiently large for nearest-neigh-

bor percolation. Then, for every m = 1,2, ..., there exist constants ci, ..., cy > 0,
such that forallw > 1, r > l,andalli =1, ..., m,
_ . Ci
Py .z (a) Ly13 < diam(C,) < wV1/3) =1 . (1.9)
_ Ci
Py, i) (w WV < Tyix(Co)) < a)V) = 1— — (1.10)

1.3 Discussion and open problems

Here, and throughout the paper, we make use of the following notation: we write
f(x) = O(g(x)) for functions f, g > 0 and x converging to some limit, if there
exists a constant C > 0 such that f(x) < Cg(x) in the limit, and f(x) = o(g(x)) if
g(x) # O(f(x)). Furthermore, we write f = ©(g)if f = O(g) and g = O(f).

The asymptotics of |Cpax| in Theorem 1.1 is an improvement of our earlier result
in [15], which itself relies in an essential way on the work of Borgs etal. [6,7]. The
contribution of the present paper is the removal of the logarithmic correction in the
lower bound of [15, (1.5)], and this improvement is crucial for our further results, as
we discuss in more detail now. We give an easy proof that the largest m components
obey the same volume asymptotic as the largest connected component, using only
Theorem 1.1 and estimates on the moments of the random variable

Zy=#veT  :|C)| >k} (1.11)
derived in [6,7]. Similar ingredients are used to derive that |Cmax|V ~2/3 is not con-
centrated. Given these earlier results, our proofs are remarkably simple and robust,
and they can be expected to apply in various different settings. Thus, while our results
substantially improve our understanding of the critical nature of percolation on high-
dimensional tori, the proofs given here are surprisingly simple.

Random graph asymptotics at criticality. Our results show that the largest percolation

clusters on the high-dimensional torus behave as they do on the Erd&s-Rényi random
graph; this can be seen as the take-home message of this paper. Aldous [4] proved
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that, for Erd6s-Rényi random graphs, the vector
V_2/3 (|C(l)|a |C<2)|» cey |C(m)|)

converges in distribution, as V — oo, to arandom vector (|y1], ..., |Vu|), where |y;]|
are the excursion lengths (in decreasing order) of reflected Brownian motion. Nach-
mias and Peres [18, Theorem 5] prove the same limit (apart from a multiplication
with an explicit constant) for random d-regular graphs (for which the critical value
equals (d — 1)~ ). In light of our Theorems 1.1-1.2, we conjecture that the same limit,
multiplied by an appropriate constant as in [18, Theorem 5], arises for the ordered
largest critical components for percolation on high-dimensional tori.

The role of boundary conditions. The combined results of Aizenman [1] and Haraetal.
[10,11] show that a box of width r under bulk boundary conditions in high dimension
satisfies |Cmax| ~ r*, which is much smaller than V2/3. This immediately implies an
upper bound on |Cpax | under free boundary conditions. Aizenman [1] conjectures that,
under periodic boundary conditions, |Cpax| & V2/3. This conjecture was proven in
[15] with a logarithmic correction in the lower bound. The present paper (improving
the lower bound) is the ultimate confirmation of the conjecture in [1].

The critical probability for percolation on the torus. An alternative definition for
the critical percolation threshold on a general high-dimensional torus, denoted by
pc(Ty.4), was given in [6, (1.7)] as the solution to

xr(pe(Tra)) = AV, (1.12)

where A is a sufficiently small constant. The definition of the critical value in (1.12)
appears somewhat indirect, but the big advantage is that this definition exists for any
torus (including d-cube, Hamming cube, complete graph), even if an externally defined
critical value (such as p. (Zd ) as in (1.2)) does not exist. It is a major result of Borgs
etal. [6,7] that Theorem 1.1 holds with pC(Zd) replaced by p. (T, 4) for the following
tor1:

(i) the d-cube T> 4 as d — oo,
(ii) the complete graph (Hamming torus with d = 1 and r — ©0),
(iii) nearest-neighbor percolation on T, 4 with d > 7 and r¢ — oo in any fashion,
including d fixedandr — oo, r fixedandd — oo, orr, d — oo simultaneously,
(iv) periodic approximations to range-L percolation on Z¢ for fixed d > 7 and fixed
large L.

Remarkably, our results in Theorem 1.2 and Corollary 1.3 hold also for all of the
above listed tori when p.(Z?) is replaced by p.(T,.4). One way of formulating The-
orem 1.1 is to say that p.(T, 4) and pe(Z%), under the assumptions of Theorem 1.1,
are asymptotically equivalent.

One particularly interesting feature of Theorem 1.2 is its implications for the crit-
ical value in (1.12). Indeed, the definition of the critical value in (1.12) is somewhat
indirect, and it is not obvious that p.(T, 4) really is the most appropriate definition.
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In Theorem 1.2, however, we prove that any weak limit of |Cypax | V=23 i non-degen-

erate, which is the hallmark of critical behavior. Thus, Theorem 1.2 can be seen as
yet another justification for the choice of p.(T; 4) in (1.12).

2 Proof of Theorem 1.1

The following relation between the two critical values pe(Z%) (which is ‘inherited’
from the infinite lattice) and p. (T, 4) (as defined in (1.12)) is crucial for our proof.

Theorem 2.1 (The Z¢ critical value is inside the T, 4 critical window) Fixd > 6 and
L sufficiently large in the spread-out case, or d sufficiently large for nearest-neighbor
percolation. Then there exists C,. > 0 such that p. (Zd) and p. (T, q) satisfy

pc(Zd) —pe(Tra)| < Cp. =3, 2.1

In other words, p.(Z4) lies in a critical window of order V~!/3 around Pe(Tra).
By the work of Borgs etal. [6,7], Theorem 2.1 has immediate consequences for the

size of the largest cluster, and various other quantities:

Corollary 2.2 (Borgs et al. [6,7]) Under the conditions of Theorem 2.1, there exists
a constant b > 0, such that for all w > 1,

b
Py pe(Z4) (w_1V2/3 < |Cmax| < CUVZ/?’) >1—-—. 2.2)
El c a)

Furthermore,

¢V <Ey 24 (Coax]) <C VP and ¢, VP <K, , 74, (C)) < C, V'
(2.3)

for some ¢, C, c,,C, > 0. Finally, there are positive constants bc, cc, Cc such that
2/3
fork < b V2,

Ce CC
— <P Cl>k) < —. 24)
«/E = 01, pe(Z4) (ICl = k) < \/% (

All of these statements hold uniformly as r — 00.

The reader may verify that Corollary 2.2 indeed follows from Theorem 2.1 by using
[6, Theorem 1.3] in conjunction with [7, Proposition 1.2 and Theorem 1.3]. Note that
(2.2) in particular proves (1.4) in Theorem 1.1.

We explicitly keep track of the origin of constants by adding an appropriate sub-
script. For first time reading the reader might wish to ignore these subscripts.

We are now turning towards the proof of Theorem 2.1. To this end, we need the
following lemma:
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Lemma 2.3 For p~ercolati0n on 74 with P = Pc (24 — KQ V13 there exists a
positive constant C (depending on d and K, but not on V), such that

> nwr,w=CcvIA 2.5)

u,veZ‘l,u#v
u—verZ4

The lemma makes use of a number of results on high-dimensional percolation on Z¢,
to be summarized in the following theorem.

Theorem 2.4 (Zd—percolation in high dimension [9-12]) Under the conditions in
Theorem 1.1, there exist constants c., C., ¢, Ce, ¢, Cg, > 0 such that

C

T < <— T 2.6
(x| + D42 = tZ»Pc(Zd)(x) = (x| + 1)4-2 (2.6)
Furthermore, for any p < p.(Z%),
lxlloo
Tz p(x) <e &, 2.7)
where the correlation length &(p) is defined by
1 o1
&(p)” =— lim —logP; ,((0,...,0) < (n,0,...,0)), (2.8)
n—oon

and satisfies

12 12
e (pe@h=p) e =C(p@H-p) T aspspa@h 29

For the mean-square displacement

172
ZUEZd |v|2TZ’p(v)) ’ (210)

52(p) = ( > ezt Top ()

we have

—1/2 —1/2
o (P@h—p) =0 =Cy(pe@H—p) T asp S peEh.
2.11)

Finally, there exists a positive constant C +» such that the expected cluster size xz(p)
obeys

! ¢
Q(peh = p) = < Sz =) (ZhH. @12
@ —p) =P = Qan =y P/ rE e
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Some of these bounds express that certain critical exponents exist and take on their
mean-field value. For example, (2.6) means that the n = 0, and similarly (2.12) can
be rephrased as ¥ = 1. The power-law bound (2.6) is due to Hara [10] for the near-
est-neighbor case, and to Hara etal. [11] for the spread-out case. For the exponential
bound (2.7), see e.g. Grimmett [8, Proposition 6.47]. Hara [9] proves the bound (2.9),
and Hara and Slade [12] prove (2.11) and (2.12) (the latter in conjunction with Aizen-
man and Newman [3]). The proof of all of the above results uses the lace expansion.

Proof of Lemma 2.3 We split the sum on the left-hand side of (2.5) in parts, and treat
each part separately with different methods:

Dy, 2D D 1) T p(v)

u,veZd: VooutuFv
uFv [ul<|v]
u—verZ4 u—verz4
=2((A)+ (B) +(C)+ (D)), (2.13)

where

W=>" > Ty,

v 2r<|ul|<|v]
u—verZ4

B)= > D T p) 1)

|>MV1/0logV u: |u|<2r
u—verZ4

(€)= > > ) T ,),

2r<v|<=MV1/01logV u: |ul<2r
u—verZ4

D)= > D )1z,

[v|<2r u: |u|<2r
u—verZ4

(2.14)

and M is a (large) constant to be fixed later in the proof. We proceed by showing that
each of the four summands is bounded by a constant times V ~!/3, in that showing
(2.5).

Consider (A) first. To this end, we prove for fixed v € 74,

vf?
> T p () < Co (2.15)
2r<lul<[v]
u—verZ4
Indeed,
> mpw = D> 1 (ru+ (vmodr)). (2.16)
2r <|u|<|v| 2§‘u|§M+l
u—verZ4 MEZQ
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By (2.6), this is bounded above by

a2 _ G -
Cc > u-D+DTP <o 3 T @1

2<ful<U 41 1<fuj<
The discrete sum is dominated by the integral

|v]?

C.Co—, 2.18
v (2.18)

2
v
C.r =2 / |u|_(d_2)du§CrCor_d—|2| <

vl
0<uj<

as desired (with C, denoting the surface of the (d — 1)-dimensional hypersphere).
Consequently, using (2.15),

C.C, C. G,
(A) = =57 2 0P, (0) = =2 8() xa(p)

v
D
C.C,C2C,

< S (pe@h - p) 2.19)

by the bounds in Theorem 2.4. Inserting p = p.(Z?)— KQ~'V~1/3 yields the desired
upper bound (A) < C V~1/3,
For the bound on (B) we start by calculating

Cr
D ompw < D Tt anw s Y) W50(r2). (2.20)

u: |u|<2r u: |u|<2r u: lu|<2r

For the sum over v we use the exponential bound of Theorem 2.4: From (2.8)-(2.9)
and our choice of p it follows that 77 , (v) < exp {—C [v] V’1/6} for some constant
C > 0. Consequently,

Z 77,p (V) < Z Tz,p (rv + (umodr))

lv|>MV1/610g Vv lo|>Zy1/61og Vv
u—verzd4

< > exp{—r(lvl _ 1)cv—1/6}. 2.21)

lo|>Zy1/61og Vv

This sum is dominated by the integral

/ exp {—r | cv—l/f’} exp {r c V—l/")} dv, (2.22)

lv|>2y1/61og Vv
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which can be shown by partial integration as being less or equal to
d/
Vv

0 d M —-1/6
const(C, M, d) (log V) exp el log V| exp {r cvVv } . (2.23)

This expression equals
const(C, M, d) V¥/6=1=M/C+CU/d=1/6) (155 V)4 (2.24)

We now fix M large enough such that the exponent of V is less than —(1/3 4 2/d).
This finally yields

B < > > )T pv)

u: [ul=2r |y|>mMVv0logV
u—verZ4

< const(C, M, d) %o (V—<1/3+2/d>) —o (V—1/3) . (2.25)
In order to bound (C) we proceed similarly by bounding

©=<ct D (u+n7“? > (vl + D~ (2.26)
u: u|<2r 2r<|v|<MV1/0logV
u—verZ4

A domination by integrals as in (2.16)—(2.18) allows for the upper bound

2 M? V13 (log V)2

C , 2.27
v (2.27)
and this is o (V‘l/3) ifd > 6 forany M > 0.
The final summand (D) is bounded as in (2.26) by
CZ DT (ul+ D" D (1), (2.28)
u: |lu|<2r v: [v|<2r
u—verZ4

The second sum can be bounded uniformly in u by

Dl 4+ DU <@ P s | <2r u—v e rZh) < 2r)7 4 59

v: v|Lr
u—verZ?

(2.29)

while the first sum is bounded by C r2. Together, this yields the upper bound C r—(@=%,
and this is o (V~!/3) for d > 6.

Finally, we have proved that (A) < C Vv~1/3 and that (B), (C), (D) are of order
0 (V‘l/ 3). This completes the proof of Lemma 2.3. O
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Proof of Theorem 2.1 Assume that the conditions of Theorem 1.1 are satisfied. Then
by [15, Corollary 4.1] there exists a constant A > 0 such that, when r — o0,

A
Pe(Zh) — pe(Tra) < §V‘“3. (2.30)

It therefore suffices to prove a matching lower bound.
We take p = p(Z?) — KQ~'V~1/3. The following bound is proven in [15]:

1
x2(p) = Xz(p) 1—(—+p92xZ(p)) > wmpw | @31

2
u,veZt uv
u—verZ4

Indeed, this bound is obtained by substituting [15, (5.9)] and [15, (5.1})] into [15,
(5.5)]. Furthermore, by our choice of p and (2.12), K ! VI3 < yu(p) < CXK_1 V1,
Together with (2.5),

xe(p) = K~V (1 - (1/2+p921<*1 c, v1/3) @V71/3) S & VI,
(2.32)

where ¢ is a small (though positive) constant. Under the conditions of Theorem 1.1,
also the following bound holds by Borgs et al. [6]: For ¢ > 0,

()
xr|pe(Tra) — Q7 g qu (2.33)

cf. the upper bound in [6, (1.15)]. The upper bound (2.30) allows K be so large that
p < pc(T, 4). Consequently, the conjunction of (2.32) and (2.33) obtains

2

z > VIP. 234
Q(pe(Tyg) — pe(Zd)y + KV=1/3) — xr(p) = ¢k (2.34)
This implies
2
Pc(Zd) > pe(Tra) + (K - ) y-1/3, (235)
CKQ
as desired. i

The proof of Theorem 2.1 concludes the proof of (1.4) in Theorem 1.1, and it
remains to prove (1.5).

Proof of (1.5) The proof uses the exponential bound proven by Aizenman and New-
man [3, Proposition 5.1] that, for any £ > y( p)z,

e\1/2 k
Prp (ICl = k) < (%) CXPI—W] . (2.36)
T
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In order to apply this bound on the torus, we bound

1 Vv
]P)T,p (|Cmax| = k) = Z ZPT,p (|Cmax| = k, v e Cmax) = ? ]P)T,p (|C| = k) .

veV
(2.37)
Together with (2.36), we obtain for w > x(p)>V~2/3,
1/2 v2/3
23) < £ _er
Pr.p (1Cnax| = 0V?%) = =5 exp[ ZxT(p)Z]' (2.38)

We now choose p = pc(Zd) and use that XT(pc(Zd)) <C XVI/ 3 to see that indeed,
for o > C2, by (2.12),

23 ol/2 ©
Py . z4) <|Cmax| > oV ) =< 2 exp —ﬁ . (2.39)

X

3 Proof of Theorem 1.2

Proof of (1.6) The upper bounds on |C;;,| in Theorem 1.2 follow immediately from
the upper bound on |Cpax | in Theorem 1.1. Thus, we only need to establish the lower
bound.

Recall the definition of Z., in (1.11), and note that

Ep(Z-) = VPr, (IC = ). 3.1)

By construction, [Cmax| > k if and only if Z>; > k. We shall make essential
use of properties of the sequence of random variables {Z.,} proved in [6]. Indeed,
[6, Lemma 7.1] states that, for all p and all k, Var,(Z.,) < V xr(p). When we take
p = pe(Z%), then, by (2.3) in Corollary 2.2 above, there exists a constant C, such
that xr(pe(Z?)) < C,V'/3. Consequently,

Var , 74 (Z=) < C, V4P 3.2)
uniformly in k. Now, further, by (2.4) in Corollary 2.2, there exists ¢ > 0 such that

2CC

7

Take k = V?/3/w, for some w > 1 sufficiently large. Together with the identity
in (3.1),

Py pezdy (ICI = k) = (3-3)

T, pe(

E,, i) (Z=1) = 2¢cc 0PV, (3.4)
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Thus, by the Chebychev inequality,

Ppe@) (sz =< chl/sz) =Py (\sz —E, @)(Z-0)| = cc wl/sz)

C;
ctw

<cto ' VT Var, g (Z2) <

(3.5)

We take @ > O large. Then, the event Z.;, > cc w'/>V?/3 holds with high proba-
bility. On this event, there are two possibilities. Either |Cmax| > cc wV/2y2/3 /i, or
|Cmax| < cc@'/?V?/3/i, in which case there are at least cc @'/>V?/3/|Crax| = i
distinct clusters of size at least k = w~!V2/3. We conclude that

Pw’p”(zd) (|CU)| = w_1V2/3) = IEJJpc(Zd) (sz <ce w1/2V2/3)
TP (|Cmax| > cc w1/2V2/3/i)
C i b
= oot ew (3.6)

— ’
Ccw Ccw

where b is chosen appropriately from the exponential bound in (1.5). This identifies
bi as b; = ib/cc + C,/c2, and proves (1.6). O

We complete this section with the proof that any weak limit of [Cpax |V ~>/3 is non-
degenerate. Theorem 1.1 proves that the sequence |Cpax | V=234 tight, and, therefore,
any subsequence of |Cmax |V ~2/3 has a further subsequence that converges in distri-
bution.

Proposition 3.1 (|Cmax|V ~2/3 is not concentrated) Under the conditions of Theo-
rem 1.1, |CmaX|V72/ 3 is not concentrated.

In order to prove Proposition 3.1, we start by establishing a lower bound on the
variance of Z.,. That is the content of the following lemma:

Lemma 3.2 (A lower bound on the variance of Z.,) For each k > 1,
Var,(Z.) = VP, (IC| = k) [k = V Py, (IC] = k)] 3.7
Proof We have that
Vary(Zo) = > Prp (ICW)| = k. [C)| = k) — [VPr, (Cl = b (3.8)
u,v

Now, we trivially bound

D> Prp, (IC@)| =k, IC@)| = k) = D Pr, (ICw)| =k, u <> v)

u,v u,v
VE[CITycizx] = VEkPr , (IC] = k).
3.9

v

Rearranging terms proves Lemma 3.2. O
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Lemma 3.3 (An upper bound on the third moment of Z.,) For each k > 1,
EplZ3] < Vxe(p)* +3Ep[Zo] V xa(p) + EplZi . (3.10)

Proof We compute

EplZ3 0= D Pr,(Cupl =k [Cu2)| = k. |Cu3)| = k)

uy,uz,u3
= D Pu,(ICw)| =k, ur < uz,u3)
uy,uz,u3
+3 D> Po, (ICU)| =k uy < ua, [Cu3)| =k, uy 4> u3)
up,up,u3

+ > Prp (IC@)] =k 1CW)| = k, 1CW3)] = k,ui #> ujVi # j)

up,uz,u3

=) +3UD)+UII). (3.11)

We shall bound these terms one by one, starting with (1),

()= D PrpCu)| = kouy < uz, u3) = VE,[ICI*jep=h]

uy,uz,u3

< VE,[ICI*] < Vxz(p)*, (3.12)

by the tree-graph inequality (see [3]). We proceed with (I17), for which we use the
BK-inequality, to bound

()< D Prp{ICuD)| = k.uz € Cur)}o {IC(u3)| = k})

ur,uz,u3
< > Prp(Cun)| = kloua € C(up) Py pClus)| = k)
ur,uz,u3
= VElICILc1zi] EplZoi] < EplZoil V xe(p). (3.13)

We complete the proof by bounding (/11), for which we again use the BK-inequality,
to obtain

(1) < D7 Pr,p(IC@)| =k} o {IC(u2)| > k} o {|C(uz)| = k})

up,uz,u3

< D Prp(ICu)l = kD Pry(Cua)l = k) Prp (ICw3)| = k) =E,[Z-, 1.
up,uz,u3

(3.14)

This completes the proof. O
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Now we are ready to complete the proof of Proposition 3.1:

Proof of Proposition 3.1 By Theorem 1.1, we know that the sequence |Cpax| V=23
is tight, and so is V2/3 /|Cmax|. Thus, there exists a subsequence of |Cpax | V—2/3 that
converges in distribution, and the weak limit, which we shall denote by X*, is strictly
positive and finite with probability 1. Thus, we are left to prove that X* is non-degen-
erate. For this, we shall show that there exists an w > 0 such that P(X* > w) € (0, 1).

To prove this, we choose an o that is not a discontinuity point of the distribution
function of X* and note that

. —2/3
P(X* > ) = 1im Py, g0 (Conax| Vi P s w), (3.15)

where the subsequence along which |Cpax|V ~2/3 converges is denoted by {V,, B
Now, using (1.11), we have that

—2/3 2/3
Py zty (Conaxl Vi 7 > ) =Py, ) (Z>wvnz/3 > oV ) (3.16)

The probability Py , z4) (Z.,y23 > @V?*?) is monotone decreasing in w. By the
Markov inequality and (2.4), for @ > 1 large enough and uniformly in V/,

C
Bty (Zowar > 0V??) 207 VBVE, g (1012 0V?) = =5 < 1.

(3.17)
In particular, the sequence Z_,,2/3V ~2/3 is tight, so we can extract a further sub-

sequence {Vj,};2, so that also Z_,,2/3 V~2/3 converges in distribution, say to Zr.
Then, (3.17) implies that

P(Z5=0)=1-P(Z)>0) =1~ lim Py , iz, (anz/s > 0)

. 2/3
=1- llinolo ]P)T,pc(Zd) (Z>")Vr$l/3 > oV, ) > 0.

(3.18)
Further, by Lemma 3.2,

Varpc(Zd)(Z>wv2/3 V_2/3) = V_1/3PT!p[:(Zd)(|C| > a)Vz/3)
x [wV2/3 — VP, @ (Cl > wV2/3)]

v

VI/SPTQPC(Z@(ICl > a)VZ/S) [a) — ch—l/z] ,
(3.19)

which remains uniformly positive for @ > 1 sufficiently large, by (2.4). Since there is
alsoanupperboundon Var, za)(Z_,,23V —2/3) (this follows from (3.2)), itis possible
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to take a further subsequence {Vy, }32, for which Var, 74)(Z_,,,2/3 V~2/3) converges

to 02(0)) > 0. Since, by Lemma 3.3, the third momentof Z__;,2/3 V ~2/3 isbounded, the
random variable (Z_,2/3 y 2/ 3)2 in uniformly integrable, and, thus, along the sub-
sequence for which Z__ 23V =2/ weakly converges and Var, za)(Z_ 273 V=2/3)
converges in distribution to Zj;, we have

. -2/3
Var(Z;) = lim Var,,c(Zd)(zmv%f Vi) = 0% (@) > 0. (3.20)

Since Var(Z}) > 0, we must have that P(Z} = 0) < 1. Thus, by (3.18) and the
above, we obtain that P(Z* = 0) € (0, 1), so that

1 —-2/3
P(X* > w) = nlggo PT,pC(Zd) (|Cmax|vn / . a))
= 1 —-2/3
= Jim P ezt (va,z,gj Vi ™™ > 0)
=P(Z; > 0) € (0, 1). (3.21)

This proves Proposition 3.1. O

4 Diameter and mixing time
Let d¢ denote the graph metric (or intrinsic metric) on the percolation cluster C.

Theorem 4.1 (Nachmias—Peres [19]) Consider bond percolation on the graph G with
vertex set V, V. = |V| < oo, with percolation parameter p € (0, 1). Assume that for
all subgraphs G' C G with vertex set V',

@ Eg p|€(lueC):deqy,u) <k})| <dik, veV;
(b) Pg, (Ju € C): dewy(v,u) =k) <do/k, veV,

where £(C) denotes the number of open edges with both endpoints in C. If for some
cluster C

b
Pg., (w—lxﬂ/3 < |C|) =1- =, 4.1y

then there exists ¢ > 0 such that for all v > 1,

Pe, (@ 'V!A < diam(©) = 0V!?) 21— —, 4.2)
w
C
PG, p (Tnix(C) > 0V) < 16’ (4.3)
c
Pe.p (07'V > Tnin(©)) < - 4.4)
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We apply the theorem for G = T, 4 and p = p.(Z?). Theorem 1.2 implies that (4.1)
holds for the ith largest cluster C = C;, i € N. Hence Corollary 1.3 follows from The-
orems 1.2 and 4.1 once we have verified conditions (a) and (b) in the above theorem.
In fact, (4.3) is a slight improvement over (1.10).

Before proceeding with the verification, we shall comment on how to obtain Theo-
rem 4.1 from the work of Nachmias and Peres [19]. Indeed, Theorem 4.1 is very much
in the spirit of [19, Theorem 2.1], though the O-notation there depends on S. The
bound (4.2) is nevertheless straightforward from [19, proof of Theorem 2.1(a)] and
(4.1). For (4.3) we use (4.2) together with the bound Tpix(G) < 8|&|diam(G), valid
for any finite (random or deterministic) graph G with edge set &, cf. [19, Corollary
4.2].

Furthermore, subject to conditions (a) and (b) of Theorem 4.1, there exist constants
C1, C2 > O such that forany 8 > 0, D > 0,

21
_ 23 b
]P’G»P(ﬂv e Vi IC)| > BV, Tiix (C(v)) < Wv)

=07 (C1+CF D7) 4.5)

which is obtained by combining [19, (5.4)] with the display thereafter. From this we
can deduce (4.4) by choosing D = 1000~y and g = w~1/34,

We complete the proof of Corollary 1.3 by verifying that the conditions in Theo-
rem 4.1(a) and (b) indeed hold for critical percolation on the high-dimensional torus.

Verification of Theorem 4.1(a). The cluster C(v) is a subgraph of the torus with degree
2, therefore we can replace the number of edges on the left hand side by the number of
vertices (and accommodate the factor €2 in the constant dy). In [15, Proposition 2.1], a
coupling between the cluster of v in the torus and the cluster of v in Z¢ was presented,
which proves that C(v) can be obtained by identifying points which agree modulor in a
subset of the cluster of v in Z¢. A careful inspection of this construction shows that this
coupling is such that it preserves graph distances. Since |{u € C(v): dewy(v,u) < k}|
is monotone in the number of edges of the underlying graph, the result in Theo-
rem 4.1(a) for the torus follows from the bound E, |{u € C(v): de(y) (v, u) < k}| <
dik for critical percolation on 74 . This bound was proved in [16, Theorem 1.2(1)].

O

Verification of Theorem 4.1(b). For percolation on 74 . this bound was proved in [16,
Theorem 1.2(ii)]. However, the event {Ju € C(v): d¢y) (v, u) = k} is not monotone,
and, therefore, this does not prove our claim. However, a close inspection of the proof
of [16, Theorem 1.2(ii)] shows that it only relies on the bound that

Pr o2y IC)| = k) < C1/k'? (4.6)

T, pe(

(see in particular, [16, Section 3.2]). The bound (4.6) holds for k < b; V%3 by
[6, (1.19)] and Theorem 2.1 (where b; is a certain positive constant appearing in
[6, (1.19)]). For k > b; V%3 we use instead (2.36). Alternatively, one obtains (4.6)
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from the corresponding Z?-bound (proven by Barsky—Aizenman [5] and Hara—Slade
[12]), together with the fact that 74 -clusters stochastically dominate T, 4-clusters by
[15, Proposition 2.1]. This completes the verification of Theorem 4.1(b). O
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