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ABSTRACT. We study the asymptotic behavior the exit times of random walk from Euclidean balls
around the origin of the incipient infinite cluster in a manner inspired by [35]. We do this by getting
bounds on the effective resistance between the origin and the boundary of these Euclidean balls.
We show that the geometric properties of long-range percolation clusters are significantly different
from those of finite-range clusters. We also study the behavior of random walk on the backbone of
the IIC and we prove that the Alexander-Orbach conjecture holds for the incipient infinite cluster in
high dimensions, both for long-range percolation and for finite-range percolation.
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1. INTRODUCTION AND MAIN RESULTS

We study properties of random walk on the incipient infinite cluster (IIC) of Zd . The IIC is
an infinite random subgraph of Zd that was proposed by physicists in the 1980’s as an infinite
analogue of a critical percolation cluster (see e.g. [2], [36]).

Percolation is a model that, given a graph G , generates random subgraphs of G by independently
retaining edges according to a Bernoulli process with parameter p, and removing them otherwise.
When G = Zd (i.e., the d-dimensional integer lattice with d ≥ 2), there is a non-trivial value pc ,
the critical threshold, so that when p < pc the model almost surely does not generate an infinite
connected subgraph, whereas when p > pc , the model does generate a unique infinite connected
subgraph almost surely. We are interested in the case where p = pc , i.e., critical percolation. It
is widely believed that critical percolation clusters of Zd are almost surely finite whenever d ≥ 2.
This has been proved when d = 2 [30], and when d is ‘high enough’ [6], [18]. This paper focusses
on the high-dimensional setting.

The asymptotic behavior of random walk reveals a lot about the structure of the graph it walks
on. Of particular interest to us are the exit time τA of the walk from a set A (for particular choices
of A), and the return probability pn(x, x), i.e., the probability that a walk started at x returns to x
after n steps. The main focus of this paper is the scaling behavior of the exit time from balls as the
radius of the balls increases.

Our motivation for studying random walk on the IIC rather than on critical clusters is that the
IIC is an infinite graph that is constructed to locally ‘look’ like a (very large) critical cluster. This way
we can use random walk asymptotics to study geometric properties of critical percolation clusters
without having to deal with finite-size effects. To generate the IIC we rely on the construction of
the IIC-measure from PIIC [26], [20]. We will elaborate on this construction below (cf. (1.9)).

Our main results consist of: (1) asymptotic bounds on the random walk return probability, and
(2) bounds on the random walk exit time from the intersection between the IIC and Euclidean and
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intrinsic balls. Of course, the bounds we get on the exit time from a ball depend crucially on the
metric that we use to define that ball. In this paper we consider two metrics for this purpose: the
extrinsic distance metric | · | (or Euclidean metric, or L2-norm) and the intrinsic distance metric dG

(or graph metric). The intrinsic distance metric between two vertices of a graph is the shortest
distance between them through the graph. Hence, it is sensitive to the topology of the graph, but
not to the topology of the space the graph may be embedded in. The extrinsic distance metric,
on the other hand, is a metric of Zd , so it is sensitive to this topology, but it ignores the topology
of embedded graphs. Using both metrics will bring to light some fundamental similarities and
differences between the various percolation models that we study. In particular, we observe that
properties of the random walk that have to do with the graph structure (e.g. return probabilities,
exit times from intrinsic metric balls) are universal for a broad class of models, whereas those
properties that have to do with the spatial structure (e.g. exit time from extrinsic metric balls) are
shared only among models that have similar local properties (that is, similar edge probability
distributions, see below).

Our contribution. This paper establishes novel bounds on random walk exit times for the IIC in
high dimensions. In more detail, our contributions are as follows:

(1) We identify the asymptotics of the exit times from Euclidean or extrinsic balls for random
walks on the IIC for finite-range percolation.

(2) We generalize the results by Nachmias and Kozma [33] on random walk exit times in the
intrinsic distance, and show that these hold under the strong triangle condition rather
than on upper bounds in x-space on the two-point function, which, in applications is a
weaker condition.

(3) We identify the asymptotics of the exit times of Euclidean and intrinsic balls for random
walks on the IIC backbone for finite-range percolation, and show that these obey similar
scaling as the exit times of random walk on a random walk trace.

(4) We extend all the above results to the IIC for long-range percolation, and show that while
the results in the intrinsic distance are unchanged, the results in the Euclidian or extrinsic
distance depend sensitively on the long-range nature of the percolation model.

In Theorem 0 below we summarize some of our main results as they apply to three important
percolation models. A precise definition of these models is given further along in this section. A
few brief definitions and remarks are needed before we state this theorem: Let ω be a subgraph
of the complete graph on Zd , (Zd ,Zd ×Zd ) with induced graph metric dω. Given r ∈ R and a
configuration ω, define the sets

Qr (x) = {y ∈Zd : |x − y | ≤ r } and Br (x;ω) = {y ∈Zd : dω(x, y) ≤ r }. (1.1)

We call Qr (x) the extrinsic ball of radius r around x and Br (x;ω) the intrinsic ball of radius r
around x. Typically, we write Br (x) instead of Br (x;ω). Note that Qr (x) is a deterministic set while
Br (x) is a random set (if ω is random).

Given a random walk on ω started at 0, we write τBr and τQr for the exit times of that random
walk from Br and Qr . The probability measure P 0

ω and the expectation E 0
ω below are for a random

walk started at 0 on a fixed ω, that is, they only consider the randomness of the walk.

Theorem 0. Let PIIC be the IIC-measure for critical percolation on Zd with d ≥ 19 for nearest-
neighbor percolation (NNP), d > 6 for finite-range spread-out percolation (FRP) and d > 3(2∧α) for
long-range spread-out percolation (LRP) with decay exponent α ∈ (0,∞). Consider a simple random
walk on the IIC. Then, PIIC-a.s.,

lim
n→∞

log p2n(0,0)

logn
=−2

3
and lim

n→∞
log |Wn |

logn
= 2

3
(1.2)
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where Wn is the range of random walk after n steps. Furthermore, for PIIC-almost all ω,

lim
r→∞

logE 0
ωτBr

logr
= 3 for NNP, FRP & LRP and lim

r→∞
logE 0

ωτQr

logr
= 6 for NNP & FRP, (1.3)

whereas, for LRP, uniformly in r ,∫
P 0
ω

(
τQr > θr 3(4∧α)/2)PIIC(dω) → 0 as θ→∞. (1.4)

(Kozma and Nachmias proved (1.2) and the left-hand limit of (1.3) for NNP and FRP in [33] – we
mention these here for completeness.)

Let us summarize the contributions that we make to the literature in this paper: we estimate
exit times from the extrinsic ball Qr for all three percolation models, we bound exit times from the
intrinsic ball Qr for long-range percolation, and we prove exit time estimates for random walk on
the IIC backbone.

A paper by Kumagai and Misumi [35] provides most of the tools that we need to prove the
above theorem (as well as stronger results, given in Theorems 1.1 and 1.3 – 1.9 below). In this
paper, they prove that bounds on the volume and effective resistance of a graph intersected with
a ball of a given metric imply bounds on the random walk return probability and exit time from
that ball. (Their results generalize results of Barlow, Járai, Kumagai and Slade [4], where such
bounds are obtained specifically for balls in the intrinsic metric.) Most of the work in this paper
goes into proving the required bounds on the volume and effective resistance (see Definition 2.4
and Theorem 2.6 for a precise statement of what they are). We prove these bounds for both the
extrinsic and the intrinsic distance metric, and we prove them for a broad class of percolation
models.

1.1. High-dimensional percolation
The triangle condition. Our results apply to percolation models that satisfy the so-called ‘strong
triangle condition’. Define the triangle diagram 4p (0) by

4p (0) ≡ ∑
x,y∈Zd

Pp (0 ↔ x)Pp (x ↔ y)Pp (y ↔ 0), (1.5)

where Pp (a ↔ b) is the probability that there is a path between a,b ∈Zd in the subgraph of Zd

generated by the percolation measure with parameter p. The triangle condition is that 4p (0)
is finite when p ≤ pc . The strong triangle condition is that 4p (0) = 1+O(β) when p ≤ pc , for a
sufficiently small parameter β, where β= 1/(2d) for nearest-neighbor percolation and β= L−d

for spread out models. The strong triangle condition is known to hold for nearest neighbor-
percolation when d is sufficiently large, and in spread-out models when d is larger than some
upper critical dimension dc and L is sufficiently large. From here on, when we say that a result
holds ‘in high dimension’, we mean that the dimension is high enough for the strong triangle
condition to be satisfied with sufficiently small β.

Percolation models. In independent percolation models the probability that an edge {x, y} is
retained can be described by a transition kernel D(x, y), and a parameter p ∈ [0,‖D‖−1∞ ]. The results
in this paper hold for models that satisfy the strong triangle condition with a sufficiently small β,
and whose associated edge weight distribution D( · , · ) is invariant under the symmetries of Zd .
Moreover, the results in our paper hold in the general regime of percolation models considered
in [20]. For the purpose of presentation, we further restrict our attention to the following three
‘standard’ models.

The first model to consider is nearest-neighbor percolation. The underlying graph of this model
is Zd with edge set E = {{x, y} : x, y ∈ Zd , |x − y | = 1}. All edges are retained independently with
probability p/2d where p ∈ [0,2d ] and removed with probability 1−p/2d (note that we follow
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the convention of the high-dimensional percolation literature and choose p in such a way that
D(x, y) = (1/2d)1{|x−y |=1} is a normalized transition kernel). Hara and Slade proved that nearest-
neighbor percolation on Zd satisfies the strong triangle condition when d ≥ 19 [19], and Fitzner
and the second author announced a proof that shows that this holds for d ≥ 15 (see [14]), although
it is generally believed that d > 6 is enough.

The second model is finite-range spread-out percolation. Now the underlying graph is the
complete graph with vertex set Zd . The probability that an edge is retained is positive and the
same for all edges up to length L, and 0 for longer edges, i.e.,

pD(x, y) = p

(2L+1)d −1
1{0<‖x−y‖∞≤L}. (1.6)

The parameter L is known as the spread-out parameter, and it is typically chosen to be large for
technical reasons. For this model it has been proved that the strong triangle condition is satisfied
when d > 6 and L is sufficiently large [18].

Finally, we consider long-range spread-out percolation. Again, we use the complete graph with
vertex set Zd . The probability that an edge is retained decays as a power-law with the (extrinsic)
distance between its ends, that is, for an edge {x, y},

pD(x, y) = p
NL

max{|x − y |/L,1}d+α , (1.7)

for α ∈ (0,∞) and where NL is a normalizing constant. For long-range spread-out percolation d
is high enough when d > 3(2∧α) [22]. The decay exponent α determines the decay of the edge
retention probability as a function of the length of the edge. As can be seen from the definition,
when α≤ 2 the spatial variance

∑
x |x|2D(0, x) becomes infinite, whereas the spatial variance is

finite when α> 2. As a result the long-range model behaves different for α< 2 and α> 2. From
here on we take α ∈ (0,2)∪ (2,∞), that is, we do not consider the case where α= 2. When α= 2 we
get logarithmic corrections on many of the results that follow, and these make it cumbersome to
read.

Unless we say otherwise, the results below hold for finite-range models. But we will state results
in terms of the parameter α whenever the result also applies to long-range percolation. To make
sense of these results for models that do not depend on the parameter α one should think of α as
a redundant parameter that is always set to ∞.

The IIC-measure. We cannot construct an IIC-measure by simply conditioning the critical per-
colation measure on the event that the cluster of the origin is infinite because this is an event
of measure 0. But it is a well-known property of high-dimensional critical percolation that in a
box of linear size n there is a cluster whose size is of order n with high probability [1]. In other
words, large critical clusters are common. We can use this fact to condition the critical percolation
measure on an event that implies that the origin is part of a cluster whose size is proportional
to n (e.g. the event that 0 is connected to a point at distance at least n). Taking the limit n →∞
yields an IIC-measure. This needs to be proved, and these proofs are typically quite involved (for
high-dimensional models one needs to use lace-expansion techniques). It turns out that several
different limiting schemes can give the same IIC-measure. This has been proved for both two- and
high-dimensional percolation and oriented percolation models (although most schemes have not
been shown in all three settings) cf. [20, 24, 26, 28, 31].

The particular scheme that we use in the proofs of this paper relies on the expected cluster size,
or susceptibility of a percolation model, which is defined by

χ(p) ≡ Ep [|C(0)|] = ∑
x∈Zd

Pp (0 ↔ x), (1.8)

where C(0) is the connected component containing the origin and |C(0)| denotes the number of
vertices in C(0). The susceptibility is finite when p < pc , but it diverges when p approaches pc
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from below. With this in mind, [26] proposes the limiting scheme

PIIC(F ) ≡ lim
p↗pc

1

χ(p)

∑
x∈Zd

Pp (F ∩ {0 ↔ x}), F ∈F0, (1.9)

where F0 is the algebra of cylinder events. This extends to an IIC measure on the σ-algebra
generated by F0. The second author and Járai [26] proved that the limit exists for models where
the two-point function

τp (x) ≡Pp (0 ↔ x) (1.10)

obeys the asymptotic relation τpc (x) = c|x|2−d (1+o(1)) as x →∞. This asymptotic relation holds
for finite-range models (cf. [17] and [16]), but does not hold for long-range models when α< 2. In
a previous paper [20] we prove that the same limit also exists under the weaker condition that the
strong triangle condition holds, so the limit also holds for the long-range models we discuss in
this paper.

An IIC configuration contains a special subgraph, the backbone, that consists of all vertices
x ∈Zd (and the edges between them) in the IIC with the property that there is a path of open edges
from 0 to x and disjoint from this path there is another path from x to ∞. Given a configuration ω
we write Bb(ω) for the backbone of ω. We say an edge e in Bb(ω) is backbone-pivotal if e is open,
and if closing e would disconnect 0 and ∞. It has been proved that the backbone is essentially
unique [26]. This means that any two infinite self-avoiding paths started at 0 share an infinite
number of edges. The set of edges shared by all infinite self-avoiding paths is exactly the set of
backbone-pivotal edges.

For a more in-depth discussion of the construction of IIC-measures we refer the reader to [20].

Random walk. In this paper random walks and the associated spaces are defined as follows: Let

Ω= {0,1}E(Zd ), where E(Zd ) is the set of edges (typically, our percolation models require E(Zd ) =
Zd ×Zd ), so thatΩ is the state space of percolation configurations. Consider the probability space
(Ω,F ,PIIC) that describes the family of random graphs ΓIIC(ω) = ((IIC(ω),E(ω)) :ω ∈Ω), where
IIC(ω) is the set of vertices of the (unique, infinite) connected component of 0 inω, and E (ω) is the
associated edge set. Let X = (

(Xn)n≥0,P x
ω, x ∈ IIC(ω)

)
denote simple random walk on ΓIIC started

at x. While (Ω,F ,PIIC) denotes the probability space of the random environment ΓIIC, we denote
by (Ω,F ) a second space for the law of the random walk X on ΓIIC(ω), so that the random walk on
a random environment X is defined on the productΩ×Ω.

Two important assumptions. The proof of Theorem 1.1 below uses the asymptotics of the extrinsic
one-arm probability of critical percolation, i.e. the probability that the origin of Zd is connected to
a point at (at least) distance r :

Assumption O. The extrinsic one-arm probability satisfies

Ppc (0 ↔Qc
r ) ≤Cr−2 (1.11)

for some constant C > 0.

Kozma and Nachmias proved this assumption for finite-range percolation models in high
dimensions [34]. In [20] we prove that the one-arm probability of long-range percolation is
bounded from below by cr−(4∧α)/2. Hence, if this bound is sharp, Assumption O also holds for
long-range percolation when α ≥ 4. But such an upper bound cannot hold when α < 4 (even
if it turns out that the lower bound is not sharp). Theorem 1.2 below illustrates how this phase
transition at α= 4 affects the exit time of random walk.

Several proofs in this paper use the assumption that the backbone gives rise to a process on Zd

whose scaling limit is either Brownian motion (for finite-range models and long-range models
with α > 2) or a symmetric α-stable motion (for long-range models with α < 2). To make this
assumption precise we first have to define such a process on Bb(ω).
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We can give a unique ordering, say {ei }∞i=1 to the backbone-pivotal edges ofBb(ω) by considering
the order in which they are crossed by any and every infinite self-avoiding path on Bb(ω) started
at 0. Since all ei are crossed exactly once by any infinite self-avoiding path, we can assign a top
and bottom to these edges, e.g. ei = (e i ,e i ), such that any self-avoiding path started at 0 crosses e i
before it crosses e i . Let Sn = en , then (Sn)∞n=0 is the stochastic process of the position of the top of
backbone pivotal edges (where we set e0 = 0). Consider the rescaled process

Xn(t ) ≡ (vαn)−1/(2∧α)Sdnte, t ∈ [0,1]. (1.12)

We assume the following behavior:

Assumption S. As n →∞, the process Xn(t ) converges in distribution to an α-stable Lévy motion
when α< 2, and to a Brownian motion when α> 2.

A proof of Assumption S is in preparation by the authors and Miermont [21]. It should be
remarked that this assumption is stronger than what we actually use, see Proposition 5.3 below.

1.2. Main results.
We now state our main results: first we present results about the Euclidean (extrinsic) metric,

then we present results about the graph (intrinsic) distance metric.

Results for extrinsic distances. The first theorem gives upper and lower bounds for various quanti-
ties related to the exit time of random walk from extrinsic balls:

Theorem 1.1 [Extrinsic random walk geometry of the IIC]. Let r ≥ 1. If the strong triangle
condition is satisfied for some sufficiently small β, and if either the model is finite-range, or if
Assumptions O and S hold, then the following holds:

(a) Uniformly in r ,

PIIC

(
θ−1r 6 ≤ E 0

ωτQr ≤ θr 6)→ 1 as θ→∞. (1.13)

(b) There exists r? ≥ 1 such that, for all r ≥ r?,

c1r 6 ≤ EIIC[E 0
ωτQr ] ≤ c2r 6. (1.14)

(c) There exists γ1 <∞ and a subset Ω0 ⊂ Ω with PIIC(Ω0) = 1 such that for all ω ∈ Ω0 and
x ∈ IIC(ω), there exists Rx (ω) <∞ such that

(logr )−γ1 r 6 ≤ E x
ωτQr ≤ (logr )γ1 r 6, ∀r ≥ Rx (ω). (1.15)

(d) For all (ω,ω̄) ∈Ω0 ×Ω and x ∈ IIC(ω), there exists γ2 <∞ and Rx (ω,ω̄) such that P x
ω(Rx <

∞) = 1 and such that

(logr )−γ2 r 6 ≤ τQr (ω,ω̄) ≤ (logr )γ2 r 6, ∀r ≥ Rx (ω,ω̄). (1.16)

As is explained in [4], it is unlikely that it will turn out that γ1,γ2 = 0, since Barlow and Kumagai
in [5] have shown that the tree analogue of the IIC exhibits (loglogr )c fluctuations, for some c > 0.
It would be interesting to see whether random walk on the high-dimensional IIC also exhibits
these loglog fluctuations.

We were not able to establish similar estimates for long-range percolation, but we found that the
behavior τQr changes radically for long-range percolation when α< 4, as the following theorem
shows:

Theorem 1.2 [Extrinsic random walk geometry of the LRP-IIC]. Consider long-range spread-out
percolation with parameter α that satisfies the strong triangle condition for some sufficiently small
β. There exist c,ε> 0 and r?(λ) such that, for any r ≥ r?(λ),

P?
(
τQr ≤λr 3(4∧α)/2)≥ 1− c/λε. (1.17)
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Theorem 1.2 is much weaker than Theorem 1.1 but it does show that the exit time for long-range
spread-out percolation when α < 4 typically comes much sooner than it does for finite-range
models. From Theorem 2.8 below, it can be seen that the effect of the presence of long-range
edges is that clusters become more ‘smeared out’ in space. If this was the only effect that the
presence of long-range edges has, then we would expect the exit time to be of the order of r 3(2∧α).
Heuristically, the reason that r 3(2∧α) is not the correct order for long-range percolation when α< 4
is that (1) typically, there are relatively many open edges with length at least 2r and with one end
in Qr and (2) once the random walker in IIC∩Qr crosses such an edge, it immediately enters Qc

r
and the exit time is reached.

The following theorem involves the annealed law

P?( · ) :=
∫

P 0
ω( · )PIIC(dω). (1.18)

Theorem 1.3 [Extrinsic distance of random walk from the origin]. Let n ≥ 1. If the strong triangle
condition is satisfied for some sufficiently small β, and if either the model is finite-range, or if
Assumption S holds, then the following holds:

(a) uniformly in n,

P?
(|Xn | < θn1/(3(2∧α)))→ 1 as θ→∞ (1.19)

and

P?
(
θ−1n1/(3(2∧α)) < 1+|Xn |

)→ 1 as θ→∞; (1.20)

(b) letting Zn = max0≤k≤n |Xk |, there exists a subsetΩ0 ⊂Ω with PIIC(Ω0) = 1 such that for all
(ω,ω̄) ∈Ω0 ×Ω and x ∈ IIC(ω) there exists ζ<∞ and Nx (ω,ω̄) such that P x

ω(Nx <∞) = 1
and such that

(logn)−ζn1/(3(2∧α)) ≤ Zn(ω,ω̄) ≤ (logn)ζn1/(3(2∧α)), n ≥ Nx (ω,ω̄). (1.21)

For random walk on the IIC backbone Bb(ω) we have the following result:

Theorem 1.4 [Random walk on the IIC-backbone, extrinsic distance results]. If the strong tri-
angle condition is satisfied for some sufficiently small β, and if either the model is finite-range or
Assumption S holds, then the conclusions of Theorems 1.1 and 1.3 hold for random walk restricted
to Bb(ω) when the exponent 6 is changed to 2(2∧α) in Theorem 1.1 and the exponent 1/(3(2∧α))
is changed to 1/(2(2∧α)) in Theorem 1.3.

In [20, Section 5] it is shown that the cluster at the other end of a long edge is small with high
probability, so the random walk will with high probability not spend much time outside of Qr

if it exits through a long edge. Thus, the only way a random walk can escape Qr for more than
an instant is if it exits Qr through the backbone. We conjecture that the time the random walker
spends on the other side of long edges is so short that these short excursions will not affect the
exit time of the scaling limit (in the standard topologies), so that the scaling limit of the exit time
will be proportional to r 3(2∧α). We propose a quantity that we believe is interesting to look at as a
possible preliminary to studying the scaling limit of random walk on the IIC. We call this quantity
the modified exit time τmod

Qr
and we define it as the exit time of a random walk that walks on the

configuration of the graph that contains all edges touching IIC∩Qr , and where the clock is only
stopped if the random walk reaches Qc

r through the backbone. That is, we do not stop the clock
when the random walk exits Qr through a long edge, but we do force it to return to IIC∩Qr in the
next step. For this model the exit time is typically much larger than the unmodified version when
α< 4, as the following theorem demonstrates:
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Theorem 1.5 [Extrinsic random walk geometry with a modified exit time]. If Assumption S holds
and the strong triangle condition is satisfied for some sufficiently small β, then the conclusion of
Theorem 1.1 holds for the modified exit time τmod

Qr
when the exponent 6 is changed to 3(2∧α).

Results for intrinsic distances. The following theorem is the analogue of Theorem 1.1 for the
intrinsic metric:

Theorem 1.6 [Intrinsic random walk geometry of the IIC]. Let r ≥ 1. If the strong triangle
condition is satisfied for some sufficiently small β, then the following holds:

(a) Uniformly in r ,

PIIC

(
θ−1r 3 ≤ E 0

ωτBr ≤ θr 3)→ 1 as θ→∞. (1.22)

(b)

c3r 3 ≤ EIIC[E 0
ωτBr ] ≤ c4r 3. (1.23)

(c) There exists δ1 <∞ and a subset Ω0 ⊂ Ω with PIIC(Ω0) = 1 such that for all ω ∈ Ω0 and
x ∈ IIC(ω), there exists R ′

x (ω) <∞ such that

(logr )−δ1 r 3 ≤ E x
ωτBr ≤ (logr )δ1 r 3, ∀r ≥ R ′

x (ω). (1.24)

(d) For all ω ∈Ω0 and x ∈ IIC(ω), there exists δ2 <∞ and R ′
x (ω,ω̄) such that P x

ω(R ′
x <∞) = 1

and such that

(logr )−δ2 r 3 ≤ τBr (ω,ω̄) ≤ (logr )δ2 r 3, ∀r ≥ R ′
x (ω,ω̄). (1.25)

An important geometric property of a graph Γ = (G ,E) is its spectral dimension ds(Γ). It is
defined in terms of the asymptotics of the return probability pΓ2n(x, x): for any vertex x ∈G , we set

ds(Γ) =−2 lim
n→∞

log pΓ2n(x, x)

logn
(1.26)

if the limit exists. It is a classical result that pZ
d

n (x, x) ≈ n−d/2 for random walk on Zd , so that
ds(Zd ) = d . Furthermore, it has been proved that for supercritical percolation on Zd the unique
infinite cluster C∞ also has ds(C∞) = d [3]. But the situation is quite different when we consider
the IIC.

Alexander and Orbach conjectured that ds(IIC) = 4/3 whenever d ≥ 2 [2]. Although this con-
jecture is not believed to be true for small d , Kozma and Nachmias did prove in [33] that it holds
for percolation models that have τpc (x) = c|x|d−2(1+o(1)). As mentioned before, this asymptotic
relation holds for finite-range models, but it does not hold for long-range models with α < 2.
The following theorem improves on their result because it implies that the Alexander-Orbach
conjecture is true for any percolation model on Zd that satisfies the strong triangle condition. In
particular, it holds for long-range percolation on Zd when d > 3(2∧α).

Again, using the framework of Kumagai and Misumi [35], we can establish bounds on the return
probability of random walk:

Theorem 1.7 [Asymptotics for the return probability of random walk on the IIC]. If the strong
triangle condition is satisfied for some sufficiently small β, then

(a) for n ≥ 1, uniformly in n,

PIIC

(
θ−1 ≤ n2/3pω

2n(0,0) ≤ θ)→ 1 as θ→∞. (1.27)

(b) there exists ε < ∞ and a subset Ω0 ⊂ Ω with PIIC(Ω0) = 1 such that for all ω ∈ Ω0 and
x ∈ IIC(ω), there exists Nx (ω) <∞ such that

(logn)−ε

n2/3
≤ pω

2n(x, x) ≤ (logn)ε

n2/3
, ∀n ≥ Nx (ω). (1.28)
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Note that (1.28) implies the first limit of (1.2) in Theorem 0, so the Alexander-Orbach conjecture
holds under the strong triangle condition.

For the next theorem we recall the definition of the annealed law P? in (1.18).

Theorem 1.8 [Intrinsic distance of random walk from the origin]. Let n ≥ 1. If the strong triangle
condition is satisfied for some sufficiently small β, then

(a) uniformly in n,

P?
(
dω(0, Xn) < θn1/3)→ 1 as θ→∞ (1.29)

and

P?
(
θ−1n1/3 < 1+dω(0, Xn)

)→ 1 as θ→∞; (1.30)

(b) letting Yn = max0≤k≤n dω(0, Xk ), there exists a subsetΩ0 ⊂Ωwith PIIC(Ω0) = 1 such that for
all (ω,ω̄) ∈Ω0×Ω and x ∈ IIC(ω) there exists η<∞ and N ′

x (ω,ω̄) such that P x
ω(N ′

x <∞) = 1
and such that

(logn)−ηn1/3 ≤ Yn(ω,ω̄) ≤ (logn)ηn1/3, n ≥ N ′
x (ω,ω̄). (1.31)

Similar to Theorem 1.4, we have the following result for random walk on the IIC backbone for
intrinsic distances:

Theorem 1.9 [Random walk on the IIC-backbone, intrinsic distance results]. If the strong tri-
angle condition is satisfied for some sufficiently small β, and if either the model is finite-range or
Assumption S holds, then the conclusions of Theorems 1.6 – 1.8 hold for random walk restricted to
Bb(ω) when the exponent 3 is changed to 2 in Theorem 1.6, the exponent 2/3 is changed to 1/2 in
Theorem 1.7, and the exponent 1/3 is changed to 1/2 in Theorem 1.8.

A direct result of the above theorem is that ds(Bb) = 1.

1.3. Discussion
Literature. The study of random walk on incipient infinite cluster was initiated by Kesten [32].
Kesten, who initiated the mathematical study of random walk on the IIC proved that random walk
on two-dimensional IIC is subdiffusive [32]. Kozma and Nachmias [33] established the Alexander-
Orbach conjecture for random walk on (finite range) high-dimensional percolation. Their work
was based on a paper by Barlow, Jarai, Kumagai and Slade [4], who proved the Alexander-Orbach
conjecture for random walk on high-dimensional oriented percolation. Related results (that
predate [4]) appear in a study of random walk on the IIC analogue on trees by Barlow and Kumagai
[5].

In recent work, Jarai and Nachmias [29] prove bounds on the effective resistance of branching
random walk in low dimension, thereby settling an open problem formulated in [4] .

Random walk on finite critical clusters have been studied in spatial and non-spatial regime
by Nachmias and Peres [37], Heydenreich and van der Hofstad [23] and Croydon, Hambly and
Kumagai (in preparation).

Croydon [12] studies random walk on a random walk trace, and proves that the scaling limit
is Brownian motion. We expect a similar behaviour for random walk on the IIC backbone (cf.
Theorems 1.4 and 1.9).

Overview of the proofs. As mentioned, thanks to the framework of Kumagai and Misumi [35], the
above theorems all follow once we prove the appropriate volume and effective resistance estimates
of the intersection between the IIC (or backbone) and balls. In the next section we state our main
technical result, Theorem 2.6, which establishes precisely these bounds. But that Theorem 2.6
implies Theorems 0, 1.1, and 1.3 – 1.9 is not obvious. The main idea of the proofs of Kumagai and
Misumi is to first show that simple bounds on the volume and effective resistance of balls imply
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bounds on, for instance, the exit time, if the configuration is ‘nice’. They then show that ‘most’
configurations are nice, and thus get bounds that apply with high probability.

The criteria of [35] are not directly applicable to the extrinsic metric case, so we have to make
a few modifications (see Remark 2.5 below). As an example of the arguments that are involved,
we give our modification of Kumagai and Misumi’s proof to show how Theorem 1.1 follows from
Theorem 2.6 in Appendix A.

Our proofs add to the existing literature in three ways: we prove ball growth and effective
resistance bounds in extrinsic geometry; we generalize exiting results for intrinsic metric to
infinite range models; we establish bounds for the IIC backbone.

We prove Theorem 2.6 in Sections 4 and 5 for the extrinsic case, in Section 6 for the intrinsic
case, in Section 7 for both intrinsic and extrinsic cases on the backbone, and in Section 8 for the
modified case. The proof of Theorem 1.2 is different, so we present it in full in Section 9.

2. DEFINITIONS, IMPORTANT RESULTS AND THE MAIN THEOREM

In this section we state the theorem that implies all the theorems of the introduction (except
Theorem 1.2). We also restate some important results on which our analysis is based and we
introduce most of the definitions that we need.

A standard piece of notation are the generic constants C ≥ c > 0. The value of these constants
may change from line to line, or even within the same equation. We will make no attempt to
determine their numerical value.

The following definitions apply to general graphs:

Definition 2.1 [Random walk terminology]. .
(i) Let Γ= (G ,E) be a graph with vertex set G and edge set E. Define µx as the degree of vertex

x ∈ G, and let µ( · ) be the extension of µx to a measure on Γ. The discrete-time simple
random walk on Γ is the Markov chain with transition probabilities

P x
Γ (X1 = y) = 1

µx
if {x, y} ∈ E . (2.1)

The transition density (or discrete-time heat kernel) is defined as

pΓn(x, y) = P x
Γ (Xn = y)

µy
. (2.2)

Note that pΓn(x, y) = pΓn(y, x).
(ii) Define the edge volume of Γ as

V (Γ) = ∑
x∈G

µx . (2.3)

(iii) Define the quadratic form E as

E ( f , g ) = 1

2

∑
{x,y}∈E

( f (x)− f (y))(g (x)− g (y)). (2.4)

If we think of Γ as an electrical network where the edges represent unit resistors, then we
can think of E ( f , f ) as the energy dissipation of the electrical network when the potential
at the vertices is given by f . We define the set H 2 = { f ∈RG : E ( f , f ) <∞}, so that H 2 can be
viewed as the set of all ‘physical’ potential functions. For two disjoint subsets A and B of G,
we define the effective resistance between A and B as

Reff(A,B)−1 = inf{E ( f , f ) : f ∈ H 2, f |A = 1, f |B = 0}. (2.5)

For vertices x, y ∈V , let Reff(x, y) = Reff({x}, {y}) and Reff(x, x) = 0. The effective resistance is a
metric on subsets of G that is dominated by the intrinsic metric, i.e.,

Reff(A,B) ≤ dΓ(A,B). (2.6)
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Many other useful properties of Reff( · , · ) are known, cf. [13].
(iv) Let σA denote the random walk hitting time of the set A ⊆G, i.e.,

σA = inf{n ≥ 0: Xn ∈ A}. (2.7)

The random walk exit time τA from the set A is given by τA =σAc .
(v) Let G A(x, y) denote the Green’s function of the set A ⊂G:

G A(x, y) := 1

µy
E x
Γ[# of visits of Xn to y before σA] (2.8)

It is easy to establish that G A(x, y) ≤G A(x, x) and that Reff(x, A) =G A(x, x).

For (percolation) subgraphs of Zd we state the following definitions:

Definition 2.2 [Percolation terminology]. .
(i) Given an edge configuration and a set A ⊆ Zd , we write C(A) for the set of vertices that

are connected to A, i.e., C(A) = {y ∈Zd : A ↔ y}. Given an edge configuration and an edge
set B ⊆ E(Zd ), we define the restricted cluster C̃B (A) as the set of vertices y ∈ C(A) that are
connected to A in the (possibly modified) configuration in which all edges in B are closed.
When A = {x} for some x ∈Zd , as will often occur, we write C({x}) = C(x).

(ii) For any pair x, y ∈ Zd , we write {x, y} for the undirected edge between x and y, and we
write (x, y) for the directed edge from x to y. When dealing with directed edges (x, y), we
call x the ‘bottom’ vertex, and y the ‘top’ vertex. We define Er = {(x, y) : x ∈Qr , y ∈Zd }, the
set of directed edges with the bottom vertex inside Qr and the top vertex in Zd .

(iii) Let ω be an edge configuration and b an (open or closed) edge. Let ωb be the edge configu-
ration ω with the status of the edge b changed. We say an edge b is a pivotal edge for the
configurationω and the event E, ifω ∈ E andωb ∉ E, or ifω ∉ E andωb ∈ E. An edge b that
is pivotal for a configuration ω and a connection event {A ↔ B} will always be assumed to
be directed, i.e., b = (b,b), in such a way that ω,ωb ∈ {A ↔ b}∩ {b ↔ B}. When we say that
an edge is pivotal for an event, what we mean is that it is pivotal for that event in some
fixed but unspecified configuration.

(iv) Given a (deterministic or random) set of vertices A and an event E, we say that E occurs on
A, and write {E on A}, if the (possibly modified) configuration ωA in which every edge that
does not have both endpoints in A is made vacant satisfiesωA ∈ E. We adopt the convention
that {x ↔ x on A} occurs if and only if x ∈ A. Similarly, we say that E occurs off A, and
write {E off A}, if {E on Ac }, where Ac is the complement of A, and we say that E occurs
through A, and write {E through A} for the event E \ {E off A}.

(v) Given an edge e = {e1,e2} (open or closed) and a set of vertices A ⊆Zd , we say that e touches
A if either e1 ∈ A, or e2 ∈ A or both.

(vi) We often abbreviate ‘pivotal edge’ by either ‘pivotal’ or simply by ‘piv’, and similarly, we will
often abbreviate ‘backbone-pivotal edge’ by ‘backbone-pivotal’ or ‘bb-piv’.

We use the following pieces of notation repeatedly:

Definition 2.3 [Specific definitions]. .
(i) Define the r -restricted cluster Ur (x) by

Ur (x) = {y ∈Zd : x ↔ y on Qr }. (2.9)

We write Ur (0) =Ur . We similarly write UBb
r to denote the r -restricted cluster of Bb, i.e.,

UBb
r (x) = {y ∈Zd : x ↔ y on Qr ∩Bb}. (2.10)

(ii) We write BBb
r (x;ω) for the intrinsic ball of radius r centered at x on Bb(ω). We write

RBb
eff (A,B) for the effective resistance between A and B in Bb. Similarly, we write Rmod

eff (A,B)
for the effective resistance in the modified configuration described above Theorem 1.5.
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To state the main theorem of this paper we define the following sets:

Definition 2.4 [Sets of ‘good’ radii]. For λ> 1 define

(i) the extrinsic IIC radius set:

JE(λ) =
{

r ∈ [1,∞] :λ−1r 4 ≤V (Ur ) ≤λr 4, λ−1r 2 ≤ Reff(0,Qc
r ) ≤λr 2

and Reff(0, x) ≤λr 2 for all x ∈Ur

}
;

(2.11)

(ii) the intrinsic IIC radius set:

JI(λ) =
{

r ∈ [1,∞] : λ−1r 2 ≤V (Br ) ≤λr 2 and λ−1r ≤ Reff(0,B c
r )

}
; (2.12)

(iii) the extrinsic backbone radius set:

JBb

E (λ) =
{

r ∈ [1,∞] :λ−1r (2∧α) ≤V (UBb
r ) ≤λr (2∧α), λ−1r (2∧α) ≤ RBb

eff (0,Qc
r ) ≤λr (2∧α)

and RBb
eff (0, x) ≤λr (2∧α) for all x ∈UBb

r

}
;

(2.13)

(iv) the intrinsic backbone radius set:

JBb

I (λ) =
{

r ∈ [1,∞] : λ−1r ≤V (Br ) ≤λr and λ−1r ≤ Reff(0,B c
r )

}
; (2.14)

(v) the modified extrinsic IIC radius set:

Jmod

E (λ) =
{

r ∈ [1,∞] :λ−1r 2(2∧α) ≤V (Ur ) ≤λr 2(2∧α), λ−1r (2∧α) ≤ Rmod
eff (0,Qc

r ) ≤λr (2∧α)

and Rmod
eff (0, x) ≤λr (2∧α) for all x ∈Ur

}
;

(2.15)

Remark 2.5 [About the modifications we make to the definitions of Kumagai and Misumi]. (i)
Our definition of JE(λ) differs from the one proposed in [35] in two ways. First, we require an upper
bound on Reff(0,Qc

r ). This bound is not required in [35] because there the choice of metric is restricted
to cases where the upper bound is trivially r . Second, we use the r -restricted cluster Ur , which is not
the extrinsic metric ball. One of the main insights of this paper is that Ur is much easier to work
with than the ‘correct’ ball Qr ∩ IIC and it makes no difference in the proofs, since τQr = τUr for any
random walk started at x ∈Ur and the edge volume of Ur is comparable to that of Qr ∩ IIC.

(ii) Our definition of JI(λ) also differs from the one proposed in [35], as we make no restriction on
Reff(0, x) for points x ∈ Br (0). These resistances are trivially bounded from above by r , and this turns
out to be sufficient.

We are now ready to state our main technical theorem:

Theorem 2.6 [Most balls are good]. If the strong triangle condition is satisfied for some sufficiently
small β, then,
(a) if Assumption O holds, and either the model is finite-range, or Assumption S holds, then there
exist r?(λ) = r? ≥ 1, λ1 > 1 and c1,c ′1, q1 > 0 such that

PIIC(r ∈ JE(λ)) ≥ 1− c1

λq1
for all r ≥ r?,λ≥λ1 (2.16)

and

EIIC[Reff(0,Qc
r )V (Ur )] ≤ c ′1r 6; (2.17)

(b) there exist λ2 > 1 and c2,c ′2, q2 > 0 such that

PIIC(r ∈ JI(λ)) ≥ 1− c2

λq2
for all r ≥ 1,λ≥λ2 (2.18)

and

EIIC[Reff(0,B c
r )V (Br )] ≤ c ′2r 3; (2.19)
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(c) if the model is either finite-range or Assumption S holds, then there exist r?(λ) = r? ≥ 1, λ3 > 1
and c3, c ′3, q3 > 0 such that

PIIC(r ∈ JBb

E (λ)) ≥ 1− c3

λq3
for all r ≥ r?,λ≥λ3 (2.20)

and

EIIC[RBb
eff (0,Qc

r )V (UBb
r )] ≤ c ′3r 2(2∧α); (2.21)

(d) there exist λ4 > 1 and c4,c ′4, q4 > 0 such that

PIIC(r ∈ JBb

I (λ)) ≥ 1− c4

λq4
for all r ≥ 1,λ≥λ4 (2.22)

and

EIIC[RBb
eff (0,B c

r )V (BBb
r )] ≤ c ′4r 2; (2.23)

(e) if Assumption S holds, then there exist r?(λ) = r? ≥ 1, λ5 > 1 and c5, c ′5, q5 > 0 such that

PIIC(r ∈ Jmod

E (λ)) ≥ 1− c5

λq5
for all r ≥ r?,λ≥λ5 (2.24)

and

EIIC[Rmod
eff (0,Qc

r )V (Ur )] ≤ c ′5r 3(2∧α). (2.25)

Remark 2.7. (i) By [35, Propositions 1.3 and 1.4, and Theorem 1.5], all theorems stated in the
introduction except Theorem 1.2 are corollaries to the above theorem. In particular, Theorem 1.1 is
a corollary to (a), Theorems 1.6, 1.7 and 1.8 are corollaries to (b), Theorem 1.4 is a corollary to (c),
Theorem 1.9 is a corollary to (d), and Theorems 1.3 and 1.5 are corollaries to (e).

(ii) We believe that the method of [35] cannot be used to prove the analogue of Theorem 1.1
for long-range spread-out percolation with α< 4 because the method requires that Reff(0,Qc

r ) and
Reff(0, x) scale as the same power of r for all x ∈ Ur . But this does not appear to be the case for
long-range percolation when α < 4. In particular, Lemma 9.3 shows that with high probability,
Reff(0,Qc

r ) is at most of order r (4∧α)/2, whereas Lemma 4.4 can easily be modified to show that
Reff(0, x) = O(r (2∧α)) for all x ∈Ur with high probability. We do not believe that the latter can be
improved to give a bound of the same order as Reff(0,Qc

r ), since the relatively small value for Reff(0,Qc
r )

comes from the presence of edges of length > 2r with one end in Qr , whereas, by the definition of
Ur , these long edges cannot occur on the path from 0 to any x ∈Ur (because they are too long to be
included in Ur ).

We now describe some established results that we use in the course of the proof of Theorem 2.6.
The next theorem states bounds on the expected volume of certain balls. The proof of this

theorem relies heavily on Fourier analysis. The techniques presented in [20] are straightforward
and can be applied to a wide range of similar quantities, but unfortunately the calculations are
typically quite long. In the course of the proofs of Lemmas 4.2 and 4.3 below we will use similar
bounds, but we will omit their proofs. There, we refer the reader to [20] and leave it at that.

Let NBb(r ) be the number of edges in the backbone of the IIC with the bottom vertex at extrinsic
distance at most r from 0, that is, NBb(r ) is the number of (directed) edges e = (e,e) with e ∈Qr ∩IIC
such that {0 ↔ e}, {e open} and {e ↔∞} occur disjointly.

Theorem 2.8 [Cluster and backbone volume bounds, [20]]. If the strong triangle condition is
satisfied for some sufficiently small β, then the following bounds hold:

cr (2∧α) ≤ Epc [|Qr ∩C(0)|] ≤Cr (2∧α); (2.26)

c ′r (2∧α) ≤ EIIC[NBb(r )] ≤C ′r (2∧α); (2.27)

c ′′r 2(2∧α) ≤ EIIC[|Qr ∩ IIC|] ≤C ′′r 2(2∧α). (2.28)
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Note that the expected cluster size can be written in two other, useful ways:

Ep [|Qr ∩C(0)|] = ∑
x∈Qr

τp (x) = (τp ∗1Qr )(0), (2.29)

where 1Qr is the indicator function on Zd of the set Qr and “∗” denotes a convolution.
We also restate an important theorem by Kozma and Nachmias [33]. It gives bounds on the

expected size of an intrinsic ball of radius r with respect to the critical percolation measure, and it
gives a strong upper bound on the intrinsic one-arm probability of critical percolation. Given a
graph Γ= (G ,E) and a subset A ⊆G , define the random set

∂Br (x; A) = {y ∈ A : dΓ(x, y) = r } (2.30)

and the event

H(r ; A) = {∂Br (x; A) 6= ;}. (2.31)

Note that H (r,ωp ) is not an increasing event in p. That is, if we have two percolation configurations,
ωp and ωq with parameters p and q such that p < q , that have been coupled in the standard way
(cf. [15]), then H(r ;ωp ) * H(r ;ωq ). This is not hard to see, as adding edges to a configuration
could actually reduce the length of the shortest path between two points. This makes it difficult
to bound the intrinsic one-arm probability Pp (H(r ;ωp )). Kozma and Nachmias get around this
problem by considering instead

Γp = sup
A⊆Zd×Zd

Pp (H(r ; A)). (2.32)

Clearly, an upper bound on Γp implies an upper bound on Pp (H(r ; A)) for any subgraph A.

Theorem 2.9 [Properties of critical percolation clusters [33]]. If the strong triangle condition is
satisfied for some sufficiently small β, then the following bounds hold:

Epc [|Br (0;ω)|] ≤ Cr ; (2.33)

Γpc (r ) ≤ C /r. (2.34)

Kozma and Nachmias give the proof in [33], where they also prove the accompanying lower
bounds (but we won’t use the lower bounds here). Sapozhnikov recently presented a short and
easy alternative proof of (2.33) [38].

An important tool in the upcoming analysis is the van den Berg-Kesten inequality (or BK-
inequality) [7],[15]. We say an event A is increasing if for any two configurations ω and ω′ such
that ω¹ω′ (that is, any edge that is open in ω is also open in ω′), ω ∈ A implies ω′ ∈ A. Hence, by a
standard coupling argument, if A is increasing, then Pp (A) ≤Pp ′(A) whenever p < p ′.

One version of the BK inequality that is valid for infinite lattices is the following. Let F A
i (i ∈ I )

and F B
j ( j ∈ J) be families of finite subsets of the edges E(Zd ). We consider increasing events A

and B of the form

A = {∃i ∈ I : all bonds in F A
i are open} and B = {∃ j ∈ J : all bonds in F B

j are open}. (2.35)

The disjoint occurence of such A and B is given by

A ◦B = {∃i ∈ I , j ∈ J : F A
i ∩F B

j =∅, all bonds in F A
i and F B

j are open}. (2.36)

The BK-inequality then states

Pp (A ◦B) ≤Pp (A)Pp (B). (2.37)
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3. THE BACKBONE LIMIT REVERSAL LEMMA

Backbone events are by definition not cylinder events, and hence it is a priori not clear whether
the limiting scheme that gives PIIC can be reversed. (By ‘reversing the limit’ of PIIC(E) for a given
event E , we mean that we can express PIIC(E) as the limiting scheme (1.9) applied to some family
of sets Ex , x ∈Zd .) The aim of this section is to show that in many cases we can.

We call an open edge b = {x, y} ∈Zd backbone-pivotal when every infinite self-avoiding walk in
the IIC starting at the origin uses this edge.

It is not difficult to show that there is an infinite number of backbone-pivotal edges PIIC-a.s.
Indeed, having a finite number of backbone-pivotal edges implies that there exist at least two
disjoint infinite paths from the top of the last backbone pivotal. In Theorem 1.4(ii) of [26] it is
proved that in the finite-range setting this does not happen PIIC-a.s. This proof is easily modified
to the infinite-range setting.

The backbone-pivotal edges can be ordered as (bi )∞i=1 so that every infinite self-avoiding walk
starting at 0 passes through bi before passing through bi+1. Also, we can think of the backbone-
pivotal edges as being directed edges b = (x, y), where the direction is such that {0 ↔ x} uses
different edges than {y ↔∞}. For a directed edge b = (x, y), we let b = x denote its bottom, and

b = y its top. Writing bm for the mth backbone-pivotal edge, we define

S∞
m ≡ C̃bm (0) \ C̃bm−1 (0) (3.1)

to be the subgraph of the mth “sausage” (where, by convention, C̃b0 (0) =∅).
If 0 is connected to Qc

r and there are precisely n open pivotal edges for this connection, then
we can again impose an ordering on the open pivotal edges (bi )n

i=1 in such a way that any self-
avoiding path from 0 to Qc

r passes through bi before passing through bi+1. If m ≤ n, we let
S(r )

m ≡ C̃bm (0) \ C̃bm−1 (0) and we let S(r )
m =∅ whenever 0=Qc

r or m > n.
In the same way, we let Sx

m ≡ C̃bm (0) \ C̃bm−1 (0) where bm now is the mth open pivotal edge for
{0 ↔ x}, and Sx

m =∅ if no mth pivotal bond exists for the connection {0 ↔ x}.
We are interested in events that take place on the first m sausages. To this end, we define

Z∞
m ≡

m⋃
i=1

S∞
i , Z(r )

m ≡
m⋃

i=1
S(r )

i , and Zx
m ≡

m⋃
i=1

Sx
i . (3.2)

Note that Z(r )
m and Zx

m may contain fewer than m sausages.
We can similarly define the set of the first m sausages of the backbone graph Bb as Bbm , the

subgraph of Bb that contains 0 when the mth pivotal edge is removed. The prelimit analogue
of Bbm is constructed as follows: consider first the backbone of {0 ↔ x}, that is, let Bbx be the
graph that is induced by the set {z : {0 ↔ z}◦ {z ↔ x}}, and define Bbx

m as the subgraph of Bbx that
contains 0 when the mth pivotal edge is removed.

Even though events occurring on Z∞
m are not necessarily cylinder events, it is still possible to

reverse the IIC-limit for such events, as the following lemma demonstrates.

Lemma 3.1 [Backbone limit reversal lemma]. Consider a model such that for all cylinder events
F , PIIC(F ) = limp↗pc Qp (F ). Then, for any event E of the form

E = {
{bi }n

i=1 is occupied
}

(3.3)

for a set of edges {bi }n
i=1, and any m ∈N,

PIIC

(
E on Z∞

m

)= lim
p↗pc

1

χ(p)

∑
x∈Zd

Pp
(
{E on Zx

m}∩ {0 ↔ x}
)

, (3.4)

and

PIIC(E on Bbm) = lim
p↗pc

1

χ(p)

∑
x∈Zd

Pp
(
{E on Bbx

m}∩ {0 ↔ x}
)

. (3.5)
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Proof. We only prove (3.4); the proof of (3.5) follows almost the exact same strategy. Fix m through-
out the proof. We prove the lemma via a comparison of Z∞

m , Z(r )
m and Zx

m . To this end, we define the
events

Λ∞
(R) ≡ {

ω : Z∞
m =Z(R)

m

}
; (3.6)

Λ(r )
(R) ≡ {

ω : Z(r )
m =Z(R)

m and Z(R)
m contains at least m pivotals for 0 ↔Qc

r

}
; (3.7)

Λ(r )
x ≡ {

ω : Z(r )
m =Zx

m and Zx
m contains at least m pivotals for 0 ↔ x

}
. (3.8)

We show that it is improbable that these sets are different when we compare them on the same
configuration and near the origin. Therefore, we may replace one with the other once we take a
suitable limit.

We start by observing that Λ∞
(R) ⊆ Λ∞

(R+1) for any R, and that Λ(r )
(R) ⊆ Λ(r+1)

(R) and Λ(r )
x ⊆ Λ(r+1)

x for all
r < R and x ∈Qc

R .
For any R we can write{

E on Z∞
m

}= ({
E on Z∞

m

}∩Λ∞
(R)

)∪̇({
E on Z∞

m

}∩ (Λ∞
(R))

c)≡ F 1
m(R)∪̇F 2

m(R) (3.9)

(we write ∪̇ to indicate that this is the union of two mutually exclusive events). At the end of the
proof we take the limit R →∞. In this limit, the event (Λ∞

(R))
c has probability 0 under PIIC for the

following reasons: The occurrence of (Λ∞
(R))

c implies that there exists a path from one of the first m
sausages to Qc

R that is disjoint of the backbone. In the limit R →∞ this implies that there exist
two disjoint connections to ∞ and this event does not occur PIIC-almost surely. Indeed, since
Λ∞

(R) ⊆Λ∞
(R+1), by monotone convergence,

limsup
R→∞

PIIC(F 2
m(R)) ≤ lim

R→∞
PIIC

(
(Λ∞

(R))
c)=PIIC

(
lim

R→∞
(Λ∞

(R))
c
)
= 0. (3.10)

For F 1
m(R), the occurrence ofΛ∞

(R) implies {E on Z∞
m} = {E on Z(R)

m }. Furthermore, for any r such
that 0 < r < R we can write

F 1
m(R) = ({

E on Z(R)
m

}∩Λ∞
(R) ∩Λ(r )

(R)

)∪̇({
E on Z(R)

m

}∩Λ∞
(R) ∩ (Λ(r )

(R))
c)≡G1

m(R,r )∪̇G2
m(R,r ). (3.11)

In the double limit where first R →∞ and then r →∞, the probability of G2
m(R,r ) vanishes as

lim
r→∞ lim

R→∞
PIIC(G2

m(R,r )) ≤ lim
r→∞ lim

R→∞
PIIC((Λ(r )

(R))
c ) = lim

r→∞PIIC((Λ∞
(r ))

c ) = 0. (3.12)

Here we again used the argument that in the limit there must exist two disjoint paths to ∞.
We can rewrite G1

m(R,r ) as follows:

G1
m(R,r ) = ({

E on Z(R)
m

}∩Λ(r )
(R)

)
\
({

E on Z(R)
m

}∩Λ(r )
(R) ∩ (Λ∞

(R))
c)≡ H 1

m(R,r ) \ H 2
m(R,r ). (3.13)

Since H 2
m(R,r ) ⊆ (Λ∞

(R))
c we again have that PIIC(H 2

m(R,r )) → 0 as first R →∞ followed by r →∞.
Now, H 1

m(R,r ) is a cylinder event, so that (1.9) applies,

PIIC(H 1
m(R,r )) = lim

p↗pc

1

χ(p)

∑
x∈Qc

R

Pp
(
H 1

m(R,r )∩ {0 ↔ x}
)

(3.14)

(where the sum over x ∈QR vanishes in the p ↗ pc limit).
The crucial observation is thatΛ(r )

(R) ∩ {0 ↔ x} =Λ(r )
x ∩ {0 ↔ x} for r < R and x ∈Qc

R , so that{
E on Z(R)

m

}∩Λ(r )
(R) ∩ {0 ↔ x} = {

E on Zx
m

}∩Λ(r )
(R) ∩ {0 ↔ x}. (3.15)

It follows that

H 1
m(R,r )∩ {0 ↔ x} = {

E on Z(R)
m

}∩Λ(r )
(R) ∩ {0 ↔ x} = {

E on Zx
m

}∩Λ(r )
(R) ∩ {0 ↔ x}

= ({
E on Zx

m

}∩ {0 ↔ x}
)

\
({

E on Zx
m

}∩ (Λ(r )
(R))

c ∩ {0 ↔ x}
)

≡ M 1
m(x) \ M 2

m(R,r, x).

(3.16)
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For M 2
m(R,r, x) we note that (Λ(r )

(R))
c is a cylinder event, so that (1.9) implies

lim
r→∞ lim

R→∞
lim

p↗pc

1

χ(p)

∑
x∈Qc

R

Pp (M 2
m(R,r, x)) ≤ lim

r→∞ lim
R→∞

lim
p↗pc

1

χ(p)

∑
x∈Qc

R

Pp ((Λ(r )
(R))

c ,0 ↔ x)

≤ lim
r→∞ lim

R→∞
PIIC((Λ(r )

(R))
c ) = lim

r→∞PIIC((Λ∞
(r ))

c ) = 0.
(3.17)

Combining (3.9)–(3.16),

PIIC

(
E on Z∞

m

) = PIIC(F 2
m(R))+PIIC(G2

m(R,r ))−PIIC(H 2
m(R,r ))

+ lim
p↗pc

1

χ(p)

∑
x∈Qc

R

(
Pp (M 1

m(x))−Pp (M 2
m(R,r, x))

)
. (3.18)

Now we add 0 = limp↗pc χ(p)−1 ∑
x∈QR

Pp (M 1
m(x)) to the right-hand side, so that the term involving

M 1
m(x) is independent of r and R . Then we let R →∞, so thatPIIC(F 2

m(R)) andPIIC(H 2
m(R,r )) vanish.

After this we let r →∞, so that the terms involving G2
m(R,r ) and M 2

m(R,r, x) also disappear, by
(3.12) and (3.17). The result is

PIIC

(
E on Z∞

m

)= lim
p↗pc

1

χ(p)

∑
x∈Zd

Pp (M 1
m(x)) = lim

p↗pc

1

χ(p)

∑
x∈Zd

Pp
({

E on Zx
m

}∩ {0 ↔ x}
)

, (3.19)

completing the proof. �

4. UPPER BOUNDS FOR THE EXTRINSIC CASE

In this section we prove all the upper bounds that are needed to establish Theorem 2.6(a).
Note that all bounds that we prove in this section also hold for long-range percolation with α≤ 2
when all occurrences of r 2 are replaced with rα, all occurrences of r 4 are replaced with r 2α and all
occurrences of r 6 are replaced with r 3α.

Effective resistance between 0 and Qc
r . We start by proving that the effective resistance between

the origin and the boundary of Qr is with high probability bounded by λr 2 under PIIC.

Lemma 4.1 [IIC effective resistance upper bound]. Suppose α> 2. Whenever the strong triangle
condition is satisfied with sufficiently smallβ, there exists a constant C > 0 such that EIIC[Reff(0,Qc

r )] ≤
Cr 2. As a result, for all λ> 0

PIIC

(
Reff(0,Qc

r ) ≥λr 2)≤C /λ. (4.1)

Proof. We would like to use the limiting scheme (1.9) to evaluate this bound. This limit is es-
tablished for cylinder events, but the random variable Reff(0,Qc

r ) is not necessarily defined in
terms of cylinder events when the edge lengths are unbounded. Indeed, when we are dealing
with finite-range percolation models, we can use that Reff(0,Qc

r ) can be determined by inspecting
the status of edges with both ends inside Qr+L only, but this is not the case when dealing with
long-range percolation, and so it is not immediately clear that the limit in (1.9) can be reversed. Of
course this is only a technical issue: fixing a large R and closing all edges that are longer than R
gives a usable upper bound on Reff(0,Qc

r ) whose value is measurable with respect to Qr+R . Thus we
can use the IIC limiting scheme (1.9). We will write down this dependence on R explicitly below.
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But before we use the limiting scheme we observe that PIIC-a.s. Reff(0,Qc
r ) = Reff(0,Qc

r )1{0↔Qc
r }, so

that:

EIIC[Reff(0,Qc
r )] =EIIC[Reff(0,Qc

r )1{0↔Qc
r }]

= lim
p↗pc

1

χ(p)

∑
x∈Zd

Ep [Reff(0,Qc
r )1{0↔x}1{0↔Qc

r }]

= lim
p↗pc

1

χ(p)

∑
x∈Qr

Ep [Reff(0,Qc
r )1{0↔x}1{0↔Qc

r }]

+ lim
p↗pc

1

χ(p)

∑
x∈Qc

r

Ep [Reff(0,Qc
r )1{0↔x}1{0↔Qc

r }].

(4.2)

We have split up the contributions from x ∈Qr and from x ∉Qr and we treat them separately.
To bound the first term on the right-hand side we use that Reff(0,Qc

r )1{0↔Qc
r } can be bounded

from above by Cd r d , for some constant Cd that depends only on d : indeed, the random variable
is only non-zero when there is a path from 0 to Qc

r and the maximum effective resistance of any
such configuration is achieved by a configuration where every vertex lies on the same unique path
of open edges from the origin to a single vertex on the boundary of the ball. By the series law
for resistances, the effective resistance of such a configuration is proportional to the number of
vertices in the ball, and so it can be bounded by Cd r d . Hence,

lim
p↗pc

1

χ(p)

∑
x∈Qr

Ep [Reff(0,Qc
r )1{0↔x}1{0↔Qc

r }] ≤ lim
p↗pc

1

χ(p)
Cd r d

∑
x∈Qr

τp (x)

≤ lim
p↗pc

1

χ(p)
Cd r dCr 2 = 0,

(4.3)

where in the second inequality we use the bound from Theorem 2.8, and in the final equality we
use that χ(p) diverges in the limit, while r is fixed.

To bound the second term on the right-hand side of (4.2), first note that for x ∉Qc
r , {0 ↔ x} ⊆

{0 ↔Qc
r }, so we can drop the second indicator function. Recall (2.6) and note that the intrinsic

distance between two connected sets A and B is bounded from above by the number of open
edges between them, that is,

d(A,B)1{A↔B} ≤
∑
e∈E

1{A↔e}◦{e open}◦{e↔B}. (4.4)

A configuration in {0 ↔Qc
r ,0 ↔ x} with x ∈Qc

r may contain two or more (partially overlapping)
paths from 0 to Qc

r . The graph distance from 0 to Qc
r is equal to the length of the shortest such

path. Therefore, the effective resistance Reff(0,Qc
r ) is at most the number of edges from 0 to Qc

r
along a path that ends at x. Hence we can apply (2.6) and (4.4) with A = {0} and B =Qc

r ∩C(x) to
bound Reff(0,Qc

r ):

Ep [Reff(0,Qc
r )1{0↔x}] ≤

∑
e∈Er

Ep [1{0↔e}◦{e open}◦{e↔x}] (4.5)

(recall the definition of Er , Definition 2.2(ii)). We get

lim
p↗pc

1

χ(p)

∑
x∈Qc

r

Ep [Reff(0,Qc
r )1{0↔x}] ≤ lim

p↗pc

1

χ(p)

∑
x∈Qc

r

∑
e∈Er

Ep [1{0↔e}◦{e open}◦{e↔x}]. (4.6)

Now we apply the BK inequality to the right-hand side to get the upper bound

lim
p↗pc

1

χ(p)

∑
x∈Qc

r

∑
e∈Er

τp (e)pD(e)τ(x −e). (4.7)

If we extend the summation of x to Zd , then we get a factor χ(p). The summation over pD(e)
then leaves us with a factor p and the summation over edges in Er as a result simplifies to the
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summation over one end of the edges (we choose the bottom end). We also take the limit p ↗ pc

to get the upper bound

lim
p↗pc

1

χ(p)

∑
x∈Qc

r

Ep [Reff(0,Qc
r )1{0↔x}] ≤ pc

∑
e∈Qr

τpc (e) = pcEpc [|Qr ∩C(0)|] ≤Cr 2, (4.8)

where the last inequality is due to our volume bound in Theorem 2.8. Combining (4.3) and (4.8)
we conclude

EIIC[Reff(0,Qc
r )] ≤Cr 2. (4.9)

Using Markov’s inequality with this bound we get

PIIC

(
Reff(0,Qc

r ) ≥λr 2)≤ 1

λr 2 EIIC[Reff(0,Qc
r )] ≤C /λ. (4.10)

�

The edge volume of Ur . Recall Definitions 2.1(ii) and 2.3(i). Next we turn to the upper bound on
the probability that the edge volume of Ur is larger than λr 4.

Lemma 4.2 [IIC edge volume upper bound]. Suppose α> 2. If the strong triangle condition is
satisfied for some sufficiently small β, then there exists a C > 0 such that for all λ> 0,

PIIC

(
V (Ur ) ≥λr 4)≤C /λ. (4.11)

Proof. By Markov’s inequality,

PIIC

(
V (Ur ) ≥λr 4)≤ EIIC[V (Ur )]

λr 4 . (4.12)

Note that

V (Ur ) ≤V (Qr ∩ IIC) = ∑
b∈Er

1{0↔b,b open}. (4.13)

Therefore,

EIIC[V (Ur )] ≤ ∑
b∈Er

EIIC[1{0↔b,b open}] = lim
p↗pc

1

χ(p)

∑
b∈Er

∑
x∈Zd

Pp (0 ↔ b,b open,0 ↔ x) (4.14)

The event in Pp can be contained as follows:

{0 ↔ b,b open,0 ↔ x} ⊆ ⋃
z∈Zd

{0 ↔ z}◦ {z ↔ b,b open}◦ {z ↔ x}. (4.15)

Furthermore,

{z ↔ b,b open} = {z ↔ b}◦ {b open}∪ {z ↔ b}◦ {b open}. (4.16)

Applying (4.15), (4.16) and the BK-inequality, we get

EIIC[V (Ur )] ≤ lim
p↗pc

p

χ(p)

∑
b∈Er

∑
z,x∈Zd

τp (z)[τp (b − z)+τp (b − z)]D(b)τp (x − z). (4.17)

Summing over x gives a factor χ(p). Taking the limit p ↗ pc yields

EIIC[V (Ur )] ≤ pc
∑

b∈Er

∑
z∈Zd

τpc (z)[τpc (b − z)+τpc (b − z)]D(b)

= pc (D ∗1Qr ∗τpc ∗τpc )(0)+pc (1Qr ∗D ∗τpc ∗τpc )(0) ≤Cr 4.
(4.18)

The second inequality can be established in the same way as was done in the course of the proof
of Theorem 2.8 (cf. [20, Theorem 1.5]). Applying this bound to (4.12) completes the proof. �
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An upper bound on Reff(0,Qc
r ) ·V (Ur ). The second part of Theorem 2.6(a) states an upper bound

on the product of the edge volume and the effective resistance of Ur . We prove this bound here.

Lemma 4.3 [Bound on the expectation of the product of the volume and resistance of a ball]. Let
r ≥ 1, and suppose α> 2. If the strong triangle condition is satisfied for some sufficiently small β,
then there exists a constant C > 0 such that

EIIC[Reff(0,Qc
r )V (Ur )] ≤Cr 6. (4.19)

Proof. Both Reff(0,Qc
r ) and V (Ur ) are random variables that can be bounded in terms of indicator

functions of two-point function events and of cylinder events (we use the same arguments as we
used at the beginning of the proof of Lemma 4.1). After we have done so, we may reverse the limit:

EIIC[Reff(0,Qc
r )V (Ur )] = EIIC[Reff(0,Qc

r )V (Ur )1{0↔Qc
r }]

≤ ∑
b∈Zd×Zd

EIIC[Reff(0,Qc
r )1{b∈Ur ,b open}1{0↔Qc

r }]

≤ ∑
b∈Er

lim
p↗pc

1

χ(p)

∑
x∈Zd

Ep [Reff(0,Qc
r )1{0↔b,b open}1{0↔x}],

(4.20)

where in the second inequality, we used the same arguments as in (4.3) to argue that the contri-
butions from x ∈ Qr vanish in the limit p ↗ pc . And because the summation is now restricted
to x ∈ Qc

r the indicator 1{0↔Qc
r } was dropped. Since x ∈ Qc

r , we can apply the same bound on
Reff(0,Qc

r )1{0↔x} as was used in (4.5):

Reff(0,Qc
r )1{0↔x} ≤

∑
e∈Er

1{0↔e}◦{e open}◦{e↔x}. (4.21)

Hence,

EIIC[Reff(0,Qc
r )V (Ur )] ≤ ∑

b∈Er

lim
p↗pc

1

χ(p)

∑
x∈Qc

r

∑
e∈Er

Ep [1{0↔e}◦{e open}◦{e↔x}∩{0↔b,b open}] (4.22)

The event in the indicator function implies that there exists some vertex z ∈Zd such that the path
0 ↔ x and the path 0 ↔ b split at z and that z lies either before or after e on the path 0 ↔ x, i.e.,{

{0 ↔ e}◦ {e open}◦ {e ↔ x}
}∩{

{0 ↔ b,b open}
}

⊆ ⋃
z∈Zd

{{
{0 ↔ z}◦ {z ↔ e}◦ {e open}◦ {e ↔ x}◦ {z ↔ b,b open}

}
∪{

{0 ↔ e}◦ {e open}◦ {e ↔ z}◦ {e ↔ x}◦ {z ↔ b,b open}
}}

. (4.23)

Making this replacement, applying (4.16) and using the BK-inequality, we get:

EIIC[Reff(0,Qc
r )V (Ur )] ≤ lim

p↗pc

p2

χ(p)

∑
x∈Qc

r

∑
z,∈Zd

∑
e,b∈Er

[
τp (z)τp (e − z)τp (x −e)

+τp (e)τp (z −e)τp (x − z)
]
[τp (b − z)+τp (b − z)]D(b)D(e). (4.24)

Now we can sum over x and take the limit to get

EIIC[Reff(0,Qc
r )V (Ur )] ≤ p2

c

∑
z∈Zd

∑
e∈Er

[
τpc (z)τpc (e − z)+τpc (e)τpc (z −e)

]
× [

(τpc ∗1Qr )(z)+ (τpc ∗D ∗1Qr )(z)
]
D(e). (4.25)

where we rewrote the terms involving b as a convolution. The factor D dropped out in the first
term because, by definition,

∑
x∈Zd D(x − y) = 1 for any y . Since both convolutions attain their
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maximum at z = 0 and since both contribute at most a factor Cr 2, we have, by Theorem 2.8,

EIIC[Reff(0,Qc
r )V (Ur )] ≤Cr 2

∑
z∈Zd

∑
e∈Er

[
τpc (z)τpc (e − z)D(e)+τpc (e)D(e)τpc (z −e)

]
≤Cr 2[(τpc ∗τpc ∗1Qr )(0)+ (τpc ∗D ∗τpc ∗1Qr )(0)

]
.

(4.26)

We can bound the convolutions using the Fourier-space techniques introduced in [20]. The result
is that both convolutions can be bounded by C ′r 4, so it follows that

EIIC[Reff(0,Qc
r )V (Ur )] ≤Cr 6, (4.27)

as required. �

The effective resistance between 0 and x ∈Ur . To show that the final upper bound in Definition
2.4(i) is satisfied we need to show that with a probability proportional to 1−1/λ there are no
vertices x in Ur such that Reff(0, x) exceeds λr 2.

Lemma 4.4 [All vertices in Ur are well behaved]. Let α > 2. If the strong triangle condition is
satisfied for some sufficiently small β, then there exists a C > 0 such that for all λ> 0

PIIC

(∃x ∈Ur such that Reff(0, x) ≥λr 2)≤C /λ. (4.28)

Proof. We write m =λr 2/2. Recall the definition of UBb
r in Definition 2.3(i). We start by splitting

up the event in PIIC in (4.28) according to whether |UBb
r | is greater than m or not, i.e.,

PIIC

(∃x ∈Ur such that Reff(0, x) ≥λr 2)=PIIC

(∃x ∈Ur s.t. Reff(0, x) ≥λr 2, |UBb
r | ≤ m

)
+PIIC

(∃x ∈Ur s.t. Reff(0, x) ≥λr 2, |UBb
r | > m

)
. (4.29)

We can bound the second term on the right-hand side using |UBb
r | ≤ NBb(r ) and Markov’s

inequality,

PIIC

(∃x ∈Ur s.t. Reff(0, x) ≥λr 2, |UBb
r | > m

)≤PIIC

(|UBb
r | > m

)≤PIIC(NBb(r ) > m)

≤ EIIC[NBb(r )]

m
≤ 2Cr 2

λr 2 ≤ C

λ
,

(4.30)

where the second-to-last inequality follows from Theorem 2.8.
Bounding the first term on the right-hand side of (4.29) is more involved. Since Reff(0, x) ≤ d(0, x)

the probability of this event is bounded from above by the probability of the event

{∃x ∈Ur s.t. d(0, x) ≥ 2m, |UBb
r | ≤ m}. (4.31)

This event implies that x ∈Ur \UBb
r , since, if x ∈UBb

r , then d(0, x) would be bounded from above
by m. This means that there exists a (directed) open edge (u, v) such that it is the only open edge
on the path from 0 to x with u ∈UBb

r and v ∈Ur \UBb
r . This edge is pivotal for the connection from

0 to x. Furthermore, since d(0,u) ≤ m and d(0, x) ≥ 2m, it follows that d(v, x) ≥ m −1. Finally,
since {0 ↔ u} occurs on Qr (by the definition of Ur ), the vertex u must lie on Z∞

R , for some R that
depends only on r and d . Hence, we can contain (4.31) by the following event:⋃

u,v∈Qr

{
0 ↔ u on C̃(u,v)(0)∩Z∞

R , (u, v) open, ∂Bm−1(v) 6= ; off C̃(u,v)(0)∪Qc
r

}
, (4.32)

so that

PIIC(∃x ∈Ur s.t. d(0, x) ≥ 2m, |UBb
r | ≤ m)

≤ ∑
u,v∈Qr

PIIC

(
0 ↔ u on C̃(u,v)(0)∩Z∞

R , (u, v) open,

∂Bm−1(v) 6= ; off C̃(u,v)(0)∪Qc
r

)
. (4.33)
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The event inside PIIC on the right-hand side is the intersection between one backbone event and
two cylinder events. Thus, by Lemma 3.1, it follows that we may reverse the limit for PIIC on the
right-hand side of (4.33) to get

∑
u,v∈Qr

PIIC

(
0 ↔ u on C̃(u,v)(0)∩Z∞

R , (u, v) open, ∂Bm−1(v) 6= ; off C̃(u,v)(0)∪Qc
r

)
= lim

p↗pc

1

χ(p)

∑
y∈Zd

∑
u,v∈Qr

Pp

(
{0 ↔ u}◦ {u ↔ y} on C̃(u,v)(0), (u, v) open,

∂Bm−1(v) 6= ; off C̃(u,v)(0)∪Qc
r

)
. (4.34)

We next use the Factorization Lemma (see [25, Lemma 2.2]). The variant of the Factorization
Lemma that we need states that for two events E and F , a vertex y and a directed edge (u, v) with
E ⊆ {u ∈ C̃(u,v)(y), v ∉ C̃(u,v)(y)}, the following equality holds:

Pp (E on C̃(u,v)(y), (u, v) open, F off C̃(u,v)(y))

= pD(u − v)Ep

[
1{E on C̃ (u,v)(y)}PC

(
F off C̃(u,v)(y)

)]
, (4.35)

where PC denotes that the cluster C̃(u,v)(y) is fixed with respect to PC (but is random with respect
to Epc ).

By dropping the restriction that {∂Bm−1(v) 6= ;} occurs off Qc
r on the right-hand side of (4.34),

we get an upper bound that fits precisely with the formulation of the Factorization Lemma as
stated above. Applying (4.35), we thus get the upper bound

lim
p↗pc

1

χ(p)

∑
y∈Zd

∑
u,v∈Qr

pD(u − v)Ep

[
1{{0↔u}◦{u↔y} on C̃ (u,v)(0)}

×Pp,C
(
∂Bm−1(v) 6= ; off C̃(u,v)(0)

)]
. (4.36)

From (2.32) and Theorem 2.9 it follows that, uniformly in p ∈ [0, pc ] and for any vertex x ∈Zd ,
any set A ⊂Zd and any n ≥ 1,

Pp (∂Bn(x) 6= ; off A) ≤C /n uniformly in A. (4.37)

Hence, using the above bound, Pp (a ↔ b on A) ≤Pp (a ↔ b) and the BK-inequality, we can bound
(4.36) by

lim
p↗pc

C

mχ(p)

∑
y∈Zd

∑
u,v∈Qr

τp (u)τp (y −u)pD(u − v). (4.38)

We can sum over y to get a factor χ(p). This cancels the factor 1/χ(p), so we can take the limit
p ↗ pc to get the upper bound on (4.38),

C

m

∑
u,v∈Qr

τpc (u)pc D(u − v) ≤ Cr 2

m
= C

λ
, (4.39)

where the final bound follows from Theorem 2.8, m =λr 2/2, and the fact that
∑

x D(x) = 1.
The result is that

PIIC

(∃x ∈Ur s.t. Reff(0, x) ≥λr 2, |UBb
r | ≤ m

)≤C /λ, (4.40)

and this, combined with (4.29) and (4.30), completes the proof of Lemma 4.4. �
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5. LOWER BOUNDS FOR THE EXTRINSIC CASE

In this section, we prove all the lower bounds that are needed for the proof of Theorem 2.6(a). In
this analysis we will use the intrinsic-metric ball Br and of the related ball of pivotal edges, Bpiv(r ):
for x ∈Zd and A ⊂Zd , we let Npiv(x, A) denote the number of open and pivotal edges for x ↔ A,
where by convention, Npiv(x, A) =∞ when x = A. We define

Bpiv(r ) = {x : Npiv(0, x) ≤ r }, Vpiv(r ) = |Bpiv(r )|. (5.1)

The following proposition, the main result in this section, gives lower bounds on Reff(0,Qc
r ) and

V (Ur ).

Proposition 5.1 [Lower bounds on the extrinsic effective resistance and volume]. Assume that
all of the following are satisfied:

(i) the strong triangle condition is satisfied for some sufficiently small β;
(ii) Assumption O holds;

(iii) the model is finite-range or satisfies Assumption S;
(iv) there exist C ′,ε,η> 0 such that

PIIC

(|Br ∩C(0)| ≤ εr 2)≤C ′εη. (5.2)

Then there exists r?(ε) = r? ≥ 1, C > 0 and κ> 0 such that, for r ≥ r?,

PIIC

(
Reff(0,Qc

r ) ≤ εr 2)≤Cεκ; (5.3)

PIIC

(
V (Ur ) ≤ εr 4)≤Cεκ. (5.4)

The assumption (5.2) is proved in Lemma 6.1 below (it is equivalent to (6.2)).

Proof of Theorem 2.6(a) subject to Proposition 5.1. Combining Lemmas 4.1 – 4.4 and Proposition
5.1 with λ= 1/ε establishes Theorem 2.6(a). �

The proof of Proposition 5.1 is organized as follows. In Section 5.1 we use Assumptions O
and S to reduce Proposition 5.1 to a bound on the number of backbone pivotal edges in Qr .
This is formulated in Proposition 5.3 below. Then, in Section 5.2 we use Assumption S to prove
Proposition 5.3.

5.1. Reduction to the number of backbone-pivotals in an extrinsic ball
We start by bounding the probability that Reff(0,Qc

r ) and V (Ur ) are small in terms of the number
of pivotals for {0 ↔Qc

r }:

Lemma 5.2 [Bounds in terms of the number of pivotals]. For each r ≥ 1 and a ∈ (0,1), the
following bounds hold:

PIIC

(
Reff(0,Qc

r ) ≤ εr 2)≤PIIC

(
Npiv(0,Qc

r ) ≤ εr 2) ; (5.5)

PIIC

(
V (Ur ) ≤ εr 4)≤PIIC

(
Npiv(0,Qc

r ) ≤ εar 2)+PIIC

(|B(εar 2)∩C(0)| ≤ εr 4) . (5.6)

Proof. The proof of (5.5) follows from the bound

Reff(0,Qc
r ) ≥ Npiv(0,Qc

r ). (5.7)

Indeed, the effective resistance of series of elements is the sum of the effective resistances of the
elements. When an edge is pivotal for {0 ↔Qc

r }, then all paths from 0 to Qc
r must pass through the

edge. Thus, we can think of the pivotals, and the intermediate sausages, as lying in series. Since
the effective resistance of an edge equals 1, we get (5.7) by the series law of resistances.
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For (5.6), we note that V (Ur ) ≥ |Ur |−1, so it suffices to prove this bound for |Ur |. Also note that

PIIC

(|Qr ∩C(0)| ≤ εr 4)=PIIC

(|Qr ∩C(0)| ≤ εr 4, Npiv(0,Qc
r ) ≤ εar 2)

+PIIC

(|Qr ∩C(0)| ≤ εr 4, Npiv(0,Qc
r ) > εar 2) . (5.8)

The first term can be bounded by the right-hand side of (5.5). For the second term of (5.8) we note
that if Npiv(0,Qc

r ) > εar 2, then |Qr ∩C(0)| ≥ |B(εar 2)∩C(0)|, so that |B(εar 2)∩C(0)| ≤ |Qr ∩C(0)| ≤
εr 4 holds a.s. �

Now we state the main technical result of this section. We start by introducing some notation.
Recall the definition of Sn above (1.12) and define the pivotal exit time of the ball Qr by

H(r ) = inf
{
n : Sn+1 ∈Qc

r

}
. (5.9)

Thus, H(r ) is the number of backbone-pivotals up to the time at which the process (Sn)∞n=0 leaves
the extrinsic ball for the first time.

Proposition 5.3 [A bound on the number of pivotals]. If Assumption O holds and if the strong
triangle condition is satisfied for some sufficiently small β, and furthermore there exists r?(ε) =
r? ≥ 1 and C ′, q > 0 such that

PIIC

(
H(r ) ≤ εr 2)≤C ′εq (5.10)

then there exists C > 0 and γ> 0 such that, for all r ≥ r?,

PIIC

(
Npiv(0,Qc

r ) ≤ εr 2)≤Cεγ. (5.11)

The assumption (5.10) is proved in Lemma 5.4 below. It is a consequence of Assumption S, but
in fact it holds under the considerably weaker assumption that limsupr→∞PIIC(H (r ) ≤ εr 2) ≤ 1−δ
for some δ> 0. This assumption can be proved for without any knowledge of the scaling limit (but
the proof does appear to require a suitable upper bound on the one-arm probability).

We defer the proof of Proposition 5.3 to Subsection 5.2, and now focus on its consequences. We
are ready to prove Proposition 5.1.

Proof of Proposition 5.1 subject to Proposition 5.3. The bound in (5.3) follows directly from (5.5)
and Proposition 5.3 with C ′ =C and κ= γ. For the proof of (5.4), we use (5.6). The first term in
(5.6) can be bounded using Proposition 5.3: for each a ∈ (0,1),

PIIC

(
Npiv(0,Qc

r ) ≤ εar 2)≤Cεaγ. (5.12)

To bound the second term in (5.6) we need to show that there exists a ∈ (0,1) for which we can
find a κ> 0 such that

PIIC

(|B(εar 2)∩C(0)| ≤ εr 4)≤Cεκ. (5.13)

Rewriting with rε = εa/2r yields

PIIC

(|B(εar 2)∩C(0)| ≤ εr 4)=PIIC

(|B(r 2
ε )∩C(0)| ≤ ε1−2ar 4

ε

)≤Cεη(1−2a), (5.14)

where the bound follows from the assumption (5.2).
By (5.14), the second term on the right-hand side is bounded by Cεη(1−2a) when a ∈ (0,1/2).

Thus, for any a ∈ (0,1/2), (5.4) follows with κ= min{aγ,η(1−2a)} > 0. �

5.2. Proof of Proposition 5.3
We start by relating Npiv(0,Qc

r ) to the number of edges that are pivotal for 0 ↔Qc
r that are inside

a smaller ball. We fix a ∈ (0,1) and bound

Npiv(0,Qc
r ) ≥ Ngood(εar ) ≡ #

{
e ∈Qεa r : e occupied and pivotal for 0 ↔Qc

r

}
. (5.15)
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Recall the definition of H(r ) in (5.9) above. Since any pivotal for {0 ↔ Qc
r } is also backbone-

pivotal, we can split, for any a ∈ (0,1),

H(εar ) = Ngood(εar )+ (
H(εar )−Ngood(εar )

)≡ Ngood(εar )+Nbad(εar ), (5.16)

By definition, Nbad(εar ) is the number of edges e with e ∈Qεa r that are backbone-pivotals such
that all earlier backbone-pivotals are also in Qεa r , but that are not pivotal for {0 ↔Qc

r }. Clearly,
Nbad(εar ) ≥ 0, but the idea is to show that not many pivotal edges are ‘bad’.1

We can bound

PIIC

(
Npiv(0,Qc

r ) ≤ εr 2)≤PIIC

(
Ngood(εar ) ≤ εr 2) (5.17)

≤PIIC

(
H(εar ) ≤ 2εr 2)+PIIC

(
Nbad(εar ) ≥ εr 2) .

We start by bounding PIIC

(
Nbad(εar ) ≥ εr 2

)
. Using Markov’s inequality gives

PIIC

(
Nbad(εar ) ≥ εr 2)≤ EIIC[Nbad(εar )]

εr 2 . (5.18)

It is not hard to see that for any edge e that counts toward Nbad(εar ) there exists a vertex z ∈Qεa r

such that the event

{0 ↔ z}◦ {z ↔Qc
r }◦ {z ↔ e}◦ {e open}◦ {e ↔∞} (5.19)

occurs. Thus,

EIIC[Nbad(εar )] = ∑
e∈Eεa r

∑
z∈Qεa r

PIIC

(
{0 ↔ z}◦ {z ↔Qc

r }◦ {z ↔ e}◦ {e open}◦ {e ↔∞}
)

. (5.20)

By Lemma 3.1 and the BK-inequality,

EIIC[Nbad(εar )] ≤ ∑
e∈Eεa r

∑
z∈Qεa r

lim
p↗pc

1

χ(p)

∑
x∈Zd

Ppc

(
{0 ↔ z}◦ {z ↔Qc

r }◦ {z ↔ e}◦ {e open}◦ {e ↔ x}
)

≤ ∑
e∈Eεa r

∑
z∈Qεa r

lim
p↗pc

1

χ(p)

∑
x∈Zd

τpc (z)Ppc (z ↔Qc
r )τpc (e − z)pD(e)τpc (x −e)

≤ ∑
e∈Eεa r

pc D(e)
∑

z∈Qεa r

τpc (z)τpc (e − z)Ppc (z ↔Qc
r ).

(5.21)

Since z ∈Qεa r , we have by Assumption O that uniformly in z,

Ppc (z ↔Qc
r ) ≤Ppc (0 ↔Qc

r /2) ≤Cr−2. (5.22)

Therefore, we end up with

EIIC[Nbad(εar )] ≤C pc r−2
∑

e∈Qεa r

(τpc ∗τpc )(e) ≤Cr−2(εar )4. (5.23)

where the last inequality follows from Theorem 2.8. Thus, we arrive at

EIIC[Nbad(εar )] ≤Cε4ar 2, (5.24)

so that by (5.18)

PIIC

(
Nbad(εar ) ≥ εr 2)≤Cε4a−1, (5.25)

which satisfies (5.11) with γ= 4a −1 > 0 when a > 1/4. Applying (5.25) to (5.17) with a ∈ (1/4,1/2)
completes the proof of Proposition 5.3. �

1This argument fails for long-range spread-out percolation with α< 4, as the number of ‘bad’ pivotals is not small.
In this regime the probability of having long open edges (say longer than 2r ) in the IIC near the origin is not small, and
the presence of such an edge will render all of the backbone-pivotals beyond this point ‘bad’.
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5.3. A bound on the pivotal exit time
Next, we investigate the assumption in Proposition 5.3 that PIIC(H(εar ) ≤ 2εr 2) ≤ C ′εq . The

following lemma establishes this bound. The lemma is stated in two ways: in (a) it is stated for
high-dimensional finite-range models, where the claim can be proved without assumptions, and
in (b) it is stated under Assumption S for the more general setting that includes long-range spread
out percolation models. With Assumption S we can use the lemma in the proofs of Theorem 2.6(c)
and (e) below as well. We thus include the exponent α in the statement and the proof, but keep
in mind that the result also holds for finite-range models if we set α to ∞. Also note that in the
statement of Proposition 5.3 it suffices to take r ≥ r?, where r? may depend on ε.

Lemma 5.4 [A lower bound on the pivotal exit time]. .
(a) Assume that

τpc (x) ≤ C

|x|d−(2∧α)
(5.26)

and ∑
e∈Qr

∑
e∈Qc

r

Ppc (0 ↔ e in Qr )D(e −e) ≤C ′. (5.27)

Then
limsup

r→∞
PIIC(H(r ) ≤ εr (2∧α)) ≤ 1−δ (5.28)

for ε> 0 and some 0 < δ< 1.
(b) If Assumption S holds and if the strong triangle condition is satisfied for some sufficiently

small β, then there exists r? = r?(ε) ≥ 1 and C , q > 0 such that for a < 1/(2∧α),

PIIC(H(εar ) ≤ εr (2∧α)) ≤Cεq . (5.29)

The assumption (5.26) has been discussed already in the introduction. It is known to hold for
high-dimensional finite-range models (cf. [17] and [16]), and for a certain class of long-range
models [11], but it is not known to hold under the strong triangle condition.

The assumption (5.27) has been proved for finite-range models by van der Hofstad and Sapozh-
nikov [27, Theorem 1.6]. It is not known to hold for long-range models.

Proof of (a). For a non-negative integer-valued random variable X and probability measure Pwe
have the elementary inequality

P(X ≥ 1) ≥ E[X ]2

E[X 2]
. (5.30)

We apply this inequality as follows:

PIIC(H(r ) ≥ εr (2∧α)) =PIIC(H(r )1{H(r )≥εr (2∧α)} ≥ 1) ≥ EIIC[H(r )1{H(r )≥εr (2∧α)}]
2

EIIC[H(r )21{H(r )≥εr (2∧α)}]
. (5.31)

Proving the proposition is equivalent to proving that the right-hand side of (5.31) has a uniform,
positive lower bound. To achieve this, we bound the expectations on the right-hand side of (5.34)
separately.

We start with an upper bound on the denominator. Trivially,

EIIC[H(r )2
1{H(r )≥εr (2∧α)}] ≤ EIIC[H(r )2]. (5.32)

We note that
H(r ) ≤ #{b ∈ Er : b is bb-piv} = ∑

b∈Er

1{b is bb-piv}. (5.33)

Hence, we have

EIIC[H(r )2] ≤ ∑
b1,b2∈Er

EIIC[1{b1 is bb-piv}1{b2 is bb-piv}] =
∑

b1,b2∈Er

PIIC(b1,b2 are bb-piv). (5.34)
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We can apply Lemma 3.1 to the right-hand side of (5.34):

EIIC[H(r )2] ≤ lim
p↗pc

1

χ(p)

∑
x∈Zd

∑
b1,b2∈Er

Pp (b1,b2 are piv for 0 ↔ x). (5.35)

The event on the right-hand side can be contained in a disjoint union of events:

{b1,b2 are piv for 0 ↔ x} ⊂
{

{0 ↔ b1}◦ {b1 ↔ b2}◦ {b2 ↔ x}
}
∪

{
{0 ↔ b2}◦ {b2 ↔ b1}◦ {b1 ↔ x}

}
.

(5.36)
Making this replacement and applying the BK-inequality, we obtain an upper bound:

EIIC[H(r )2] ≤ lim
p↗pc

1

χ(p)

∑
x∈Zd

∑
b1,b2∈Er

[τp (b1)τp (b2 −b1)τp (x −b2)+τp (b2)τp (b1 −b2)τp (x −b1)].

(5.37)
Summing over x and summing the two terms over b2 and b1, respectively, and then taking the
limit, we obtain

EIIC[H(r )2] ≤ pc
∑

b1∈Er

∑
b2∈Qr

τpc (b1)τpc (b2 −b1)+pc
∑

b2∈Er

∑
b1∈Qr

τpc (b2)τpc (b1 −b2). (5.38)

Both sums can be bounded using the Fourier-space techniques described in the proof of Theorem
2.8. For a constant ca > 0 we obtain

EIIC[H(r )2] ≤ car 2(2∧α). (5.39)

We are left to find a lower bound on the numerator of (5.31). We start by noting

EIIC[H(r )1{H(r )≥εr (2∧α)}] = EIIC[H(r )]−EIIC[H(r )1{H(r )<εr (2∧α)}]. (5.40)

We use a trivial upper bound for the second term:

EIIC[H(r )1{H(r )<εr (2∧α)}] ≤ εr (2∧α). (5.41)

The lower bound on EIIC[H(r )] is the most involved part of the proof. Let Fr = {(x, y) : x ∈Qc
r , y ∈

Zd }. Recall that we can order the backbone pivotals from the origin outward. We say that two
backbone pivotal edges e and b are ordered if e comes before b in this ordering. We start by
observing that for η ∈ (0,1):

H(r ) = #{b ∈ Er : b is bb-piv and Øe ∈Fr s.t. e,b are ordered bb-piv}

≥ #{b ∈ Eηr : b is bb-piv and Øe ∈Fr s.t. e,b are ordered bb-piv}

= #{b ∈ Eηr : b is bb-piv}−#{b ∈ Eηr : ∃e ∈Fr s.t. e,b are ordered bb-piv}

≡ NBb(ηr )−ZBb(ηr,r ).

(5.42)

Hence,
EIIC[H(r )] ≥ EIIC[NBb(ηr )]−EIIC[ZBb(ηr,r )]. (5.43)

Using Theorem 2.8, we can bound

EIIC[NBb(ηr )] ≥ c(ηr )(2∧α). (5.44)

Finally, then, we need an upper bound on EIIC[ZBb(ηr,r )]. We write

ZBb(ηr,r ) = ∑
e∈Fr

∑
b∈Eηr

1{e,b are ord. bb-piv}. (5.45)

It follows that
EIIC[ZBb(ηr,r )] = ∑

e∈Fr

∑
b∈Eηr

PIIC(e,b are ord. bb-piv). (5.46)

We can apply Lemma 3.1:

EIIC[ZBb(ηr,r )] = lim
p↗pc

1

χ(p)

∑
x∈Zd

∑
e∈Fr

∑
b∈Eηr

Pp (e,b are ord. piv for 0 ↔ x). (5.47)
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The events on the right-hand side can be contained as follows: the fact that e is pivotal and
comes before b along the path from 0 to x means that the path from 0 to x leaves Qr (using a
lexicographical ordering to break ties). Let y ∈ Er be the first edge along the path with y ∈Qr and
y ∈Qc

r . There has to be a path from y back to b as well (this path then containing e), and there has

to be a path from b to x. These three paths are disjoint. So, ignoring the position of the edge e, we
can contain the event as follows:⋃

e∈Fr

{e,b are ord. piv for 0 ↔ x} ⊆ ⋃
y∈Qr

⋃
y∈Qc

r

{0 ↔ y}◦ {y open}◦ {y ↔ b}◦ {b ↔ x}. (5.48)

Making this replacement and applying the BK-inequality, we obtain

EIIC[ZBb(ηr,r )] ≤ lim
p↗pc

1

χ(p)

∑
x∈Zd

∑
y∈Qr

∑
y∈Qc

r

∑
b∈Eηr

Pp (0 ↔ y in Qr )pD(y − y)τp (b − y)τp (x −b). (5.49)

Summing over x and b and taking the limit, we obtain

EIIC[ZBb(ηr,r )] ≤ p2
c

∑
y∈Qr

∑
y∈Qc

r

∑
b∈Qηr

Ppc (0 ↔ y in Qr )D(y − y)τpc (b − y). (5.50)

All pairs b and y are at least at distance r −ηr , and there are Cd (ηr )d vertices in Qηr , so we can
apply (5.26) followed by (5.27) to bound

EIIC[ZBb(ηr,r )] ≤p2
c Cd (ηr )d 1

(r −ηr )d−(2∧α)

∑
y∈Qr

∑
y∈Qc

r

Ppc (0 ↔ y in Qr )D(y − y)

≤c̃
ηd

(1−η)d−(2∧α)
r (2∧α).

(5.51)

We end up with

EIIC[H(r )1{H(r )≥εr (2∧α)}]
2 ≥ (

EIIC[NBb(ηr )]−EIIC[ZBb(ηr,r )]−EIIC[H(r )1{H(r )<εr (2∧α)}]
)2

≥
(

cη(2∧α) − c̃
ηd

(1−η)d−(2∧α)
−ε

)2

r 2(2∧α) = cbr 2(2∧α)
(5.52)

when we choose η> 0 sufficiently small.
Plugging (5.39) and (5.52) into (5.31), we obtain

PIIC(H(r ) ≥ εr (2∧α)) ≥ cb

ca
> 0.

This completes the proof of (a). �

Proof of (b). Recall (1.12) and note that if Xn converges to Brownian motion or stable motion, then

r−(2∧α)H(r )
d−→ E1, (5.53)

where E1 is the exit time of Brownian motion or stable motion from the unit ball inRd . Let rε = εar .
By Assumption S, (5.53) and the Portmanteau Theorem (cf. [9, Theorem 2.1])

limsup
r→∞

PIIC

(
H(rε) ≤ ε1−a(2∧α)r (2∧α)

ε

)≤P(
E1 ≤ ε1−a(2∧α)) . (5.54)

Hence, for any δ> 0 there exists r?ε (δ) such that, for all rε ≥ r?ε (δ),

PIIC

(
H(rε) ≤ ε1−a(2∧α)r (2∧α)

ε

)≤ δ+P(
E1 ≤ ε1−a(2∧α)) . (5.55)

Let X t ·ei be the projection of X t onto its i th coordinate. Observe that by the reflection principle

P(E1 ≤ t ) ≤ 2P(|X t | ≥ 1) ≤ 2P(max
i

|X t ·ei | ≥ 1/d) ≤ 2d P(|X t ·e1| ≥ 1/d). (5.56)
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Finally, since X t ·e1 is a one-dimensional Brownian motion or stable motion, we have that P(|X t ·
e1| ≥ 1/d) ≤CX t (2∧α), where CX is a constant, so that

PIIC

(
H(rε) ≤ ε1−a(2∧α)r (2∧α)

ε

)≤ δ+C ′ε(2∧α)(1−a(2∧α)). (5.57)

Let q = (2∧α)(1−a(2∧α)). Then, setting δ= εq and r?(ε) = ε−ar?ε (εq ) proves the claim. �

6. INTRINSIC DISTANCES FOR THE IIC: PROOF OF THEOREM 2.6(B)

Our proof of Theorem 2.6(b) is a slight adaptation of the proofs in [33, Section 2] so we only
discuss the changes needed and refer the reader to [33] for the full details of the proof. Define
∂Br (x;ω) as the boundary of Br (x;ω), that is,

∂Br (x;ω) = {y ∈Zd : dω(x, y) = r }. (6.1)

We write {x
r←→ y} for the event that there exists a path of at most r open edges connecting the

vertices x and y .
In this section we write Br for Br (0;ω) and ∂Br for ∂Br (0;ω).

Lemma 6.1 [Typical volume and effective resistance of an intrinsic-metric ball]. If the strong
triangle condition is satisfied for some sufficiently small β, then Theorem 2.9 implies for λ> 1,

PIIC

(
λ−1r 2 ≤V (Br ) ≤λr 2) ≥ 1− c/λ; (6.2)

PIIC

(
Reff(0,∂Br ) ≥λ−1r

) ≥ 1− c/
p
λ. (6.3)

Proof of (6.2). Unless stated otherwise, all sums below are taken over Zd .
We can write EIIC[V (Br )] as a sum over edges:

EIIC[V (Br )] = ∑
e∈Zd×Zd

PIIC

(
0

r←→ e,e open
)

. (6.4)

Recall the definition of Z∞
r and Zx

r in Definition 2.3(iii). Since {0
r←→ e,e open} is measurable with

respect to Z∞
r+1 we may reverse the IIC limit by Lemma 3.1, so that

EIIC[V (Br )] = ∑
e∈Zd×Zd

PIIC

(
0

r←→ e,e open
)

= ∑
e∈Zd×Zd

PIIC

({
0

r←→ e,e open
}

on Z∞
r+1

)
= ∑

e∈Zd×Zd

lim
p↗pc

1

χ(p)

∑
x
Pp

({
0

r←→ e,e open
}

on Zx
r+1,0 ↔ x

)
= lim

p↗pc

1

χ(p)

∑
x
Ep [V (Br )1{0↔x}].

(6.5)

For any integer r ≥ 1, by the BK-inequality,

Ep
[
V (Br )1{0↔x}

]=∑
z,z ′
Pp

(
0

r←→ z, {z, z ′} open,0 ↔ x
)

≤ ∑
y,z,z ′

Pp
(
{0

r←→ y}◦ {y
r←→ z}◦ {{z, z ′} open}◦ {y ↔ x}

)
≤ ∑

y,z,z ′
Pp

(
0

r←→ y
)
Pp

(
y

r←→ z
)

pD(z ′− z)Pp
(
y ↔ x

)
=p

∑
y,z
Pp

(
0

r←→ y
)
Pp

(
y

r←→ z
)
Pp

(
y ↔ x

)
.

(6.6)

Hence,

EIIC[V (Br )] ≤ lim
p↗pc

p

χ(p)

∑
x,y,z

Pp
(
0

r←→ y
)
Pp

(
y

r←→ z
)
Pp

(
y ↔ x

)= pc Epc [|Br |]2. (6.7)
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Finally, by Theorem 2.9 and Markov’s inequality,

PIIC(V (Br ) ≥λr 2) ≤ EIIC[V (Br )]

λr 2 ≤ C

λ
. (6.8)

Now we derive the bound for the other end of the interval, i.e., the bound onPIIC(V (Br ) ≤λ−1r 2).
Since V (Br ) ≥ |Br |−1 for any configuration, it is sufficient to prove the statement for the vertex
volume |Br | instead of the edge volume V (Br ).

Observe that since Br ⊆Z∞
r , by Lemma 3.1,

PIIC

(|Br | ≤λ−1r 2)=PIIC

({|Br | ≤λ−1r 2} on Z∞
r

)
= lim

p↗pc

1

χ(p)

∑
x
Pp

({|Br | ≤λ−1 r 2} on Zx
r ,0 ↔ x

)
≤ lim

p↗pc

1

χ(p)

∑
x
Pp

(
0 ↔ x, |Br | ≤λ−1 r 2).

(6.9)

Define B (R) = B j with j being the smallest integer in [r /2,r ] satisfying |∂B j | ≤ 2λ−1r . Such a j
always exists when |Br | ≤λ−1 r 2. Then{

0 ↔ x, |Br | ≤λ−1 r 2}⊆ �⋃
A adm.

{0 ↔ x,B (R) = A} (6.10)

where the disjoint union over “A adm.” is over all sets A ⊂Zd that are admissible. Here, admissible
means that Pp (B (R) = A) > 0 and |∂A| ≤ 2λ−1 r . It follows that, for x ∉ A,

Pp (|Br | ≤λ−1 r 2,0 ↔ x) ≤ ∑
A adm.

Pp (0 ↔ x | B (R) = A)Pp (B (R) = A)

≤ ∑
A adm.

∑
y∈∂A

Pp (y ↔ x)Pp (B (R) = A) (6.11)

as Pp (y ↔ x off A|B (r ) = A) ≤Pp (y ↔ x). For x ∈ A,

Pp (|Br | ≤λ−1 r 2,0 ↔ x) = ∑
A adm.

Pp (B (R) = A). (6.12)

Using translation invariance,

χ(p)−1
∑
x
Pp

(|Br | ≤λ−1 r 2,0 ↔ x
)≤ ∑

A adm.
Pp (B (R) = A)

∑
y∈∂A

χ(p)−1
∑
x∉A

Pp (y ↔ x)

≤ ∑
A adm.

Pp (B (R) = A) ·2λ−1 r ·1,
(6.13)

since |∂A| ≤ 2λ−1 r . Finally,
�⋃

A adm.
{B (R) = A} ⊆ {

∂Br /2 6= ;}
, (6.14)

and by Theorem 2.9 the probability of the event on the right-hand side is bounded above by C /r .
Thus,

PIIC(|Br | ≤λ−1r 2) ≤ 2λ−1 rPpc (∂Br /2 6= ;) ≤C /λ, (6.15)

completing the proof. �

We now prove the bound on the effective resistance Reff(0,B c
r ) in (6.3). We need the following

two lemmas:

Lemma 6.2 [A lower bound on the effective resistance for critical percolation]. Consider a
percolation model such that the triangle condition holds. For any p ≤ pc , λ> 1, r ≥ 1,

Pp (Reff(0,∂Br ) ≤λ−1r ) ≤C /(λr ). (6.16)

Proof. The statement is proved along the lines of [33, Proof of Lemma 2.6]. In particular, see the
last displayed inequality in that proof. �
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Lemma 6.3 [An upper bound on PIIC]. If E is an event measurable with respect to Br , r ≥ 1, then

PIIC(E) ≤C
√

r Ppc (E). (6.17)

Proof. Since E is measurable with respect to Br and therefore measurable with respect to Z∞
r , by

Lemma 3.1,

PIIC(E) =PIIC

(
E on Z∞

r

)= lim
p↗pc

1

χ(p)

∑
x
Pp

(
{E on Zx

r }∩ {0 ↔ x}
)

. (6.18)

Fix M > 0 and r ≥ 1, and let p < pc . (The constant M will be optimized below.) We can bound

Pp
(
{E on Zx

r }∩ {0 ↔ x}
)≤Pp (E ∩ {0 ↔ x})

≤Pp ({|∂Br | > M }∩ {0 ↔ x})+Pp (E ∩ {|∂Br | ≤ M ,0 ↔ x}) . (6.19)

For the first term on the right hand side we use the BK-inequality to estimate

Ep
[|∂Br |1{0↔x}

]≤∑
y
Pp

(
{0

r←→ y}◦ {y ↔ x}
)≤∑

y
Pp

(
0

r←→ y
)
Pp

(
y ↔ x

)
. (6.20)

Hence Markov’s inequality implies∑
x
Pp

(|∂Br | > M ,0 ↔ x
)≤ 1

M

∑
y
Pp

(
0

r←→ y
) ∑

x
Pp

(
y ↔ x

)≤ 1

M
Epc [|Br |]χ(p), (6.21)

and this is bounded above by Crχ(p)/M by (2.33).
For the last term in (6.19) we proceed like (6.10) by writing

Pp (E ∩ {|∂Br | ≤ M ,0 ↔ x}) =
∑

A adm.
Pp (Br = A)Pp (0 ↔ x | Br = A) (6.22)

where the sum over “A adm.” now is the sum over all pairs of sets A,∂A satisfying {Br = A} ⊂ E ,
|∂A| ≤ M , and Pp (∂Br = ∂A) > 0. For each such admissible A (in particular using |∂A| ≤ M),∑

x
Pp (0 ↔ x | ∂Br = A) ≤∑

x

∑
y∈∂A

Pp (y ↔ x) ≤ Mχ(p), (6.23)

where we used translation invariance to get the last inequality. Since E is measurable with respect
to Br , ∑

A adm.
Pp (Br = A) ≤Pp (E). (6.24)

Combining (6.22)–(6.24) yields∑
x
Pp (E ∩ {|∂Br | ≤ M ,0 ↔ x}) ≤Pp (E) M χ(p). (6.25)

Now, using (6.18) and (6.19) together with (6.21) and (6.25), we get

PIIC(E) = lim
p↗pc

1

χ(p)

∑
x
Pp

(
{E on Zx

r }∩ {0 ↔ x}
)≤ Cr

M
+Ppc (E) M . (6.26)

Letting M =√
r /Ppc (E) proves the lemma. �

Proof of (6.3). The statement (6.3) follows from (6.16) and (6.17). �

The final bound we need to establish for the proof of Theorem 2.6(b) is

Lemma 6.4 [An expectation bound]. If the strong triangle condition is satisfied for some suffi-
ciently small β, then

EIIC[Reff(0,∂Br )V (Br )] ≤Cr 3. (6.27)

Proof. Note that Reff(0,∂Br ) ≤ r since the intrinsic distance metric dominates the effective resis-
tance metric. So (6.27) follows immediately from (6.7). �

Proof of Theorem 2.6(b). Combining Lemmas 6.1 and 6.4 completes the proof. �
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7. RANDOM WALK ON THE BACKBONE: PROOF OF THEOREM 2.6(C) AND (D)

The extrinsic distance metric. Using the bounds that we have established in the previous two
sections and of Theorem 2.8, we can easily establish most of the bounds that we need to prove
Theorem 2.6(c). Recall Definitions 2.3(i) and (ii).

Lemma 7.1 [Bounds on the extrinsic volume and effective resistance of the backbone]. If the
strong triangle condition is satisfied for some sufficiently small β and if either the model is finite-
range, or Assumption S holds, then there exists a C > 0 and a ξ> 0 such that for all λ> 0 and all
r ≥ r? = r?(λ),

PIIC(λ−1r (2∧α) ≤V (UBb
r ) ≤λr (2∧α)) ≥ 1−C /λξ; (7.1)

PIIC(λ−1r (2∧α) ≤ RBb
eff (0,Qc

r ) ≤λr (2∧α)) ≥ 1−C /λξ. (7.2)

Proof. We start with (7.1). Note that V (UBb
r ) ≤ V (Bb∩Qr ). Furthermore, from the definition of

NBb(r ) it follows that V (Bb∩Qr ) ≤ 2NBb(r ). So by Markov’s inequality, uniformly in r ≥ 1,

PIIC(V (UBb
r ) >λr (2∧α)) ≤ 2EIIC[NBb(r )]

λr (2∧α)
≤ Cr (2∧α)

λr (2∧α)
= C

λ
, (7.3)

where the final inequality follows from Theorem 2.8.
For the other bound in (7.1), we note that the number of edges in UBb

r exceeds the number of
pivotal edges for the connection between 0 and Qc

r , so that V (UBb
r ) ≥ H (r ) follows by the definition

of V (UBb
r ) and H(r ). Hence,

PIIC(V (UBb
r ) <λ−1r (2∧α)) ≤PIIC(H(r ) <λ−1r (2∧α)) ≤C /λξ, (7.4)

where the final inequality follows from Lemma 5.4.
To bound (7.2) we first note that RBb

eff (0,Qc
r ) ≤ NBb(r ) by the series law of resistances. Furthermore,

also by the series law of resistances, RBb
eff (0,Qc

r ) ≥ H(r ), so we can apply the same arguments as we
did for the proof of (7.1) to establish (7.2). This completes the proof. �

The next lemma is similar to Lemma 4.4, though much easier to prove:

Lemma 7.2 [All vertices in UBb
r are well behaved]. If the strong triangle condition is satisfied for

some sufficiently small β, then there exists a C > 0 such that for all λ> 0,

PIIC

(∃x ∈UBb
r such that Reff(0, x) ≥λr (2∧α))≤C /λ. (7.5)

Proof. Having Reff(0, x) ≥λr (2∧α) for some x ∈UBb
r implies that dω(0, x) ≥λr (2∧α) also. This means

that UBb
r contains at least λr (2∧α) vertices, i.e.,

PIIC

(∃x ∈UBb
r such that Reff(0, x) ≥λr (2∧α))≤PIIC(|UBb

r | ≥λr (2∧α)) ≤C /λ, (7.6)

where the final inequality is due to (4.30). �

The last lemma we need concerns an upper bound on the expectation of RBb
eff (0,Qc

r )V (UBb
r ).

Lemma 7.3 [Upper bound on the expectation of RBb
eff (0,Qc

r ]V (UBb
r )). Let r ≥ 1. If the strong triangle

condition is satisfied for some sufficiently small β, then there exists a constant C > 0 such that

EIIC[RBb
eff (0,Qc

r )V (UBb
r )] ≤Cr 2(2∧α). (7.7)

Proof. Since V (UBb
r ) ≤ 2NBb(r ) and also RBb

eff (0,Qc
r ) ≤ NBb(r ) we can bound

EIIC[RBb
eff (0,Qc

r )V (UBb
r )] ≤ 2EIIC[NBb(r )2]. (7.8)

We can express NBb(r ) as a sum of indicator functions:

NBb(r ) = ∑
b∈Er

1{0↔b}◦{b open}◦{b↔∞}. (7.9)
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After substituting (7.9) into (7.8), a corollary to Lemma 3.1 shows that we may then reverse the
limit (1.9) (i.e., [20, Corollary 4.3]),

2
∑

b,e∈Er

EIIC[1{0↔b}◦{b open}◦{b↔∞}1{0↔e}◦{e open}◦{e↔∞}]

= lim
p↗pc

2

χ(p)

∑
b,e∈Er

∑
x∈Zd

Pp

({
{0 ↔ b}◦ {b open}◦ {b ↔ x}

}
∩{

{0 ↔ e}◦ {e open}◦ {e ↔ x}
})

. (7.10)

We want to write the event inside Pp in terms of disjointly occurring events, so that we may
apply the BK-inequality. To this end, we define the following four events that together cover the
event inside Pp (leaving dependence on b,e and x implicit on the left-hand sides):

E1 ≡ {e = b}∩ (
{0 ↔ e}◦ {e open}◦ {e ↔ x}

)
; (7.11)

E2 ≡ {e 6= b}∩ (
{0 ↔ e}◦ {e open}◦ {e ↔ b}◦ {b open}◦ {b ↔ x}

)
; (7.12)

E3 ≡ {e 6= b}∩ (
{0 ↔ b}◦ {b open}◦ {b ↔ e}◦ {e open}◦ {e ↔ x}

)
; (7.13)

E4 ≡ {e 6= b}∩
( ⋃

z,w∈Zd

{0 ↔ z}◦ {z ↔ e}◦ {e open}

◦{e ↔ w}◦ {z ↔ b}◦ {b open}◦ {b ↔ w}◦ {w ↔ x}
)
. (7.14)

It follows that(
{0 ↔ e}◦ {e open}◦ {e ↔ x}

)∩ (
{0 ↔ b}◦ {b open}◦ {b ↔ x}

)⊆ E1 ∪E2 ∪E3 ∪E4. (7.15)

Substituting the right-hand side of (7.15) into (7.10), we get the upper bound

lim
p↗pc

2

χ(p)

∑
x∈Zd

∑
e,b∈Er

[
Pp (E1)+Pp (E2)+Pp (E3)+Pp (E4)

]
. (7.16)

We bound the four sums separately. For each bound we start by applying the BK-inequality,
sum over x and take the limit to get a factor χ(p) and then take the limit p ↗ pc . For the sums
involving E2, E3 and E4 we drop the requirement that {e 6= b} for an upper bound. We start with
Pp (E1):

lim
p↗pc

2

χ(p)

∑
x∈Zd

∑
e,b∈Er

Pp (E1) ≤ 2pc
∑

e∈Er

τpc (e)D(e) ≤Cr (2∧α), (7.17)

where the bound follows from the fact that
∑

x D(x) = 1, Theorem 2.8 and (2.29).
To bound Pp (E2) we rewrite the it as a convolution,

lim
p↗pc

2

χ(p)

∑
x∈Zd

∑
e,b∈Er

Pp (E2) ≤ 2p2
c (1Qr ∗τpc ∗D ∗τpc ∗D)(0) ≤Cr 2(2∧α). (7.18)

The second bound follows after applying methods similar to those used in the proof of Theorem
2.8 as given in [20]. Interchanging the labels e and b shows that the same bound holds for Pp (E3).

Finally, Pp (E4) is upper bounded by

lim
p↗pc

2

χ(p)

∑
x∈Zd

∑
e,b∈Er

Pp (E4)

≤ 2p2
c

∑
z,w∈Zd

∑
e,b∈Er

τpc (z)τpc (e − z)D(e)τpc (w −e)τpc (b − z)D(b)τpc (w −b). (7.19)

We extend the summation over b to Zd , shift each term in the summation by −e and relabel to get

2p2
c

∑
e ′∈Qr

∑
e ′,z ′,w ′,b′,b

′∈Zd

τpc (z ′)τpc (e ′− z ′)D(e ′)τpc (w ′−e ′)τpc (b′−w ′)D(b′)τpc (z ′−b
′
). (7.20)
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From [10, Theorem 1.3] we have the following bound:

sup
z ′∈Zd

∑
e ′,w ′,b′,b

′∈Zd

D(e ′)τpc (w ′−e ′)τpc (b′−w ′)D(b′)τpc (z ′−b
′
) ≤Cβ, (7.21)

(where β is the same constant as given below (1.5)). We can apply this bound to (7.20) to get the
upper bound

Cβ
∑

e ′∈Qr

∑
z ′∈Zd

τpc (z ′)τpc (e ′− z ′) =Cβ(1Qr ∗τpc ∗τpc )(0) ≤Cβr 2(2∧α), (7.22)

where the final bound again follows from applying methods similar to those used in the proof of
Theorem 2.8 (cf. [20]).

Adding the bounds for the sums over Pp (E1), Pp (E2), Pp (E3) and Pp (E4) establishes that
Cr 2(2∧α) is an upper bound on (7.16), and so we get the desired upper bound in (7.7), which
in turn completes the proof. �

The intrinsic distance metric.

Lemma 7.4 [Bounds on the intrinsic volume and effective resistance of the backbone]. If the
strong triangle condition is satisfied for some sufficiently small β, then there exist C ,C ′ > 0 such that
for all λ> 0,

PIIC(r ≤V (BBb
r ) ≤λr ) ≥ 1−C /λ; (7.23)

PIIC(λ−1r ≤ RBb
eff (0,∂BBb

r )) ≥ 1−C /
p
λ; (7.24)

EIIC[V (BBb
r )RBb

eff (0,∂BBb
r )] ≤ C ′r 2. (7.25)

Proof. We start by observing that the lower bound on V (BBb
r ) holds trivially since it takes at least r

edges to reach distance r in the intrinsic distance metric and ∂BBb
r 6= ; PIIC-a.s.

For the upper bound, start by applying Markov’s inequality,

PIIC(V (BBb
r ) ≥λr ) ≤ EIIC[V (BBb

r )]

λr
. (7.26)

The random variable V (BBb
r ) is measurable with respect to Z∞

r , so, by Lemma 3.1, we may reverse
the IIC limiting scheme and apply arguments similar to (6.6) to yield

EIIC[V (BBb
r )] = lim

p↗pc

1

χ(p)

∑
x
Ep [V (BBb

r )1{0↔x}]

≤ 1

χ(p)

∑
x,z,z ′

Pp (0
r←→ z)pD(z ′− z)Pp (z ′ ↔ x) ≤ pc Epc [|Br |] ≤Cr,

(7.27)

where the final inequality follows from Theorem 2.9. Substitution in (7.26) yields the required
upper bound in (7.23).

To prove (7.24) it suffices to observe that by the cutting law for resistances, RBb
eff (0,∂BBb

r ) ≥
Reff(0,∂Br ), so that the required bound follows by Lemma 6.1.

Finally, since RBb
eff (0,∂BBb

r ) ≤ r holds trivially, (7.25) follows from (7.27). �

8. THE MODIFIED EXIT TIME: PROOF OF THEOREM 2.6(E)

Lemma 8.1 [Bounds on the modified volume and effective resistance]. If the strong triangle
condition is satisfied for some sufficiently small β and if Assumption S holds, then there exist
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C ,C ′,C ′′ > 0 and a ξ> 0 such that for all λ> 0 and r ≥ r?(λ),

PIIC(λ−1r 2(2∧α) ≤V (Ur ) ≤λr 2(2∧α)) ≥ 1−C /λξ; (8.1)

PIIC(λ−1r (2∧α) ≤ Rmod
eff (0,Qc

r ) ≤λr (2∧α)) ≥ 1−C /λξ; (8.2)

PIIC

(∃x ∈Ur such that Reff(0, x) ≥λr (2∧α)) ≤ C ′/λ; (8.3)

EIIC[Rmod
eff (0,Qc

r )V (Ur )] ≤ C ′′r 3(2∧α). (8.4)

Proof. By Theorem 2.8, the upper bounds in (8.1)–(8.4) follow by the same proof as for Lemmas
4.1, 4.2, 4.3, and 4.4, respectively, when we replace the bound Cr 2 by Cr (2∧α) wherever this bound
is used (i.e., in (4.3), (4.8), (4.18), (4.26), (4.30) and (4.39)).

The lower bounds in (8.1) and (8.2) follow by almost the same proof as Proposition 5.1. The
main change due to the modification is that now Rmod

eff (0,Qc
r ) ≥ H(r ), instead of Npiv(0,Qc

r ). The
result is that we do not need a bound on Nbad(0,Qc

r ) as in Proposition 5.3, so we do not need
Assumption O, and hence the proof works for long-range spread-out percolation as well. �

Lemma 8.1 implies Theorem 2.6(e). Theorem 1.5 then follows by the same proof as Theorem
1.1 (with the appropriate changes made to the exponents).

9. EXIT TIME FOR THE LONG-RANGE IIC: PROOF OF THEOREM 1.2

In this section we only consider distributions D of the form (1.7) and we write % = (4∧α)/2.
Let a ∈ (0,1/2) and 0 < b < (1+ a)/3 and consider these fixed for the rest of this section. Write
n = bλ−(1+a)/3r %c. Throughout this section we will write en for the nth backbone pivotal edge. It
should be viewed as a Zd ×Zd valued random variable under the measure PIIC. We will write bn

when we mean that the edge is fixed.
Define

J̃ (λ) =
{

r ∈ [1,∞] : Reff(0,Qc
r ) ≤λbr %, Reff(0,en) ≤λn, V (C̃en (0)) ≤λn2

}
. (9.1)

Lemma 9.1 [Conditional bound on the exit time]. There exists κ> 0 such that for any λ, r , and ω
such that r ∈ J̃ (λ),

P 0
ω(τQr >λr 3%) ≤ 2/λκ. (9.2)

Proof. Let σen
be the hitting time of en . Then we can bound

P 0
ω(τQr >λr 3%) ≤ P 0

ω(σen
>λr 3%)+P 0

ω(σen
< τQr ). (9.3)

To bound the second term, we use the following standard bound (cf. [8, (4)])

P 0
ω(σen

< τQr ) ≤ Reff(0,Qc
r )

Reff(0,en)
. (9.4)

For Reff(0,en) we have that n, the number of pivotals for 0 ↔ en , is a lower bound by the series law
of resistances, so by the definition of J̃ (λ),

P 0
ω(σen

< τQr ) ≤ λbr %

n
≤ 1

λ(1+a)/3−b
. (9.5)

For the first term in (9.3) we use Markov’s inequality:

P 0
ω(σen

>λr 3%) ≤ E 0
ωσen

λr 3% . (9.6)

By the Green’s function interpretation of the hitting time (see Defintion 2.1(v)):

E 0
ωσen

= ∑
y∈C̃en (0)

GC̃en (0)(0, y)µy ≤
∑

y∈C̃en (0)

GC̃en (0)(0,0)µy = Reff(0,en)(V (C̃en (0))+1) (9.7)
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where the last inequality again follows from our choice of J̃ (λ). So it follows that

P 0
ω(σen

> γr 3%) ≤ λ2n3

λr 3% ≤ 1/λa . (9.8)

Let κ= min{a, 1+a
3 −b} ∈ (0,1/2), then

P 0
ω(τQr >λr 3%) ≤ 2/λκ. (9.9)

�
The other ingredient needed for the proof of Theorem 1.2 is the following proposition:

Proposition 9.2. For any sufficiently large λ and for all r ≥ r∗(λ), let ν= min{b,1/2}. There exists
a constant c > 0 such that

PIIC(r ∈ J̃ (λ)) ≥ 1− c/λν. (9.10)

The proof of this proposition is given in the next subsection.

Proof of Theorem 1.2 subject to Proposition 9.2. By Lemma 9.1 and Proposition 9.2 and the defini-
tion of P?, (1.18), we have (with ε= min{κ,ν} and κ,ν as defined above)

P?(τQr ≥λr 3%) ≤
∫

{r∈ J̃ (λ)}

P 0
ω(τQr ≥λr 3%)PIIC(dω)+PIIC(r ∉ J̃ (λ)) ≤C /λε. (9.11)

�

9.1. The proof of Proposition 9.2
The proof of Proposition 9.2 is given in the three lemmas below; one lemma for each of the

three restrictions in (9.1).

Lemma 9.3 [An upper bound on the effective resistance for LRP]. There exists a constant c > 0
such that for any sufficiently large λ, b > 0 and for all r ≥ r?(λ),

PIIC

(
Reff(0,Qc

r ) ≤λbr %
)
≥ 1− c/λb . (9.12)

Proof. By Lemma 4.1 the statement holds when α≥ 4, so that we only need to prove it for the case
α< 4, that is, when %=α/2.

Write m = dλbrα/2e. We start by noting that {Reff(0,Qc
r ) ≤λbr %} ⊇ {|Bm ∩Qc

r | 6= 0}, so that

PIIC(Reff(0,Qc
r ) ≤ m) ≥ 1−PIIC(|Bm ∩Qc

r | = 0). (9.13)

Define Cr (x), the r -truncated cluster of x, as the modified configuration of C(x) where all edges of
length at least 2r have been closed, and define the r -truncated intrinsic ball of radius m as

B (r )
m = {x : 0

m←→ x on Cr (0)}. (9.14)

Then,

PIIC(|Bm ∩Qc
r | = 0) ≤PIIC(|B (r )

m | < m2/λb)+PIIC(|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0). (9.15)

We will bound both terms separately.
For the first term we observe that

PIIC(|B (r )
m | ≥ m2/λb) ≥PIIC(|Bm | ≥ 2m2/λb)−PIIC(|Bm \ B (r )

m | ≥ m2/λb). (9.16)

By Lemma 6.1 the first term is bounded from below by 1−c1/λb . An upper bound on the second
term follows by an application of Markov’s inequality:

PIIC(|Bm \ B (r )
m | ≥ m2/λ) ≤ EIIC[|Bm \ B (r )

m |]
m2/λb

. (9.17)
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Note that
EIIC[|Bm \ B (r )

m |] = ∑
x∈Zd

PIIC(x ∈ Bm \ B (r )
m ), (9.18)

and furthermore, since {x ∈ Bm \ B (r )
m } is measurable with respect to Z∞

m , we can use Lemma 3.1 to
reverse the IIC-limit:∑

x∈Zd

PIIC

(
x ∈ Bm \ B (r )

m

)= lim
p↗pc

1

χ(p)

∑
x,y∈Zd

Pp (x ∈ Bm \ B (r )
m ,0 ↔ y)

= lim
p↗pc

1

χ(p)

∑
x,y∈Zd

(
Pp (x ∈ Bm \ B (r )

m , y ∈ B3m)

+Pp (x ∈ Bm \ B (r )
m , y ∉ B3m ,0 ↔ y)

)
= lim

p↗pc

1

χ(p)

∑
x,y∈Zd

Pp (x ∈ Bm \ B (r )
m , y ∉ B3m ,0 ↔ y).

(9.19)

The last equality follows since the sum over y ∈ B3m almost surely gives at most a finite contribu-
tion, whereas χ(p) diverges in the limit p ↗ pc . It follows by the definition of B (r )

m that

{x ∈ Bm \ B (r )
m , y ∉ B3m ,0 ↔ y}

⊆
 ⋃

b,b,z∈Zd

{0
m←→ z}◦ {z

m←→ b}◦ {b open, |b| > 2r }◦ {e
m←→ z}◦ {z ↔ y}


∪

 ⋃
b,b,z∈Zd

{0
m←→ b}◦ {b open, |b| > 2r }◦ {b

m←→ z}◦ {z
m←→ x}◦ {z

m←→ y}

 . (9.20)

Substituting the right-hand side in the last line of (9.19), and applying the BK-inequality, we get
the upper bound

lim
p↗pc

1

χ(p)

∑
x,y,z,b∈Zd

∑
b∈Zd :|b|>2r

(
Pp (0

m←→ z)Pp (z
m←→ b)pD(b)Pp (b

m←→ x)Pp (z ↔ y)

+Pp (0
m←→ b)pD(b)Pp (b

m←→ z)Pp (z
m←→ x)Pp (z ↔ y)

)
. (9.21)

Taking the sum over y gives a factor χ(p). After this we can take the limit p ↗ pc . Then, by
translation invariance, the sum over x gives a factor Epc [|Bm |]. We get that (9.21) is equal to

Epc [|Bm |] ∑
z,b∈Zd

∑
v∈Qc

2r

(
Ppc (0

m←→ z)Ppc (z
m←→ b)pD(v)

+Ppc (0
m←→ b)pD(v)Ppc (b + v

m←→ z)
)
. (9.22)

By the definition of D(x) in (1.7) there exist constants ξ≥ ζ> 0 such that for all r ≥ 1,

ζ

rα
≤ ∑

x∈Qc
2r

D(x) ≤ ξ

rα
. (9.23)

Summing over z, v and b in (9.22) and applying (9.23), we get the following upper bound:

EIIC[|Bm \ B (r )
m |] ≤ 2ξ

rα
Epc [|Bm |]3 ≤ C m3

rα
, (9.24)

where the last inequality follows from Theorem 2.9. Substituting this bound in (9.17), and using
m = dλbrα/2e, we get

PIIC(|Bm \ B (r )
m | ≥ m2/λb) ≤ C m3r−α

m2/λb
=C1λ

2br−α/2 (9.25)
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and then substituting this result into (9.16), we get,

PIIC(|B (r )
m | < m2/λb) ≤ c1

λb
+C1λ

2br−α/2. (9.26)

Now we prove that the second term in (9.15) is also small. We start by splitting the probability
once more:

PIIC(|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0)

≤PIIC(|B2m | > 4λbm2)+PIIC(|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0, |B2m | ≤ 4λbm2). (9.27)

By Lemma 6.1, the first term can be bounded from above by c2/λb . For the second term we observe
that the event is measurable with respect to Z∞

2m , so we can reverse the IIC-limit to get

lim
p↗pc

1

χ(p)

∑
x∈Zd

Pp (|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0, |B2m | ≤ 4λbm2,0 ↔ x). (9.28)

We will use the ‘admissibility method’ of [33] (also used in the proof of Lemma 6.1 above). When-
ever |B2m | ≤ 4λbm2 occurs, there must exists at least one j∗ ∈ [m,2m] such that |∂B j∗ | ≤ 4λbm.
Let j be the first such j∗ and define B (2m) = B j . We call a set A ⊂Zd ‘admissible’ when Pp (B (2m) =
A) > 0 and |∂A| ≤ 4λbm. Then

{0 ↔ x, |B2m | ≤ 4λbm2} ⊆ ⋃̇
A adm.

{0 ↔ x,B (2m) = A}. (9.29)

For x ∈ A, we note that this contribution vanishes in the limit p ↗ pc . For x ∉ A the event {∂A ↔ x
off A} is independent of the status of the edges in A, so

Pp (|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0, |B2m | ≤ 4λbm2,0 ↔ x)

≤ ∑
A adm.

∑
y∈∂A

Pp (y ↔ x)Pp (|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0,B (2m) = A). (9.30)

We substitute the right-hand side in (9.28) and sum over x and y , using that |∂A| ≤ 4λbm, to get

lim
p↗pc

1

χ(p)

∑
x∈Zd

∑
A adm.

∑
y∈∂A

Pp (y ↔ x)Pp (|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0,B (2m) = A)

≤ 4λbm
∑

A adm.
Ppc (|B (r )

m | ≥ m2/λb , |Bm ∩Qc
r | = 0,B (2m) = A)

≤ 4λbmPpc (|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0)

(9.31)

where in the last step we used that all A are mutually disjoint.
We say that an edge e is long when |e| > 2r . For the last steps of the proof we use that

{|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0} ⊆ {|B (r )
m | ≥ m2/λb ,Ø long edge touching B (r )

m }. (9.32)

The status of long edges is translation invariant and independent of the status of the edges in B (r )
m ,

so that by the above and by (9.23) we can bound the right-hand side of (9.31) from above by

4λbm(1−Ppc (∃ long edge touching 0))m2/λb
Ppc (|B (r )

m | ≥ m2/λb)

≤ 4λbm

(
1− ζ

rα

)m2/λb

Ppc (|B (r )
m | ≥ m2/λb). (9.33)

For the final bound, we use that

Ppc (|B (r )
m | ≥ m2/λb) ≤Ppc (|Cr (0)| ≥ m2/λb) ≤ C√

m2/λb
, (9.34)
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where the final inequality follows from [6] and [22] (see also (9.77) below). Recall that m = dλbrα/2e,
so

PIIC(|B (r )
m | ≥ m2/λb , |Bm ∩Qc

r | = 0) ≤Cλ3b/2
(
1− ζ

rα

)m2/λb

≤C2λ
3b/2e−ζλ

b
. (9.35)

Finally, combining the bounds (9.15), (9.26), (9.27) and (9.35) we get for r ≥ r?(λ) =λ6b/α,

PIIC(Reff(0,Qc
r ) ≤λbrα/2) ≥ 1− (c1 + c2)

λb
− C1λ

2b

rα/2
−C2λ

3b/2e−ζλ
b ≥ 1− c/λb . (9.36)

�
The next lemma shows that it is unlikely that the effective resistance between 0 and the nth

backbone pivotal edge en is large. Write Bbn for the subgraph of Bb induced by the backbone up
to en .

Lemma 9.4. If the strong triangle condition is satisfied for some sufficiently small β, then, for any
sufficiently large λ and for all n ≥ 1,

EIIC[|Bbn |] ≤C n, (9.37)

and as a result,
PIIC

(
Reff(0,en) ≤λn

)≥ 1−C /λ. (9.38)

Proof. We start by deriving (9.37) from (9.38). The effective resistance is dominated by the number
of edges Bbn , and since each edge edge in Bbn connects to precisely 2 vertices in Bbn ,

PIIC(Reff(0,en) ≥λn) ≤PIIC(|Bbn | ≥λn/2) ≤ 2EIIC[|Bbn |]
λn

. (9.39)

It thus remains to show (9.38). We can bound the graph distance from above by the number of
edges in the backbone up to the nth pivotal, so by Lemma 3.1,

EIIC[|Bbn |] =
∑

z
PIIC({0 ↔ z} on Bbn)

=∑
z

lim
p↗pc

1

χ(p)

∑
x∈Zd

Pp ({0 ↔ z} on Bbx
n ,0 ↔ x).

(9.40)

where Bbx
n is the backbone graph for the connection from 0 to x up to the nth pivotal.

If z is a vertex in one of the n first sausages between 0 and x, then it follows that z is connected
to 0 with fewer than n pivotal edges, and there is a disjoint connection from z to x, i.e.,

Ppc ({0 ↔ z} on Bbx
n ,0 ↔ x) ≤Ppc ({0 ↔ z with ≤ n pivotals}◦ {z ↔ x}). (9.41)

Applying the BK-inequality, summing over x and taking the limit we get

EIIC[|Bbn |] ≤
∑

z
P(0 ↔ z with ≤ n pivotals). (9.42)

In Section 9.2 below we will prove

Lemma 9.5. If d > 3(α∧2) then there exists C > 0 such that∑
y∈Zd

Ppc (0 ↔ y with ≤ n pivotal edges) ≤C n. (9.43)

Therefore, it follows that
EIIC[|Bbn |] ≤C n. (9.44)

Inserting this bound into (9.39) completes the proof. �

Lemma 9.6. If the strong triangle condition is satisfied for some sufficiently small β, then, for any
sufficiently large λ and for all n ≥ 1,

PIIC

(
V (Z∞

n ) ≤λn2)≥ 1− c/
p
λ. (9.45)
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Proof. Since Bbn ⊂Z∞
n we have that V (Z∞

n ) ≤V (Bbn)+V (Z∞
n \Bbn), so that

PIIC(V (Z∞
n ) ≥ k) ≤PIIC(V (Z∞

n \Bbn) ≥ k/2)+PIIC(V (Bbn) ≥ k/2). (9.46)

It follows from Lemma 9.4 that we can bound the second term on the right hand side by 2C /k.
For the first term we start by applying Lemma 3.1:

PIIC(V (Z∞
n \Bbn) ≥ k/2) = lim

p↗pc

1

χ(p)

∑
x∈Zd

Pp (V (Zx
n \Bbx

n) ≥ k/2,0 ↔ x), (9.47)

where Bbx
n is the backbone graph for the connection from 0 to x up to the nth pivotal.

Observe that the set Zx
n \Bbx

n consists of all the vertices of C(0) up to the nth pivotal edge that
we can disconnect from 0 by closing a single edge that touches Bbx

n , that is, let Bx
n ≡ {b : b ∈

Bbx
n ,b open ,b ∉Bbx

n}, then

V (Zx
n \Bbx

n) = ∑
b∈E(Zd )

V (C̃b(b))1{b∈Bx
n }. (9.48)

We use this identity to conclude that either of the following events must happen:

(I) for all b ∈Bx
n we have V (C̃b(b)) < k/4;

(II) there exists a b ∈Bx
n such that V (C̃b(b)) ≥ k/4.

If (I) happens, then, by the fact that E[X1{X≤R}] =∑bRc
k=1 kP(X = k) ≤∑bRc

k=1P(X ≥ k), we get the
upper bound

Pp

(∑
b

V (C̃b(b))1{b∈Bx
n }1{V (C̃b (b))<k/4}1{0↔x} ≥ k/2

)
≤ 2

k

∑
b
Ep

[
V (C̃b(b))1{b∈Bx

n }1{V (C̃b (b))<k/4}1{0↔x}

]
≤ 2

k

dk/4e∑
`=1

∑
b
Pp

(
V (C̃b(b)) ≥ `, b ∈Bx

n ,0 ↔ x
)

.

(9.49)

By construction the cluster C̃b(b) is “off” Bbx , so that we can apply the Factorization Lemma [25,
Lemma 2.2] again to get

2

k

dk/4e∑
`=1

∑
b
Pp

(
V (C̃b(b)) ≥ `, b ∈Bx

n ,0 ↔ x
)

= 2

k

dk/4e∑
`=1

∑
b

pc D(b)Ep

[
1{b∈Bbx

n ,0↔x on Bbx }P
Bbx

p

(
V (C̃b(b)) ≥ ` off Bbx

)]
≤ 2p

k

dk/4e∑
`=1

Ppc

(
V (C(0)) ≥ `)Ep [|Bbx

n |1{0↔x}]

(9.50)

where the inequality follows from the fact that Pp (F off A) ≤Pp (F ) for any increasing event F and
any set A and translation invariance of Pp . (As usual when applying the Factorization Lemma, we

interpret the set Bbx as fixed set w.r.t. the measure PBb
x

p , but as random set w.r.t. the expectation
Ep .)

To bound the probability on the right-hand side above we use the following lemma:

Lemma 9.7 [Edge volume scaling]. If the strong triangle condition is satisfied for some sufficiently
small β, there exist 0 < c ≤C such that

cp
n
≤Ppc (V (C(0)) ≥ n) ≤ Cp

n
. (9.51)
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We will prove Lemma 9.7 in Section 9.3.
Inserting this bound into (9.47) we get the upper bound for case (I):

lim
p↗pc

1

χ(p)

2p

k

∑
x∈Zd

Ep [|Bbx
n |1{0↔x}]

dk/4e∑
`=1

Ppc

(
V (C(0)) ≥ `)≤ C n

k

dk/4e∑
`=1

Ppc

(
V (C(0)) ≥ `)≤ C np

k
,

(9.52)
where the first bound can be proved similarly to Lemma 9.4, and the second bound follows from
Lemma 9.7.

If case (II) happens, then

Pp (∃b ∈Bx
n s.t. V (C̃b(b)) ≥ k/4,0 ↔ x)

= ∑
(E ,F )adm.

Pp (∃b ∈ F s.t. V (C̃b(b)) ≥ k/4 |Bbx = E ,Bx
n = F )Pp (Bbx = E ,Bx

n = F ), (9.53)

where the sum over admissible (E ,F ) is over all finite sets of edges E and over all finite sets of
directed edges F such that Pp (Bbx = E ,Bx

n = F ) > 0. Now, for any fixed sets E and F , by Boole’s
inequality,

Pp

(
∃b ∈ F s.t. V (C̃b(b)) ≥ k/4 |Bbx = E ,Bx

n = F
)
≤ ∑

b∈F
Ppc (V (C̃b(b)) ≥ k/4 off E |Bbx = E ,Bx

n = F )

≤ |F |Ppc (V (C(0)) ≥ k/4),
(9.54)

where the second inequality follows by the independence of {V (C̃b(b)) ≥ k/4 off E } and E =Bbx ,
the fact that Ppc (A off E) ≤ Pp (A) for any increasing event A, and translation invariance of Ppc .
Applying this bound and Lemma 9.7 to the right-hand side of (9.53) we get an upper bound on
(9.47) for case (II):

lim
p↗pc

1

χ(p)

∑
x

Cp
k

∑
(E ,F )adm.

|F |Ppc (Bbx = E ,Bx
n = F ) = lim

p↗pc

1

χ(p)

∑
x

Cp
k
Ep [|Bx

n |1{0↔x}]

≤ lim
p↗pc

1

χ(p)

Cp
k

∑
x
Ep [V (Bbx

n)1{0↔x}]

≤ C np
k

,

(9.55)

where the final inequality follows from a proof similar to that of Lemma 9.4.
Combining the bounds for cases (I) and (II) with k =λn2 we thus get

PIIC(V (Z∞
n ) ≥λn2) ≤ C np

λn2
+ C ′np

λn2
≤ C +C ′

p
λ

. (9.56)

as desired. �

9.2. An upper bound on the volume of the outer-pivotal ball: proof of Lemma 9.5
In this section, we prove Lemma 9.5. Write

G(n) = ∑
y∈Zd

Ppc (0 ↔ y with ≤ n pivotal edges). (9.57)

We will prove Lemma 9.5 by induction using recursive upper and lower bounds on G(n) (stated in
Lemmas 9.8 and 9.9 below).

Lemma 9.8. If d > 3(α∧2), then exists c1 > 0 such that for n ∈N,

G(2n) ≥ c1

n
G(n)2. (9.58)
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Proof. The proof is inspired by the proof of [33, Lemma 3.1].
Write Nn for the number of pairs (b, y), such that the following events all occur:

• 0 ↔ y ,
• the edge b = (b,b) is pivotal for 0 ↔ y ,
• 0 ↔ b with ≤ n pivotal edges,

• b ↔ y with ≤ n pivotal edges.

If a pair (b, y) contributes towards Nn , then we must have that {0 ↔ y with ≤ 2n pivotal edges},
and there are at most 2n choices for b, so

Nn ≤ 2n
∑

y∈Zd

1{0↔y with ≤ 2n pivotal edges} . (9.59)

It follows that Epc [Nn] ≤ 2n G(2n).
We now bound Epc [Nn] from below. By the Factorization Lemma [25, Lemma 2.2] we get

Epc [Nn] = ∑
edge b

∑
y∈Zd

Epc

(
1{0↔b with ≤ n piv’s on C̃b (0)} 1{b occupied}

×PC̃b (0)
pc

(
b ↔ y with ≤ n piv’s off C̃b(0)

))
, (9.60)

where again the set C̃b(0) is to be considered as a fixed set w.r.t. the probability measure PC̃
b (0)

pc
, but

it is a random set w.r.t. the overall expectation Epc .
Next we replace the indicator function in the first line of (9.60) by 1{0↔b with ≤ n piv’s}. The reason

for this is as follows: Suppose, {0 ↔ b with ≤ n piv’s} occurs, but not {0 ↔ b with ≤ n piv’s on C̃b(0)}.
Then the (restricted) probability on the second line of (9.60) equals 0, so these configurations do
not contribute to the expectation.

We expand the probability in the last line of (9.60) as

PC̃
b (0)

pc

(
b ↔ y with ≤ n piv’s off C̃b(0)

)
=Ppc

(
b ↔ y with ≤ n piv’s

)
−PC̃b (0)

pc

(
b ↔ y with ≤ n piv’s through C̃b(0)

)
, (9.61)

where we used the definition of “through” (see Definition 2.2(iv)).
The first term in (9.61) is equal to∑

edge b

∑
y∈Zd

Epc

[
1{0↔b with ≤ n piv’s} 1{b occupied} Ppc (b ↔ y with ≤ n piv’s)

]
= pcG(n)2. (9.62)

We bound the last term in (9.61) from above by∑
edge b

∑
y∈Zd

Epc

[
1{0↔b with ≤ n piv’s}1{b occupied}P

C̃b (0)
pc

(
b ↔ y with ≤ n piv’s through C̃b(0)

)]
≤ ∑

edge b

∑
y,v,w∈Zd

Ppc

(
{0 ↔ v with ≤ n piv’s}◦ {b occupied}◦ {v ↔ b}◦ {v ↔ w}

)
×Ppc

(
{b ↔ w}◦ {w ↔ y with ≤ n piv’s}

)
. (9.63)

We apply the BK-inequality to both probabilities in (9.63) and take sums in the right order to
obtain that (9.63) is bounded above by

pc G(n)2 T̃pc . (9.64)

where

T̃pc =
∑

a,b,c
Ppc (0 ↔ a)pc D(b −a)Ppc (b ↔ c)Ppc (c ↔ 0). (9.65)
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It is proved in [18, 22] that T̃pc ≤ Cβ for both high-dimensional finite-range and long-range
percolation, respectively. We insert (9.61) into (9.60), and bound the two summands with (9.62)
and (9.63)–(9.64), respectively, to arrive at

Epc [Nn] ≥ pc (1−Cβ)G(n)2. (9.66)

Since Epc [Nn] ≤ 2n G(2n) from (9.59), this proves the claim for c1 = pc (1−Cβ)/2, which is positive
when β is sufficiently small. �

A complementary bound to (9.58) is given by the next lemma.

Lemma 9.9. There is a constant C such that

G(2n) ≤C
G(n)

n(2∧α)
. (9.67)

Proof of Lemma 9.9. We fix ε> 0, and let

N = ε

n
G(2n)1/(2∧α). (9.68)

Write e1, . . . ,e` for the ordered sequence of pivotal edges for the event {0 ↔ y} on the path from 0
to y , write e0 = 0, and write y = e`+1. If the event {0 ↔ y with ≤ 2n pivotals} occurs then there are
two possibilities:

(i) |e i −e i−1| ≤ N for all i = 1, . . . ,`+1, or
(ii) there exists an i ∈ {1, . . . ,`+1} such that |e i −e i−1| > N .

In case (i), we must have that |y | ≤ 2nN , so the contribution towards G(2n) from this case is
bounded above by ∑

|y |≤2nN
Ppc (0 ↔ y) ≤ C (2nN )(2∧α) ≤ C1 ε

(2∧α) G(2n), (9.69)

where we used Theorem 2.8.
The contribution towards G(2n) from case (ii) is bounded above by∑

u : |u−v |>N

( ∑
v∈Zd

pc D(v)Ppc (v ⇐⇒ u)
)

G(n) G(2n), (9.70)

and the sum of (9.69) and (9.70) forms an upper bound on G(2n). Here we denote by {v ⇐⇒ u} ≡
{v ↔ u}◦ {v ↔ u} a double connection between u and v .

It follows from [20, Proposition 2.5 and Remark 2.6] that there exists a constant C2 such that∑
|u−v |>N

∑
v∈Zd

pc D(v)P(v ⇐⇒ u) ≤ ∑
u,v∈Zd

∣∣∣u − v

N

∣∣∣(2∧α)
pc D(v)P(v ⇐⇒ u) ≤C2N−(2∧α). (9.71)

Together with (9.68) and (9.69), this implies

G(2n) ≤C1 ε
(2∧α) G(2n)+C2

n(2∧α)

ε(2∧α)
G(n), (9.72)

and choosing ε such that C1ε
(2∧α) = 1/2 implies the claim. �

Indeed, Lemmas 9.8 and 9.9 imply Lemma 9.5:

Proof of Lemma 9.5. The proof is similar to the proof of [33, Theorem 1.2(i)], though our infinite-
range setting requires Lemma 9.9 as an additional ingredient.

We give a proof by contradiction:
Assume that G(n0) ≥ C̄ n0 for a constant C̄ that satisfies C̄ > max{2, 2/c1, 2(2∧α)+1} and n0 ∈N.

We claim that this implies

G(2k n0) ≥ C̄ k+1 n0. (9.73)
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The claim is proved by induction. The case k = 0 is our assumption, and we advance the induction
by using (9.58), the induction hypothesis (9.73), and finally C̄ > max{2, 2/c1}, to obtain

G(2k+1n0) ≥ c1 G(2k n0)2

2k n0
≥ c1

2k
C̄ 2k+2 n0 ≥ C̄ k+2 n0. (9.74)

The combination of (9.58) and (9.67) implies
c1

n
G(n)2 ≤G(2n) ≤C n(2∧α)G(n), (9.75)

so G(n) ≤ (C /c1) n(2∧α)+1. Together with (9.74),

C̄ k+1n0 ≤G(2k n0) ≤ C

c 1
2((2∧α)+1)k n(2∧α)+1

0 . (9.76)

For large k this causes a contradiction because we chose C̄ such that C̄ > 2(2∧α)+1. �

9.3. Tail estimates for the cluster size of long-range models: proof of Lemma 9.7
In this section we prove Lemma 9.7.

Proof of Lemma 9.7. Combining results from [6] and [22] we know that there exist 0 < c ′ ≤C ′ such
that

c ′p
n
≤Ppc (|C(0)| ≥ n) ≤ C ′

p
n

. (9.77)

Recall that V (C(0)) is the edge volume of C(0). Since V (C(0)) ≥ |C(0)|−1, the lower bound in (9.51)
immediately follows. For models where each vertex has bounded degree, i.e., for any finite range
model, the upper bound also follows immediately , since then V (C(0)) ≤∆max|C(0)|, where ∆max is
the maximal degree a vertex can have. But establishing this bound for models with unbounded
degree requires a bit more work.

Fixing a constant γ> 0 (to be determined later) we can bound

Ppc (V (C(0)) ≥ n) ≤Ppc (|C(0)| ≥ γn)+Ppc (V (C(0)) ≥ n | |C(0)| < γn)

≤ C ′
p
γn

+Ppc (V (C(0)) ≥ n | |C(0)| < γn).
(9.78)

Now, consider a fixed C(0) such that |C(0)| = m. We do a standard breadth-first exploration of
C(0), starting at 0 and labeling the vertices as we go along. Let vi be the i th explored vertex of C(0).
After the exploration is completed, we know that there are m −1 explored open edges.

Given that we know the exploration tree, the only way that the unexplored edge {x, y}, with
x, y ∈ C(0), could be open is if both the topology and the labeling of the exploration tree are not
affected by information on the status of {x, y}. Clearly, any open edge in C(0) that has not been
explored has to be an edge between two explored vertices, so suppose that x and y have been
explored. If x and y are more than two generations apart in the exploration tree and the edge {x, y}
has not been explored, then it is closed, because the exploration would have explored the edge if
it was open. The edge {x, y} is also closed when having the edge be open would be inconsistent
with the order of the exploration. When the status of the edge affects neither the topology nor the
labeling, then the status of the edge under Ppc is independent of the status of other edges, since
Ppc is a product measure. So the number of unexplored edges at vertex v , say, is stochastically
bounded from above by ∆v , a random variable whose law P∆ is the degree of vertex v under Ppc

(in the setting without conditioning).
These observations imply that we have the following bound: for all x,

Ppc (V (C(0)) ≥ x | |C(0)| < γn) ≤P∆
(
γn +

dγne∑
i=1

Xi ≥ x

)
with Xi ∼∆0 for all i . (9.79)
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Furthermore, by our choice of D as described in the introduction we have that Epc [∆0] = pc and
it is easy to show that Varpc (∆0) = σ2 < ∞. Thus, choosing γ < (2pc )−1 we can use Cantelli’s
inequality to bound

Ppc (V (C(0)) ≥ n | |C(0)| < γn) ≤P∆
(dγne∑

i=1
Xi −pcγn ≥ (1−2pcγ)n

)

≤
(
1+ (1−2pcγ)2n2

nσ2

)−1

≤ C

n
.

(9.80)

Using (9.80) with (9.78) completes the proof. �

APPENDIX A. PROOF OF THEOREM 1.1(A), (B) AND (C)

This appendix contains a proof of Theorem 1.1(a), (b) and (c) that closely follows the proof
that Kumagai and Misumi [35] give for a similar, more general results. We have made a few small
modifications to their proof to make it work for the extrinsic distance metric. Before we prove
Theorem 1.1 (a), (b) and (c) we state a lemma that gives some bounds on exit times in terms of
bounds on volume and effective resistance:

Lemma A.1 [Parts of Proposition 3.3 and 3.5 from [35]]. Let λ> 0.

(1) Suppose r ∈ JE(λ). Then, for z ∈Ur ,

E z
ωτQr ≤ 2λ2r 6. (A.1)

(2) Let ε2 = ε(λ)2 = 1/(8λ2). If r,εr ∈ JE(λ), then

E x
ωτQr ≥

r 6

211λ6 for x ∈Uεr /2. (A.2)

Proof. We start by noting that by Definition 2.1, for any z ∈Ur ,

E z
ωτQr =

∑
y∈Ur

GQr (z, y)µy (A.3)

Proof of (1). Reff is a metric, so it satisfies the triangle condition, i.e., for any z ∈Ur ,

Reff(z,Qc
r ) ≤ Reff(0, z)+Reff(0,Qc

r ) ≤ 2λr 2 (A.4)

where the second inequality follows from the fact that r ∈ JE(λ) and Definition 2.4(i). Since for any
y, z, we have GQr (z, y) ≤GQr (z, z) and GQr (z, z) = Reff(z,Qc

r ), it follows that

E z
ωτQr =

∑
y∈Ur

GQr (z, y)µy ≤
∑

y∈Qr

GQr (z, z)µy = Reff(z,Qc
r )V (Ur ) ≤ 2λ2r 6, (A.5)

where we have used Definition 2.4(i) again for the final inequality.

Proof of (2). Since r ∈ JE(λ), we have the following bound for any x ∈Uεr :

r 2

λ
≤ Reff(0,Qc

r ) ≤ Reff(0, x)+Reff(x,Qc
r ) ≤λ(εr )2 +Reff(x,Qc

r ). (A.6)

So if we take ε> 0 sufficiently small, we get

Reff(x,Qc
r ) ≥ r 2

2λ
for all x ∈Uεr . (A.7)

Let px
Qr

(y) =GQr (x, y)/GQr (x, x). Since

| f (x)− f (y)|2 ≤ Reff(x, y)E ( f , f ) for all f ∈ L2(Γ,µ) (A.8)
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and furthermore E (px
Qr

, px
Qr

) = Reff(x,Qc
r )−1 =GQr (x, x)−1, we have, for x, y ∈Uεr /2,

|1−px
Qr

(y)|2 ≤ Reff(x, y)

Reff(x,Qc
r )

≤ 4λ2(εr )2

r 2 = 1

2
. (A.9)

Hence, px
Qr

(y) ≥ 1−1/
p

2 ≥ 1/4, so that

E x
ωτQr ≥

∑
y∈Uεr

GQr (x, x)px
Qr

(y)µy ≥ 1

4
µ(Uεr /2)Reff(x,Qc

r ) ≥ r 2V (Uεr /2)

8λ
≥ r 6

211λ6 . (A.10)

�

Proof of Theorem 1.1 (a), (b) and (c). We start with (1.13). Choose λ≥ 1 such that 2cEλ
−qE < δ. Let

r ≥ r? and set F1 = {r,εr ∈ JE(λ)}. Suppose first that εr ≥ 1. Then, by Theorem 2.6(a), PIIC(F1) ≥
1−2cEλ

−qE . For ω ∈ F1, by Lemma A.1, there exist c1 <∞ and q1 ≥ 0 such that

(c1λ
q1 )−1 ≤ E x

ωτQr

r 6 ≤ c1λ
q1 for x ∈Uεr . (A.11)

Thus, if θ0 = c1λ
q1 , then for θ = θ0 it follows that

PIIC

(
θ−1r 6 ≤ E 0

ωτQr ≤ θr 6)≥PIIC(F1) ≥ 1−δ. (A.12)

Now consider the case where r ≤ 1/ε. For each graph ΓIIC(ω), let

Y (ω) = sup
1≤s≤1/ε

E 0
ωτQs

s6 . (A.13)

Then Y (ω) <∞ for each ω, so there exists θ1 such that

PIIC

(
E 0
ωτQr > θ1r 6)≤PIIC(Y > θ1) ≤ δ. (A.14)

If we take θ1 > ε(λ)−6, then E 0
ωτQr ≥ θ−1

1 r 6, since E 0
ωτQr ≥ 1. Thus, for θ ≥ θ1, we also have

PIIC

(
θ−1r 6 ≤ E 0

ωτQr ≤ θr 6)≥ 1−δ, (A.15)

which completes the proof of (1.13).

Now we prove (1.14). We begin with the upper bound. By (A.5) and Theorem 2.6(a),

EIIC[E 0
ωτQr ] ≤ EIIC[Reff(0,Qc

r )V (Ur )] ≤ cr 6. (A.16)

For the lower bounds, it suffices to find a set F ⊂Ω of ‘nice’ graphs with PIIC(F ) ≥ c > 0 such that,
for all ω ∈ F , we have a suitable lower bound on E 0

ωτQr . Assume that r ≥ r? is large enough so that
ε(λ0)r ≥ 1, where λ0 is chosen large enough so that cEλ

−qE

0 < 1/8. We can then get results for all n
(chosen below to depend on r ) and r by adjusting the constant c1 in (1.14).

Let F = {r,ε(λ0)r ∈ JE(λ)}. Then PIIC(F ) ≥ 3/4, and for ω ∈ F , by (A.2), E 0
ωτQr ≥ c1(λ0)r 6, so that

EIIC[E 0
ωτQr ] ≥ EIIC[E 0

ωτQr1{F }] ≥ c1(λ0)r 6PIIC(F ) ≥ c2(λ0)r 6. (A.17)

Finally we prove (1.15). Let rn = en and λn = n2/qE . Let Fn = {rn ,ε(λn)rn ∈ JEuc(λn)}. Then
PIIC(F c

n) ≤ 2n−2 (provided ε(λn)rn ≥ 1). Therefore, by Borel-Cantelli, if Ωb = liminfFn , then
PIIC(Ωb) = 1. Hence there exists M0 with M0(ω) <∞ onΩb and such that ω ∈ Fn for all n ≥ M0(ω).

Choose a fixed ω ∈Ωb and let x ∈ IIC(ω). By (A.11) there exist constants c2, q2 such that

(c2λ
q2
n )−1 ≤ E x

ωτQrn

r 6
n

≤ c2λ
q2
n , (A.18)

provided that n ≥ M0(ω) and n is also large enough so that x ∈Uε(λn )rn . Writing Mx (ω) for the
smallest such n, we have

c−1
2 (logrn)−2q2/qE r 6

n ≤ E x
ωτQrn

≤ c2(logrn)2q2/qE r 6
n for all n ≥ Mx (ω). (A.19)
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Note that by definition E x
ωτQrn

is increasing in n. If r ≥ Rx = 1+ eMx , then let r be such that
rn−1 ≤ r ≤ rn . Then,

E x
ωτQr ≤ E x

ωτQrn
≤ c2(logrn)2q2/qE r 6

n ≤ c ′2(logr )2q2/qE r 6. (A.20)

Similarly,
E x
ωτQr ≥ E x

ωτQrn−1
≥ c3(logrn−1)−2q2/qE r 6

n−1 ≥ c ′3(logr )−2q2/qE r 6. (A.21)

Taking ξ> 2q2/qE large enough to absorb the constants c ′2 and c ′3 in the logr term, we get (1.15).
�
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