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This paper is concerned with the local recognition of certain graphs and 
geometries associated with exceptional groups of Lie type. The local 
approach to geometries is inspired by group theory. Finite simple groups 
are often characterized by local information, for example, the fusion 
pattern of involutions centralizing a given involution. The main results 
here, although of a geometric nature, are a contribution to obtaining a 
characterization of a group of exceptional Lie type by the fusion pattern of 
root subgroups centralizing a given root subgroup. 

Let L1 be the shadow space of a (thin or thick) building of spherical type 
Mn (where n indicates the rank) with respect to a given node r of M (cf. 
Tits [13, 14]). We shall view L1 as a space, i.e., as a set of points together 
with a collection of subsets of size at least two of the point set, called lines. 
Thus, the points of L1 are the vertices of type r of the building in question 
and the lines are the residues of flags of cotype {r }. The local recognitions 
we intend to discuss are based on the fact that up to (nonspecial) 
isomorphisms, the building is uniquely determined by A. If p is a point of 
A, the set A._ 1 (p) of points collinear with p (including p) constitutes a sub­
space in the sense that each line bearing two distinct points of L1._ 1(p) is 
entirely contained in L1 ._ 1 (p ). A space with this property is often called a 
gamma space. Since L1 affords a group of automorphisms which is transitive 
on the point set if n ~ 2 ( cf. [ 13] ), we can associate with L1 a space L1 ,. 1 

such that for each point p of L1 the subspace L1 ., 1 (p) of L1 is isomorphic to 
L1., 1 • (Here and elsewhere, a subspace X is regarded as a space by taking 
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into account the lines of the ambient space completely contained in X.) A 
gamma space r will be called locally isomorphic to LI if for each point p of 
r the SU bspace r.; I ( p) is isomorphic to LI .; I • The space LI is called locally 
recognizable if every connected gamma space which is locally isomorphic to 
LI is also isomorphic to LI. Projective spaces are trivial examples of locally 
recognizable spaces because their points are pairwise collinear. In view of 
Johnson and Shult [9], polar spaces of rank at least three are locally 
recognizable as well. Thanks to known characterizations of the relevant Lie 
incidence systems, it is not hard to show that certain shadow spaces of 
thick buildings of type Mn =E6 , E1 , Es (among which the root group 
geometries) are locally recognizable. This is the content of Section 2 below. 

If A does not possess subspaces which are projective planes, all lines of 
A ,,. 1 meet in a unique point (the radical of L1,,. 1 ); the "free construction" of 
a gamma space which is locally isomorphic to r has infinite diameter then, 
so that A is not locally recognizable. Examples of such shadow spaces are 
dual polar spaces. In order to capture these spaces in a local study as well, 
we observe that provided n > 3, for each natural number k there is a space 
A,,. k such that for every point p of LI the set LI .;k(P) of points at distance 
at most k (measured in the collinearity graph of A) to p is a subspace 
isomorphic to L1 .;k (same argument as above). Thus the local recognition 
problem can be viewed as a particular case of the search for the minimal 
number k for which LI is k-recognizable, i.e., satisfies the property that every 
space r such that for each point p the subset r ..;k(P) is a subspace 
isomorphic to L1 .;k is isomorphic to LI. According to [ 1 ], thick finite dual 
polar spaces of rank ~ 3 are 3-recognizable and half dual polar spaces of 
rank ~4 are 2-recognizable. As a consequence of [6, 8], the spaces of the 
root group geometries of type F4 , E6 , £ 7 , Es are 2-recognizable. It has been 
mentioned above that this result has been improved for the latter three 
kinds of spaces. If the prevailing type Mn is F4 and r corresponds to an end 
node, A is called a metasymplectic space ( cf. [ 6, 7] ). If L1 is the thin 
metasymplectic space (i.e., all lines of LI have precisely two points and each 
line is in precisely three triangles), then L1 is the 24-cell associated with the 
Weyl group of type F4 and L1,,. 1 is the graph theoretic join of a single vertex 
graph and the cube, where the latter is viewed as a graph on 8 vertices and 
12 edges. A. E. Brouwer and, independently, D. Buset [3] have shown that 
in this case each connected graph locally isomorphic to L1 is either 
isomorphic to L1 or to the complement E of the 3 x 5 grid. 

If L1 is thick, i.e., if all lines of LI have at least three points and each 
4-circuit is collinear with at least three points, we do not know whether L1 
is locally recognizable. However, the following approximation to local 
recognition of L1 will be shown to hold. 

MAIN THEOREM. Suppose LI is a thick finite metasymplectic space. If r 
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is a connected gamma space that is locally isomorphic to LI, then I' is 
isomorphic to LI provided the following condition is satisfied. 

(*)If x,, X2, X3, X4 is a path of r with X1, X3 and X2, X4 pairs ofnon­
collinear points such that I' .;;1(Xi)n I' .;;1(X2) n I'.;; 1(X3) n I'.;; 1(X4) contains 
at least two points, then each line of r <;; l (x1) n r"' ,(x2) n r"' i(x3) contains 
a point collinear with x 4 • 

Let us first give an alternative interpretation of ( * ). If p is a point of LI, the 
space Ll., 1(p) has radical {p} (see [8] for terminology). Thus there is a 
natural quotient space AP whose points are the lines on p on whose lines 
are the sets of lines on p contained in a plane on p. This quotient space LIP 
is isomorphic to a dual polar space of rank 3 and hence ( cf. [ 12]) each 
pair of points of LIP at mutual distance 2 is contained in a quad, i.e., a 
geodesically closed subspace isomorphic to a generalized quadrangle. Con­
dition ( *) is equivalent to saying that if p and q are points of a line I of I', 
then every set of all planes containing I and determining the lines in a quad 
of FP on the point I of P coincides with the set of all planes containing l 
and determining the lines in a quad of rq on the point l of rq. In the thin 
case, for any path x 1 , x 2 , x 3 , where x 1 , x 3 are noncollinear, the number of 
lines in I'., 1(xi)nI',. 1(x 2 )nI'., 1(x 3 ) is at most 2, so that condition(*) is 
trivially satisfied. Thus, the above theorem can be viewed as an extension 
of the thin characterization in [3]. Although no "q-analogue" of E appears 
in the conclusion of the theorem, the heart of the proof consists of deriving 
the nonexistence of a local pattern resembling certain local patterns in E. 
To be more specific, there are points x, y in E at mutual distance 2 such 
that the subspace E., 1 (x) n E ,. 1 (y) is a hexagon, whereas it takes some 
effort to establish that in the setting of the theorem there are no points x, 
y at mutual distance 1 in the space I' such that r ,. 1(x)nI'., 1 (y) is a 
generalized hexagon. By the results in Section 3, the possible generalized 
hexagons OCCUrring aS I'.;; I ( X) ('\ I'.;; 1 ( y) are the classical generalized 
hexagons of type G2 • The principal result of Section 3, Theorem (3.1 ), is a 
characterization of "locally quad" subspaces of a dual polar space of rank 
3 which may be of interest in its own right. This proof of the Main 
Theorem is in Section 4. Apart from the thin example E, the existence of 
geometries of type F4 related to geometries of type C4 , D 4 and of 
geometries with diagram ~ related to the Monster simple group 
and Fischer's simple group Fi24 (cf. Buekenkout and Fischer [2], Ronan 
and Stroth [ 10]) seems to indicate that local recognition of metasymplectic 
spaces is less trivial than that of the root group geometries for £ 6 , E7 , £ 8 . 

Although the infinite case is not covered by our methods, we have no 
reason to believe that the theorem would cease to hold if the finiteness 
restriction were removed. 



METASYMPLECTIC SPACES 

TABLE I 

Labeled diagram 

0----0----0- - --0 

I 

o----O- - --o=o 
I n 1 n 
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Restriction 

n;?; I 

n~2 

n;?;4 

The labeling of nodes of M,, shown in Table I will be used throughout 
in the sequel. A space is said to be a space of type M "·, if it is the shadow 
space of a building of type M,, with respect to node r as explained above. 
The labeling follows [ 11 ], where a survey of recognition theorems for 
spaces of type M,,,, can be found. 

2. LOCAL RECOGNITION OF SPACES RELATED TO £ 6 , £ 7 , £ 8 

This section is devoted to the proof of the following result. 

(2.1) THEOREM. Every space of type D,,, n (for 4 ~ n ~ 7), £6,1•£6.4• 

E1. 1, E7, 7, or E8, 1 is locally recognizable. 

For notation, such as J_ (for collinearity) and d (for distance), and ter­
minology, such as "parapolar space," "symplecton," "singular subspace," 
and "rank," the reader is referred to [8]. In addition, for x a point of a 
gamma space rand X a subspace of r contained in xj_, we shall write X/x 
to denote the quotient space with respect to x, i.e., the space whose points 
are the lines containing x and a point of X - { x} and whose lines are the 
sets of all lines on x meeting a given line entirely contained in X - {x }. 
Thus r~ and xj_ /x denote the same space. 

Suppose M,,,, is one of the types mentioned in the theorem. Let L1 be a 
space of type Mn.,. Let I' be a connected gamma space which is locally 
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isomorphic to Li. If M,,_,= D4, 4 , then L1 is a polar space so the result 
follows from Johnson and Shult [9]. Therefore, we (may) assume from 
now on that n is at least 5. Since maximal singular subspaces belong to 
r,;;; I (z) for any point z they contain, r is a partial linear space. Also for 
each point x of r there are subspaces S of r contained in x.L such that S/x 
is a symplecton on I''. (Conversely, if T' is a symplecton of I'" there is a 
unique subspace T of r containing x which is a union of lines of x such 
that Tjx = T'.) The lemma below shows how to interpret such a space Sat 
a point y collinear with x. 

(2.2) LEMMA. Retain the notation for d, Mn. r of above. Let n ~ 5 and let 
I' be a gamma space which is locally isomorphic to a space o.f type M n.r· Let 
x, y be distinct collinear points of I' and denote by I the line containing both 
x and y. If S is a subspace containing l which is a union of lines on x such 
that S/x is a symplecton of rx then there is a subspace T which is a union 
of lines on y containing l such that T/y is a symplecton of I'-" with the 
property that every plane on I is contained in S if and only if it is contained 
in T. 

Proof Take two planes ni. n3 in S containing l such that n 1 $ nj. 
Since S/x is a polar space of rank ~2, there are planes n 2 , n4 in S 
containing I such that n 2 u n4 s; nt n nt but n2 $ nf. The set of planes on 
l contained in S now coincides with the set of planes n on I such that 
n .L n < n ;, n; + 1 ) contains a plane for each i E { 1, 2, 3, 4}, where indices are 
taken modulo 4. This description of the planes on I contained in S 
(independent of the choice of x in /) determines the set of lines on the point 
l of I'" of a symplecton T 1 of I'-". The inverse image of T 1 under the 
mapping u ~ uy from y .!. - {.v} onto rv is the desired subspace r. I 

Before proceeding with the proof of Theorem (2.1 ), we list without proof 
some known properties of the spaces under study (see [8] ). 

(2.3) LEMMA. Let Li he a space of type Nu.v· Consider the following 
conditions concerning d. 

(x/) If x is a point and l a line, then d(x, I)::::; 2. 

(xS) If x is a point and S a symplecton, then x.L n S of 0-
(P) Jfx 1,x2 ,x3 ,x4 ,x5 isa 5-circuit, then {x 1 ,x3 ,x5 }.L#0. 
(SIS) If S 1 , S2 are two symplecta, then there exists a line I such that 

S;n I# 0 for each iE {!, 2}. 
(S) If Sis a subspace which is locally isomorphic to a symplecton, then 

S is a symplecton. 
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(Sy) If x, z are points at distance 2, then { x, :: } 1 is a polar .\pace of 
rank at least 2. 

The following hold: 

(a) If Nu,v=An,2 (n~7), Ds,s, or E 6, 1 , then L1 has diameter 2 and 
satisfies (SIS) and (S). 

(b) If Nu,"= As, 3, D6, 5, C3. 3, E1, 1, then .d has diameter 3 and 
satisfies (xl), (xS), and (P). 

(Sy ).(c) If Nu,,.·= A,,.2 (n ?< 3 ), Ds. 5, As,3• En. 1, D6 , 6 , E7. 1, then ,:1 sati.~fies 

The cr~x of the proof of Theorem (2. l) consists of identifying { x, :: } l, for 

two pomts x, z at mutual distance 2, with a symplecton. This is again done 

by local recognition, but now for subspaces. 

A subspace X of a parapolar space is said to be locally isomorphic to a 

symplecton if for each point x of X there is a symplecton S such that 
x J_ n X = x J_ n S. 

(2.4) LEMMA. Let L1, Mn.n r be as above. For any two points x,::: of r 
at mutual distance 2, the following hold. 

(i) The mapping { x, ::: } J_ 3 u --+ ux Er' is an isomorphism from 

{ x, z} J_ onto the subspace { x, z} L /x of T"; the connected components of this 

subspace are either singletons or locally isomorphic to a symplecton in r' 
and hence to .spaces of type Nu,,·= A 3, 2 , D4, 1 , .4 3. 2 , D 5, 1 , D4. 1' D6• 1 in the 

respective cases M,,,,=D,,,,,, E 6, 1 , E 6,4, £ 7." E1,1, £ 8,1. 

(ii) If a connected component of the jpace {x,::: }J_/x contains a line, 

it is a symplecton of T''. 

(iii) fl M,,.r = £ 6• 4 , E 7, 7 , or E8, 1 , then { x. ::: } J. /x is either a coclique 

or a symplecton. 

Proof (i) Since r is a gamma space, it is readily seen that the mapping 

u-+ux (uE{x,z}l) is an isomorphism from {x,z} 1 onto {x.z}.L/x. Let 

u E { x, z} .L. Suppose there is a line on u in { x, ::: } i. Then xu, :::u have dis­

tance 2 in P. Now, by Lemma (2.3)(c), in r" the points collinear with 

both xu and zu all belong to the unique subspace Son u, x, and::: with the 

property that S is a union of lines on u and that S/u is a symplecton. In 

fact, each plane n on xu contains a line collinear with ::: if and only if it 

belongs to S. According to Lemma (2.2), there is a subspace Ton x in xc. 

such that T/x is a symplecton of I'' and each plane on xu contains a line 

collinear with z if and only if it belongs to T. This implies that the subspace 

of { x, z} J_ /x consisting of all points collinear with xu coincides with the 

subspace of the symplecton T/x consisting of all points collinear with xu. 
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Consequently, connected components of { x, y} 1- /x are locally isomorphic 
to a symplecton of the specified type or to singletons. Now (i) follows since 
the symplecta are of the types given in the statement. 

(ii) In view of (i) it suffices to prove that any connected subspace S 
of a space P of type Nu.,. that is locally isomorphic to a symplecton is itself 
a symplecton. As each point of S is contained in a line of S, the space S 
is locally polar in the sense of Johnson and Shult [9]. Since symplecta 
of 'ff have rank ?4, the rank of maximal singular subspaces is ? 3, so 
that by [9], Sis a polar space. It readily follows that S is a symplecton 
of 'ff (for instance since S is the geodesic closure of any 4-circuit that it 
contains.) 

(iii) Suppose T= {x,z}1-/x contains a connected component T 0 

which is a symplecton in I''. If I ET- T 0 , then by Lemma (2.3 )(b) there 
is m E T 0 collinear with /. But then I belongs to the connected component 
of Tin m, i.e., to T0 , a contradiction. Hence T= T0 • I 

(2.5) COROLLARY. Let r be as in the previous lemma. Then r is a 
parapolar space. 

Proof Clearly, r satisfies (FI), (F2) of [8]. Thus the proof comes 
down to showing 

(F3) If x, y are two points of I' at mutual distance 2, the subspace 
{ x, y} J. is either a singleton or a polar space. 

In view of Lemma (2.4 ), we need only establish that { x, y} 1- is a connected 
space. Suppose that a, b are noncollinear points of { x, y} 1-. We shall estab­
lish that { x, y} J. is connected by distinguishing two cases: 

(a) The diameter of I'' is 2, and hence M,,,,=D,,,,,, E6, 1 , E7. 1 . 

(b) The diameter of I'' is 3, and hence M,,,, = E6 , 4 , E7, 7 , £ 8, 1 . 

(a) Since the diameter of ru and rb is 2, there are lines on a and on 
h inside { x, y} J.. Thus, by Lemma (2.4 )(ii) the connected components of 
{ x, y} J. containing a and b respectively are symplecta. Since (SIS) in 
Lemma (2.3) holds, there is a line having a point in both symplecta, so that 
a and b are connected by a path in { x, y} 1-. 

( b) In view of (iii) of the above lemma, we are done if { x, y} 1- con­
tains a line. Suppose, therefore, that { x, y} J_ is a coclique. If there is a point 
collinear with, but distinct from, three points from the 4 circuit x, a, y, h, 
then {x,a,y,b}l.#0. (For, if zE{x,a,y}J.-{a} then za and b both 
belong to { x, y} J_, so the latter space is a polar space in view of (iii) of the 
above lemma, whence 0 # bJ_ n za £ { x, a, y, b} 1-; and similarly for 
choices of other triples from x, a, y, b.) Therefore, we may restrict ourselves 
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to the case where xa, ya have distance 3 in ra, ay, by have distance 3 in 
rv, and so on. 

Take a plane n containing ay. By (xl) of Lemma (2.3) applied to ra and 
I'Y there exists a point C in 7t SUCh that Ca (resp. CY) has distance 2 in ra 
(resp. P') to xa (resp. by). In particular {x, c}J. and {b, c}J. contain a line 
so that by (ii) of the above lemma {a,c}J./x and {b,c}J./b are symplecta 
of r~ and rb, respectively. By (xS) of Lemma (2.3) applied to rx, there 
is a point of { x, c} J. /x collinear with xb. Denote by d the inverse image of 
this point in { x, c} J. under the map u-+ ux (u E {x, c} J. ). Then d is 
collinear with b, c, x. Now y, d E { b, c} J. and a, d E { x, c} J., whence using 
that the symplecta {b, c}l./b and {x, c}J./x have diameter 2, there exist 
e E { b, c, d, y} J. and f E {a, ,c, d, x} l.. Now by (P) of Lemma (2.3) applied 
to the 5-circuit a, y, e, d, f; there exists a line I on c inside { c, d, a, y} J.. 
Now l u { x} s; {a, d} 1., so {a, d} J. is a symplecton by Lemma (2.4) and 
there exists g E xj_ n 1. Thus a and g are collinear and belong to { x, y} J.. 
Since a, g are distinct (otherwise xa, xd, xb would be a path of length 2 
in rx ), this leads to a line inside { x, y} J_ contradicting that { x, y} l. is a 
coclique. This ends the proof of the corollary. I 

(2.6) End of Proof of Theorem (2.1 ). Now that the corollary has been 
established, it is straightforward to verify that I' is a parapolar space and 
that axioms (F3 h and (F4 )J hold for the relevant k E ~. J s; { -1, 0, 1} in 
the distinguished cases for Mn, , . Application of Theorems 1 and 2 in [ 8] 
(and the "Added in Proof') shows that either I' satisfies the conclusion of 
the theorem to be proved or L1 is of type Dn,n and I' is a quotient of L1 by 
a group A of automorphisms of L1 mapping each point to a point at 
distance at least 5 to it. However, in the latter case n:::;; 7, so the diameter 
of L1 is at most 3, whence A= l and I'~ A. Hence the theorem. I 

3. LOCALLY QUAD SUBSPACES OF DUAL POLAR SPACES 

Let N be a dual polar space. A quad in N is a geodesically closed sub­
space that is isomorphic to a generalized quadrangle. A subspace X of a 
dual polar space N is said to be locally quad if for each point x of X there 
exists a quad Q of N such that xl. n Q = x.J. n X. Examples of locally quad 
subspaces of N are quads. This section is devoted to the proof of the 
following result. Here, a dual polar space is called thick if each line has at 
least three points and if each point p has at least three lines inside every 
quad onp. 

( 3.1) THEOREM. Suppose N is a thick finite dual polar space of rank 3. 
If X is a locally quad subspace of N which is not a quad then N is the dual 
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polar space B3, 3(q) associated with a nondegenerate quadic in a 7-dimen­
sional space over some finite field IF q and X is isomorphic to the classical 
generalized hexagon G2(q) of type G2 over IF q· Moreover, the map x --t Qx 
assigning to each point x of X the unique quad ( =point of polar space) Qx 
of N containing x.i n X is the standard embedding of the generalized hexagon 
G2 over IFq in the polar space B 3, 1(q) over IFq. 

Here, the standard embedding of the classical generalized hexagon G2(q) in 
the polar space B3• 1 (q) refers to the construction of the generalized 
hexagon inside te polar space B3• 1(q) ~ Q 7(q) as the absolute points and 
lines of a triality on the polar space D4 , 1(q) ~Qgr(q). As a convenience to 
the reader, we list some known properties of dual polar spaces of rank 3. 
Proofs can be found in Cameron [4] or Shult and Yanushka [12]. 

(3.2) LEMMA. Let N be a dual polar space of rank 3. The following hold. 

( i) The space N is a gamma space whose lines are maximal cliques. 

(ii) If a 1l.a2.la3.la4 l.a5.la 1 is a 5-circuit in N (i.e., a;, a;+z non­
collinear, indices i modulo 5 ), then for each i the point a; is collinear with a 
point on the line through a;+ 2 and a;+J· 

(iii) Each pair of points at mutual distance 2 is contained in a unique 
quad. 

(iv) Each pair of quads has either empty intersection or meets in a line. 

( v) If Q is a quad of N, then for each point p EN - Q the intersection 
p.i n Q is a singleton {p1 }. Moreover, if q E Q the distance d(p, q) from p to 
q satisfies d(p, q)= 1 +d(p 1,q). 

( vi) The diameter of N is 3. If x, y are points at mutual distance 3, 
each line containing x bears a unique point at distance 2 to y, 

In the proof of the proposition, we shall use a case by case argument to 
rule out all possible thick polar spaces of rank 3 except for those with 
parameters (s, t, r)=(q, q2 +q, q), i.e., B 3, 1(q)=Q7(q) and C3(q)=Sp6(q). 
Table II below lists the parameters of all thick dual polar spaces. For the 
duration of this section, let N and X be as in the hypothesis of the theorem. 

( 3.3) LEMMA. The graph theoretical distance in X is the restriction to X 
of the distance in N. Moreover, X is a generalized hexagon of order (s, r). 

Proof Suppose X contains a 4-circuit al.bl.cl.d.la. Let Q be the 
unique quad containing this 4-circuit. Since Q is the unique quad contain­
ing a, b, and d, we have a.in X =a.in Q £ Q. Therefore, if x belongs to 
aJ.. n X, there is a point y on the line be containing b and c such that 
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TABLE II 

Thick Finite Dual Polar Spaces of Rank 3 

Parameters Number of Number of 
Nameof N s, t, r points quads 

B3(q) = D1(q) 

q, q2+q, q (q +I )(q2 +I )(q3 + 1) 
q6-J 

q-l 

C3(q) = Sp6(q) 
2D4(q)=!J8(q) q2, q2 ± q, q (q2+ l)(q3+ J)(q4+ !) 
2As(q)= U6(q) q, q4+ q2, q2 (q+l)(q3+l(q5 +l) (qs+ l)(q4+qi+ I) 
2A6(q)= U7(q) q3, q4 + q2, q2 (q3+ l)(qs+ l)(q1 +I) 

x..Ly.lb..La..Lx is a 4-circuit contained in Q. By the same argument as 
before, we get x-L n X s Q. By induction on the length of a path starting 
from a we find that the connected component of X containing a is con­
tained in Q. On the other hand, each point of Q is collinear with a point 
of aJ. 11 Q, so the connected component of X containing a coincides with Q. 
If zEX-Q, then by Lemma (3.2)(v) there is a (unique) point in Q 
collinear with z. But then z is contained in the connected component of X 
containing a, a contradiction. It follows that X = Q, contradicting the 
hypothesis. Therefore, X does not contain 4-circuits, and hence, by Lemma 
(3.2)(i), (ii), no circuits for m = 3, 4, 5. 

For x, ye X, we denote by d .dx, y) the distance from x to y in X as 
opposed to the distance d(x, y) in N. It is our goal to show that d and dx 
coincide on X. Suppose x, ye X satisfy d(x, y) = 2. Let Q be the unique 
quad satisfying x-L 11 Q = xJ. n X. By Lemma (3.2)(v) there is a point u in 
x-L 11 yJ. ("\ Q. Since u e xJ. n Q s X we have a path from x to y inside X, 
whence d x(x, y) = 2. Next suppose that x, y EX satisfy d(x, y) > 2. Then, 
again by Lemma (3.2)(v), there are uEyJ.nQ and vExJ.11Q with u.lv. 
Now v EX and dx(v, y) = 2 by the preceding paragraph as d(x, y) > 2, so 
dx(x, y) = 1 + dx(v, y) = 3. This settles that dx is the restriction of d to X. 
Since clearly by Lemma (3.2 )(vi) for x, y EX with d(x, y) = 3 each line in 
X containing x contains a point of X at distance 2 to y, it follows that X 
is a generalized hexagon. As the line size of X is the line size s + 1 of N and 
the number of lines on a point in X is the number of lines r + 1 in a quad 
on a point in that quad, the order of X is (s, r). This proves the lemma. I 

(3.4) LEMMA. (i) If Q is a quad, then Q ("\ X is either empty, a line or of 
the form xJ. 11 X for some x EX. 

(ii) The mapping x-+Qx assigning to xEX the unique quad Qx 
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satisfying x_L n X = x_L n Qx is an injective mapping from X to the point set 
of the polar space underlying N. 

Proof (i) By Lemma (3.2), the intersection Q n X contains two non­
collinear points only if it has the form x_1. n X for some x EX. Therefore we 
may and shall restrict ourselves to the case where Q n X is a clique. Since 
QnX is a subspace, in view of Lemma (3.2)(i) it remains to show that it 
cannot be a point. Suppose a E Q n X. Then there is a quad R such that 
a_1.nR=a.LnX. Since aEQnR and Qi=R, Lemma (3.2)(iv) yields that 
Q n R is a line containing a. Therefore Q n X contains a line and we are 
done. 

(ii) Obvious from (i) and the fact that {x} is the radical in X of 
Qx nX. I 

(3.5) LEMMA. (i) The parameters of N are (s,t,r)=(q,q 2 +q,q)for 
some prime power q. 

(ii) The mapping re: x-+ Qx of the preceding lemma is a bijection from 
X to the point set of the polar space P underlying N. 

(iii) Each line of N has a point in common with X. Jn particular, each 
point of N is collinear with precisely q 2 + q + l points of x. 

(iv) If x, y EX, then x, y have distance ~ 2 if and only if n(x) and n(y) 
are collinear in the polar space P. 

Proof (i) Thanks to (ii), the restriction of the mapping x-+ Q, on X to 
a line I of X, is injective, too. Since the size of l is s + 1, the number of 
quads containing I is r + 1 and Qx contains I for every x E /, it follows that 
s~ r. This rules out the possibility that N~Q8- or N-;: U7 . Next, we count 
the number of quads Q with Q n X i= 0. By (ii) there are exactly 
(s + l )( 1 + sr + s2r 2 ) (=the cardinality of X) quads Qx for x ranging over 
X. Since X has (r + 1 )( l + sr + s2r 2 ) lines and each line is contained in r + 1 
quads, s+l of which have shape Q"' there are (l+sr+s2r 2 )((s+1)+ 
(r+1)(r+1-(s+l)))=(l+sr+s2r2 )(1+r2 +r-rs) quads that meet 
X nonemptily. On the other hand, the total number of quads is 
((I+st)(r+I)+s 2t(t-r))t(t+l)/(I+r)(l+sr) as can be seen by a 
simple count using Lemma (3.2). It follows that there are 

( ( 1 + st )( r + 1 ) + s2 t(t - r)) t( t + 1 ) 2 2 2 
o:= (r+l)(sr+l) -(l+sr+sr )(l+r+r -rs) 

quads in N having an empty intersection with X. Since o: < 0 if N has the 
parameters of the type U6 dual polar space, we conclude that N must have 
the parameters of the B 3 dual polar space (see Table II). 
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(ii) Now s = r, so the first paragraph of the proof of (i) yields that 
there are no quads Q such that Q n X is a line. Since a= 0, the last 
paragraph of the same proof yields that there are no quads that have an 
empty intersection with X. The result therefore follows from Lemma (3.4 ). 

(iii) Let I be a line of N. If Q is a quad containing /, then 
Q=Qx=x.inQ for some xeXnQ by (ii), so there is a pointy on l 
collinear with x by the definition of generalized quadrangle. Now 
y E x.i n Q so ye In X. If z e N - H, then each line on z has at least one 
point in H by the above, and hence, since His a subspace, precisely one 
point. Thus the size of z.i n H is t + 1 = q2 + q + l. 

(iv) Suppose x, y are points of Xwith d(x, y),,,;2. Then Qxn QY con­
tains a point of X (namely x), the line on x and y, the unique point in 
x.i n y.i n X in the respective cases d(x, y) = 0, 1, 2. Hence, by Lemma 
(3.2)(iv), the intersection Q_J'\ Q,. contains a line. This means that 
n(x) = Qx and n(y) = Qv are collinear points of P. Conversely, let x, yeX 
be points such that n(x j, n( y) are collinear. Then Qx n Q Y contains a line, 
I say. If d(x, y)::::; 1, there is nothing to show. Assume, therefore, d(x, y) > 1. 
Then there are u Ex.inland v E y.i n I as Qx and QY are quads containing 
x, I and y, !, respectively. If u =F v, then l £ Qx n Q v n X so x, y E /, con­
tradicting d(x, y) > 1. Hence u = v Ex.in y.i, so d(x,.y) = 2. I 
We now prove Theorem (3.1). For xeX, let W1(x)= {najaex.i nX} and 
W2(x)={najaeX,d(a,x),,,;2}. Because X is a generalized hexagon of 
order (q,q), we immediately see that jW1(x)l=(q3 -l)/(q-1) and 
IW2 (x)I =(q5 - l)/(q-1). We next show that W1(x) is a maximal singular 
subspace of P. Suppose u, veW1(x) with u-:t-v. Then there are 
a,bex.LnX with n(a)=u, n(b)=v, and d(a,b)~2. It follows from 
Lemma (3.S)(iv) that u, v are collinear in P. Thus W 1(x) is a clique of P, 
so there exists a maximal clique W of P containing W1(x). Since P is the 
polar space B3, 1(q) or C3, 1(q), we have IWl=(q3 -l)/(q-l)=IW1(x)I, 
whence W= Wi(x). 

Now consider W2(x). Let IP be the standard projective space in which P 
is embedded. (Thus 111 has rank 6, 5 if P is B3, 1(q), C3, 1(q), respectively.) 
Denote by H the hyperplane of 111 that is orthogonal to n(x). Clearly 
W 2(x)£PnH by (iv) of the previous lemma. Also jPnHI= 
(q5 -l)(q-l)=IW2(x)I, whence W2(x)=PnH. It is now obvious that 
properties (a )-(g) of Section 3 in Cameron and Kantor [ 5] are satisfied for 
P = n(X) with the graph structure of X. Therefore, from the result (3.2) in 
[ 5] it follows that if P is B 3, 1 ( q ), then X is the classical generalized 
hexagon of type G 2 and the embedding of X in P is unique, and if P is 
C 3, 1 ( q ), then q is a power of two and hence isomorphic to B 3,1 ( q ). I 

(3.6) COROLLARY. Let N, X be as in Theorem (3.1). Then 
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(i) If x, yE X and d(x, y) = 2, then there are a unique u E {x, y }.L n X 
and a unique set l of size q + 1 containing x, y, called the ideal line on x, y, 
such that for any zE (N-X) n {x, y }.L we have z.L n u.L n X = !. 

(ii) For x EN - X the set x.L n X is an ideal plane of X (i.e., supplied 
with the structure of all ideal lines it contains, it is a projective plane). Thus 
\x.i 11X\ =q2 +q+1. 

(iii) If Y is a subspace of N containing a connected component which 
is locally quad, then Y itself is locally quad. 

(iv) For every pair z 1 , z2 EN-X we have d(z 1 , zt n X) ~ 2. 

Proof Parts (i), (ii), and (iii) are immediate consequences of the above. 

(iv) Take two distinct points a, b in z t n X. Then d( a, b) = 2 so there 
is a quad Q containing a, b and z2 . Let c be the unique point in 
{a, b} .i n X. Then c E Q so c .i n X = c .i 11 Q and each line of Q on c bears 
a point of z;i-. Now Q is is'omorphic to the classical quad Sp4 (q) and 
c.i n zf n Q corresponds to an elliptic line under the isomorphism. If 
z 1 E Q, then d(z 1 , a)~ 2 and we are done. Suppose, therefore, that 
z1 EN-Q. By Lemma (3.2)(v), there is z3 EztnQ. Since c.inzfnQ 
corresponds to an elliptic line under the isomorphism Q ~ Sp 4(q), each 
point of Q is collinear with some point of c.i n zf n Q. In particular, there 
is u E c.i n zf n zt n Q. The conclusion is that z 1, z3 , u is a path of length 
2 from z 1 to a member of c.i 11 zt n Q ~ zt n X, proving that 
d( z 1 , z t (') X) ~ 2. I 

4. TOWARD A LOCAL RECOGNITION OF THICK METASYMPLECTIC SPACES 

Our goal is to prove the main theorem stated in Section 1. It is obvious 
that the theorem is a consequence of the following. 

(4.1) THEOREM. Suppose I' is a connected gamma space such that for 
each point x the maximal singular spaces containing x are thick projective 
spaces and rx is isomorphic to a thick finite dual polar space (necessarily of 
rank 3 ). If condition ( *) of the main theorem is satisfied, then I' is a 
metasymplectic space. 

The proof is comparable to the proof of Theorem (2.1) in the following 
sense. Condition ( *) enables us to obtain the analogue of the conclusion in 
Lemma (2.2) with quads taking over the role of symplecta. With this 
change from symplecta to quads, statement ( i) of Lemma ( 2.4) also holds. 
However, due to the generalized hexagons appearing in Theorem (3.1 ), the 
argument of the proof of (ii) of that lemma does not suffice to obtain the 
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same conclusion for type Mn.,= F4• 1• Therefore, further study of the sub­
space { x, y} .l for x, y at mutual distance 2 is required. For x a point of I', 
we shall denote by dx the distance function in I'". 

( 4.2) LEMMA. Let X, y be two points of I' at mutual distance 2. If 
ze {x,y}.l, then either d'(x,y)=3 and {x,y}.l is a coclique, or d'(x,y)=2 
and { x, y} .l is a generalized quadrangle or a generalized hexagon of order 
(s, r ). In the latter case { x, y} .l induces a locally quad subspace in I'-\ and 
hence satisfies all properties of the conclusion in Corollary (3.6). 

Proof Set X={x,y}.l/x. Observe that X~{x,y}.l as d(x,y)=2. 
Assume X is not a coclique. Then there are distinct collinear points a, b in 
{x,y}.l. Since xa, ba, ya is a path of length 2 in a 1-ja we have da(x,y)=2 
and there is a quad Qa in a.l /a containing xa, ba, and ya. Take c E a.l - {a} 
such that ac belongs to Q" and is collinear with xa and ya but distinct from 
ba. Then there is a quad Q" in x.l /x containing xb, sa, and xc. Take 
u Ex .l - { x} such that ux belongs to Q" and is collinear with xc and xb but 
distinct from xa. Then u, x, a, y is a path with d( u, a)= d( x, y) = 2 and b, 
c E { u, x, a, y} .l, so by hypothesis ( * ), the size of { u, x, a, y} .l is r + l. On 
the other hand, the set is a coclique in {x,a,y}.L as well as in {x,a,u}.l. 
Since the latter two sets induce r + l lines of Q0 and Qx on xa, respectively, 
it follows that { x, a, y} .l induces the r + 1 lines of Qx on xa in rx. Thus 
r:. 1 ( ax) n X = I'., 1 ( ax) n Q" and by induction with respect to the length of 
a path in X starting at a, we obtain that the connected component of X 
containing a is a locally quad subspace of x.l/x. By Lemma (3.2)(v) and 
Corollary (3.6)(ii ), this implies that { x, y} .L/x is a locally quad subspace of 
x.L /x, establishing the last statement of the lemma and also that d'(x, y) = 2 
for any z e { x, y} .l. Due to Theorem ( 3.1 ), X is a generalized quadrangle 
or a generalized hexagon of order (s, r ). This settles the case where X is not 
a coclique. Finally, suppose X is a coclique. Then obviously, d=(x, y) > 2, 
whence d'(x, y) = 3 (since the dual polar space A., 1 of rank 3 has diameter 
3). I 

From now on, we shall say that two points x, y of I' are a coclique 
(quad, or hex) pair if they have mutual distance 2 and { x, y} .l is a cocliq ue 
(quad, or hex, respectively). 

( 4.3) LEMMA. Suppose x, y are a quad (hex) pair. Then for each point 
y 1 e y.l - ( {y} u x.l) with x.l nyy 1 # 0, the pair x, y 1 is also a quad (hex) 
pair. Moreover,for z E XJ__ (') yy 1, we have r~z(xz) (') {x, y} .l /x = r:.2<xz) n 
{x, y 1 }.l/x. 

Proof Take zex.lnyy1• Clearly d(x,y 1 )=2 and d'(x,y1)=2, so by 
Lemma (4.2) the pair x,y 1 is either a quad or a hex pair. Let z, z1,z2 be 
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a path in xJ.. n yl. with d(z, z2 ) = 2. Since zz 1 , xz 1 , z 2 z 1 , yz 1 is a 4-circuit in 
zt/z1 there is z~ e (xz2) n (y1 )J... Now x, y is a hex (quad) pair if and only 
if {x,y,z,z2 }J.. consists of exactly one (respectively r+l points). Since 
{ x, y, z, z2 } J.. = { x, y 1, z, zj} J.., it follows that x, y is a quad pair if and only 
if x, y 1 is a quad pair and similarly for hex pairs. Also, as z 2 x = z ~ x, the 
argument shows that r~2(xz) n {x, y }J../x = r~2(xz) n {x, y 1 } J../x. I 

( 4.4) LEMMA. Suppose x, y is either a quad or a hex pair. If z E xJ.. - yJ.. 
satisfies xz ny..L = 0 then z, y is a coclique pair. Moreover, if x, y is a quad 
pair, then { x, y, z} J.. is a singleton, and if x, y is a hex pair, then { x, y, z} J.. 
induces an ideal plane in {a, y} J... (In particular its size is t + 1.) 

Proof Consider the point zx and the subspace X= {x,y}J../x in xJ../x. 
If x, y is a quad or hex pair, then by Lemma (3.2)(v) (resp. Corollary 
(3.5)(ii)) there is ae {x,y}J.. such that axis collinear to zx in xJ../x. Thus 
ae {x,y,z}J.. and d(z,y)=2. Suppose z,y is not a coclique pair. Then 
Lemma ( 4.2) yields the existence of a point b in { z, a, y} J.. - {a}. On the 
other hand, since da(x,y)=2, by Lemma (4.2), there is a quad Qa in aJ../a 
containing xa and ya. Now da(z, y) = 2 and z is collinear with xa in al./a. 
In view of Lemma (3.2)(v), this implies that za belongs to Qa, so that 
xz nyJ.. # 0, contradicting the hypothesis. The conclusion is that z, y is a 
coclique pair. Since { x, y, z} J.. /x is the set of points in X collinear to xz, the 
last statement of the lemma follows from Lemmas (2.4) and (3.2)(v) and 
Corollary (3.6)(ii). I 

( 4.5) LEMMA. Suppose x, y is a hex pair. If a, b E xl. - { x} with 
dx(a, b) = 2, then a, b is a hex pair. 

Proof In light of d"(a, b) = 2 and Lemma (4.2), either a, bis a hex pair 
or it is a quad pair. First assume that a, b E { x, y} J... Then due to 
dx(a, b) = 2 and Corollary (3.6)(i) there exists c E {a, b, x, y} J... If a, b were 
a quad pair, then there would be d E {a, b, x, y} J.. - { c} so that a, c, b, d 
is a quadrangle in { x, y} J.., contradicting that x, y is a hex pair. Thus a, b 
is a hex pair. 

Next assume there are distinct points e, fin {a, b, x, y} J... Then e, fare 
noncollinear, and form a hex pair by the first paragraph, so again by the 
first paragraph applied to a, b E { e,f} J.. the pair a, b is also a hex pair. 

Finally, let us deal with the general case. By Lemmas (3.2) and 
(3.5)(iii) each line in xJ../x carries a point of {x,y}l./x. In particular, if 
ue{x,a,b}J..-{x} there are points veyJ..nuxa and weyJ..nuxb. If 
v # w, then clearly dx(v, w) = 2 so v, w is a hex pair by what we have seen 
above: now av n wJ.. #- 0 and a rf. wJ.. so a, w is a hex pair by Lemma ( 4.3 ). 
Furthermore, bw n aJ.. ¥= 0 and b rf. aJ.., so by the same lemma a, bis a hex 
pair. Now if v = w for all choices of u E { x, a, b} J.. - { x}, there are at least 
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two points in { x, a, b, y} _1_, so we can finish by appealing to the second 
paragraph. I 

( 4.6) LEMMA. If I' contains a hex pair, there are no quad pairs in I' and 
for each point x there is a point y such that x, y is a hex pair. 

Proof Let x 0 , x 1 be distinct collinear points and assume x 0 , y 0 is a hex 
pair. Take y 1 Ext - { x} such that d'0(x 1 , y 1 ) = 2. Then by the preceding 
lemma x 1 , y 1 is a hex pair. In view of connectedness of r and by induction 
on the length of a path from an arbitrary point x to x 0 , we obtain a point 
y such that x, y is a hex pair. Suppose that x 1, y 1 are points with 
d(x1,y 1 )=2 which are not a coclique pair. By Lemma (4.2) there is 
z E { x 1, y 1 } _1_ such that d=(x 1, y1) = 2, and by the first paragraph there is a 
point of w such that z, w is a hex pair. Then by Lemma ( 4.5) the pair x 1, y1 
is a hex pair, too. Thus there are no quad pairs, indeed. I 

( 4. 7) LEMMA. ff r contains a hex pair, then r has diameter 2. 

Proof Let z 1 ,z2 ,z3 ,z4 be a path of length 4 with d(z 1 ,z2)= 
d(z 2 , z4 ) = 2 and d(z 1, z4 ) ~ 2. If z 1 , z 3 is a hex pair then by Lemmas (4.3) 
and (4.4) it follows that d(z 1 ,z4 )~2. Suppose therefore that z1 ,z3 is a 
coclique pair. Then, since d=2(z 1,z3 )=3, there is uE{z2 ,z3 }_1_ such that 
z 1 , u is a hex pair ( cf. Lemma ( 4.6) ). Now, according to Lemma ( 4.4 ), 
{ z 1 , u, z 3 } _1_ induces an ideal plane of a generalized hexagon in u_1_ /u. We 
first show that { z 1 , u, z 3 } _1_ also induces an ideal plane in zt /z 3 . Since 
{ z 1 , u, z 3 } _1_ is contained as an ideal plane in { u, z 1 } _1_ and the embed­
ding of {z 1, u}_j_/z 1 is zUz 1 is unique (see Theorem (3.1)) there exists 
z 5 E {z 1 }_1_ -z 1 such that z 1z5 is collinear in zf/z 1 with each point of 
{z1' u, z3 }_1_/z 1 . Thus {z5 , u, z 1 }_1_ = {z3 , u, z 1 }l. = {z1 , z5 , u, z3 }_1_. Take 
z 1 E { z 1 , u, z 3 } _1_ - (z 2 }. Then d= 1(z 2 , z D = 2 as z 2 ..Lz 5..Lz 1, so z2 , z ~ is a hex 
pair containing z 1 , z 5 , u, z 3 . Since u, z 1 is a hex pair, we have d=2( u, z 1 ) = 2. 
By Corollary (3.6), this implies the existence ofvE{z2 ,z~,u,zi}_1_. Now 
z 3 , u, v, z 1 , z 5 is a path of length 5 in the generalized hexagon { z 2 , z D _1_. By 
the definition of generalized hexagon, there must be z; E z 1 z5 with 
d22(z 3 , z;) = 2. By Lemma ( 4.2 ), z3 , z; is a hex pair, and by Lemma ( 4.3 ), 
u, z; is a cocliq ue pair and { z 3 , u, z 1 } J_ = { z 5 , u, z 1 , z 3 ) J_ = { z;, u, z 1 , z 3 } _1_ 
= {z;,u,z 3 }_1_. Thus {z 3 ,u,zi}l.= {z~,u,z 3 }..L induces an ideal plane of 
the generalized hexagon {z3 , z;}J_/z 3 in z_j_/z 3 • 

By Corollary (3.6)(iv), there is wE{z 3 ,z5,u}_j_ with d=3(w,z4 )~2. 
Observe that wEzf as {z;, u, z3 }..L = {z 1 , u, z3 }..L. So if d(w, z4 ) = 1, then 
d(z 1 ,z4 )=2. Suppose d23(w,z 4 )=2. Then, by Lemma (4.2), w, z4 is a hex 
pair and z 1 E w_1_, so by the first paragraph of the proof applied to a path 
from z 1 to z4 via w, d(z 1 , z4 ) = 2. The conclusion is that d(z 1 , z4 ) = 2 in all 
cases, so that, being connected, r has diameter 2. I 



364 COHEN AND COOPERSTEIN 

( 4.8) LEMMA. Suppose r contains a hex pair. If x, z is a coclique pair of 
r, then there is a quad of xl_ /x meeting { x, z} 1- /x in an elliptic line. 

Proof. Take a E { x, z} J_. As da(x, z) = 3, there exists y E {a, z} J_ such 
that x,y is a hex pair. By Lemma (4.6) the subspace {x,y,z}J_/x of y 1 /y 
is an ideal plane in { x, y} J_ /y, so there is z 1 E xJ_ - { x} with 
{x,y,z 1 }1-={x,y,z}J_. Take bE{x,y,z 1 }1--{a}. Then d'(a,b)=2, so 
there is a quad Qx in xJ_ /x containing both ax and bx. Let c be the unique 
common neighbor of a and b in xJ_ n yj_ (i.e., { x, y, a, b} J_ = { c} ). Now 
L = { c, z, x, y} J_ consists of q + 1 points (a, b are among them) such that 
L/x is an elliptic line of Q<. Therefore L/x is a maximal coclique in Qx. 
Since Qx n { x, y} J. /x is a coclique of Qx containing L/x, it follows that 
L/x = Q' n ( { z, x} J_/x), proving the lemma. I 

( 4.9) LEMMA. If x, y are two points of rat mutual distance 2, then they 
are either a quad pair or a coclique pair. 

Proof. Suppose there is a hex pair in r Let X, z be a coclique pair. Let 
y 1 (y" y h) be the number of points y in zJ. such that y E XJ_ (x, y is a cocli­
que pair; x,y is a hex pair, respectively). Counting #{(u,y)iuE{x,z}J., 
yEzj_nu.l; x,y is a hex pair} in two ways we get y,,(t 2 +q+l)= 
y 1 ( q + 1 ) q = y 1 ( q2 + q + 1 ) q so that 

( 1) 

For u ranging over {x,z}J_, let a be the average of au= #(xl_nzl_n 
I'2(u) ). Then counting # { (u, v, y) I u, v E { x, z} J.' u # v, y E { z, u, v} J_, x, y is 
a hex pair} in two ways, we obtain y1 ·a·(q+ l)=y,,(q 2 +q+ l)(q2 +q). 
So eliminating Yh by use of (1) and dividing by y1(q+ l) we get 

(2) 

However, xj_ nz1- nI'2(u) induces a coclique in x 1 /x on the set of points 
in xj_/x at distance two from ux. Since there are q2(q 2 + q + 1) lines in xL/x 
having exactly one point collinear with ux, it follows that 
au~q2(q 2 +q+ 1). In view of (2), we get ct.u=q 2(q 2 +q+ 1) for each 
u E { x, z} .l. Hence, with respect to distance 2 in r the set { x, z} J_ is a 
graph of valency q2(q 2 + q + 1) and for each u E { x, z} 1- each line of xj_ /x 
bearing a unique point collinear with ux contains a point vx where 
v E {x, z} J_. Now let Q' be a quad in x 1 /x meeting { z, x} .l /x in an elliptic 
line (existence is guaranteed by Lemma: ( 4.8) ). Take u E { x, z} J_ such that 
ux E Qx. Then by the above, each line of Qx bearing a unique point at dis­
tance l to ux contains a point vx where v E { x, z} 1·, leading to q2 + 1 points 
of { x, z} J_ /z inside Qx. On the other hand, the intersection of Qx and 
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"-" is an elliptic line and hence of size q + 1. Thus q + 1 = q2 + 1, 
:o the contradiction q = 1. We conclude that I' contains no hex 
· Lemma ( 4.5 ), this ends the proof of the lemma. I 

·k. Other computations led to the question of existence of partial 
es PG(s, t, o:) with parameters s = q2, t = q2 + q, a=== q + 1 leading 
•ngly regular graphs with parameters v = ( 1 + q3 )(1 + q2 ), 

2 +q+1), ).=q3 +2q2 - l, µ=(q 2 +q+ l)(q+ 1) (induced by 
'x in xj_/x). Having excluded the hex pairs, we can resume the 
with the proof of Theorem (2.l ). In fact, we have just established 
~lusion of Lemma (2.4 )(iii) for M "·, = F4 , 1 • The next step is the 
e of Corollary (2.5). 

I COROLLARY. The space r is a parapolar space. 

- Copy the proof of Corollary (2.5), case (b). I 

) End of Proof of Theorem 4.1. Since I' is a parapolar space, there 
L plecta (see [8] ). A geometry of type F4 can now be obtained by 
as objects of type 1, 2, 3, 4 the sets of points, lines, planes, and 
:::ta, respectively, and as incidence symmetrized containment. It is 
forward to verify that all residues of type B 3 or C 3 are polar spaces 
Lt conditions (0), (LL), (LH), and (HH) of Tits [14] are satisfied. 
· of [14, Proposition 9], we conclude that this geometry is a build­
type F4 whose shadow space on the set of points is I', so that I' is 
symplectic space. This ends the proof of Theorem ( 4.1 ). I 
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