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1.INTRODUCTION 

Let F be the class of nonincreasing left continuous densities 

on the interval [0, 00). It was shown by Grenander(1956) that the 

maximum likelihood estimator (MLE) of a density funder the (order) 

restriction that it belongs to f is given by the slope of the 

concave majorant F of the empirical distribution function F (see 
n n 

figure 1). 

0 

Figure 1: The empirical distribution function F and its concave 
n 

inajorant F for n = 12 
n 

For: a discussion of this result and analogous results for 

monotone failure rates, see Barlow et al (1972). Not very much is 

known about the distribution theory of these estimators; in 

particular, distribution theory for their gZobaZ behavior is missing. 

We wilt sketch an approach to the distribution theory using properties 

of certain jump processes generated by Brownian motion. 
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As examples of the use of this approach first a simple proof 

of a result of Prakasa Rao (1969) will be given in Section 2, and 

next the limiting distribution of the 1
1
-distance between a decreasing 

density and its Grenander maximum likelihood estimator will be derived 

in Section 3. The methods are similar to those in Groeneboom (1983). 

Finally, in Section 4, the analytical properties of the underlying 

process are discussed. A Volterra integral equation is derived which 

seems to be much better tractable than the original heat equation. 

In the following only statements of the results and sketches 

of (some of) the proofs will be given in the hope that this will 

give a flavor of the kind of results one can obtain along these lines. 

Full details and proofs will be given elsewhere. 

2. A RESULT OF PRAK.ASA RAO. 

In Prakasa Rao (1969) the following result is proved. 

THEOREM 2.1.(Prakasa Rao). Let x1, ... ,Xn be independent observations 

generated by a decreasing density f on [0, 00 ) which has a non-zero 

derivative f'(t) at a point t E (0, 00 ). If f is the Grenander maximum 
n 

likelihood estimator off, based on x1, ••. ,Xn' then 

(2 .1) n 113 !H(t)f'(t)i-11\f (t)-f(t)) 
n 

2Z, 

where Z is distributed as the location of the maximum of the process 

(W(t) - t
2

, t E JR), and W is standard two-sided Brownian motion on JR, 

originating from zero (i.e. W(O)=O). 

We will now show that this result can be derived from rather 

simple observations on the scaling properties of Brownian motion, 

together with the "Hungarian embedding" of Komlos et al (1975). 

First of all, the problem of finding the distribution off 
n 

can be reduced right away to the problem of finding the distribution 

of locations of maxima of the processes (F (t) - at, t;;; 0), a> O, 
~ n 

where Fn is the empirical distribution function of x1, ••• ,Xn. 



'For suppose U (a) = sup{ t ;;;; 0: F ( t) - at is maximal}. Then we have 
n n 

(2.2) 

(see figure 2). 
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Figure 2 

U (a):;; t 
n 

F (t) 
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Relation (2.2) also was an essential tool in Groeneboom (1983). The 

usefulness of (2.2) comes from the fact that the process (U (a), a~ 0) 
n 

is much better tractable than the (inverse) process (f (t), t ~ 0). 
n 

By (2 .2) we have 

(2.3) P {U (f(t) + o ) :s; t} 
f n n 

where o = xn- 113 1 H' (t)f(t) 1113 • By definition, 
n 

u (a+o) = sup{tiii:0: F (t)- (a+o )tis maximal}. n n n n 

Hence we can write 

U (a+ o ) = sup{t i! 0: nl (F (t) - F(t)) + n1 (F(t) - (a+ o )t) 
n n n n 

is maximal} • 

By Komlos et al (1975), nl(F (t) -F(t)) = B (F(t)).+0 (n-½log n), 
n n p 

where (B, nEJN) is a sequence of Brownian bridges, constructed on the 
n 

same space as the F's. Therefore, the limiting distribution of 
n 

3 
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n 
1 

/
3 

(U (a+ o ) - t) (if it exists) will be the same as the limiting 
n n 

distribution of n 1 
/

3 (U(a + o ) - t), where U(b) is the location of the 

maximum of the process (B(F(u)) +n1(F(u) -bu),u~0), and Bis (standard) 

Brownian bridge on [0,1] (with probability one, there is only one such 

maximum) • Put a = f ( t) and c = - ½ f' ( t) • 

Now note that the location of the ma:xiEllll of the process 

(B(F(u)) +n1(F(u)- (a+o )u), u~0) behaves, as n-+-OCI, as the location 
n 

of the maximum of the process 

(B (F ( t) + a ( u - t)) - n ½ c ( u - t) 2 - n Io ( u - t) , u ~ 0) , 
n 

since c = -H' (t) > 0. Define z = (nc
2 
/a) 

1 /3 (u ... t). Since a Brownian 

bridge behaves locally as Brownian;motion-(at an interior point of [0,1]), 

the limiting distribution of (nc2 /a) 113
(u (a+ o ) - t) will be the same 

n n 
as that of the location of the maximum of the process 

(w( 4/3 ( 2)-1 /3 ) -1 /6 2/3 -1 /3( 2 ) ElR) a nc z-n a c z+xz,z 

( • r -1/3( )1/3 ) h W. .d dB . . usLng u = xn ac , w ere LS two-sL e rown1an motLon, 
n 

originating from zero. By Brownian scaling this distribution is the 

same as that of the location of the maxim~ of (W(z) - (z2 + xz), z ElR) 

which is equal to the location of the maximum. of (W(z) - (z + b)2
, z ElR). 

Let V(a) denote the location of the maximum of the process 
2 (W(z) - (z - a) , z ElR). Then (V(a) - a, a ElR) is a stationary process 

and hence P{V(a):;;t}=P{V(0):;;t-a)}. This gives (2.1), since 

-1/3 1/3 Pf{f (t) - a :;;xn (ac) } = Pf{U (a+ o ) - t ~ O} -+-
n n n 

for each x, and thus 

-+- P{V(-b) ~ 0} = P{2V(0) ~ x},. as n-+-OCI, 

(ac)-113n 113 (f (t) -f(t)) ! 2V(0). 
n 

Remark 2.1. The difference between the proof given above and the 

proof given by Prakasa Rao is that in the proof above (2.2) is used 

and that Brownian motion is introduced at an earlier stage. The 

remainder terms which arise from replacing the empirical processes 

by B~ownian bridges are.taken care of by the "Hungarian embedding". 



Remark 2.2. The assumption f' (t) ,f,. 0 is essential in Theorem 2.1. 

For example, if f is the uniform density on [O, 1], then, for t E (0, 1), 

(2.4) 

where St is the slope of the concave majorant of the Brownian bridge 

at t. The density of Vt is a function of the standard normal distribution 

function and the standard normal density, see Groeneboom (1983), formula 

(3.11). Note that the rate of convergence in (2.4) is n-i instead of the 

rate n-l/J in (2.1). 

3. ASYMPTOTIC NORMALITY OF THE L1-NORM II fn - f 11 1• 

5 

Let f be a decreasing density, concentrated on a bounded interval 

[0,B], with a bounded continuous second derivative, and such that f' (t) IO, 

for t E (O,B). Let f be the MLE of f in the class F, based on n observations 
n 

from f (see Section 1). Furthermore, let (W(t), t EJR) be two-sided 

Brownian motion on JR, originating from zero, and let the process 

(V(a), a EJR) be defined by V(a) = sup{ t EJR: W(t) - (t - a) 2 is maximal}. 

We note that Vis an increasing pure jump process, generated by Brownian 

motion sample paths. A picture of the situation is given below in figure 3. 

0 

Figure 3: V(a) is the location of the point where the parabola f (t) = (t-a>2 + c, 

sliding down along the line t = a,hits two-sided Brownian motion, originating 

from zero. 
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Let II fn - f 11 1 = J~ I fn (t) - f(t) I dt. The asymptotic behavior 

of II fn - f 11
1 

is given in the following theorem. 

Theorem 3.1. n
116

{n113 !lfn-fll
1 

- C} !-. N(0,o2), 

where 

C=2 EIV(0)I J~ l½f'(t)f(t)l 113 dt, 

a2 = 8 J~ Covar(IV(0) I, lv(a) - al) da, 

and N(O,0
2

) is a normal .distribution with mean zero and variance 02 • 

Remark 3. 1. Note that the asymptotic variance of II fn - f 11
1 

is independent 

off, and that this variance tends to zero at a faster rate (i.e. the 

rate n- 1) than the variance of f (t) - f(t) at a fixed point t (in the 
·-2/3 n 

latter case the rate is n ). 

Rero4rk 3.2. The assumption f' I0 is again essential (like in Theorem 2.1). 

For example, if f is the uniform density on [0,1], then 

n~ II fn - f II 1 !-. 2 max t E [0, 1] B(t), 

where Bis the Brownian bridge on [0,1]. We do not yet know what the 

limiting behavior of the L
1
-norm will be, if the density f has some 

"flat" and some "non-flat" parts. 

Remark 3.3. We have n
113

E llfn-f 11 1 + 2EIV(O)IJ~ IH'(t)f(t)! 113dt, as n-+00, 

and this "asymptotic risk" is invariant under scale changes inf: 

I~ If' (t)f(t) I 113dt = J~/A. I A2
f' O,t)H(>.t) I 113dt. 

We will now give a sketch of the proof of Theorem 3.1. For 

this result we need the structure of the pr>ocess (f (t), t E [0,B]). n 
As i4 Section 2, the better tractable inverse process (Un (a), a i;: 0), 

where U (a)=sup{t~0: f (t)-at is maximal}, will be considered. 
n n 



First we note that the asymptotic behavior of J~ If (t)-f(t)ldt 
M n 

is the same as that of J
0 

I U (a) - g(a) Ida, where M = sup f(t), and g is n t 
the inverse off (this follows from integration by parts and the 

limiting behavior of f~ I Un (a) - g(a) Ida, which will be derived 

below). 

The process (n 1 /_\u (a) - g (a) La E [ 0 ,Ml) will behave locally in 
n 

the limit (after rescaling) as the process (V(a) - a, a E1R), where 

V(a) = sup{ t E1R: W(t) - (t - al is maximal} (see figure 3). 

An analytical characterization of the process (V(a), aE1R) 

will be given in Section 4, and the following calculations can be 

justified by using this characterization. 

Let C(a,b) = Covar( lv(a) - al, lV(b) - bl). Then we have, for 

0 < t < u < M, as n + 00 , 

Var(n
113

J~ !un(a)-g(a)!da) = 

7 

= 2 n213 J J Covar(lu (a)-g(a)l,!u (b)-g(b)j)dadb ~ 
n n 

t<a<b<u 

~ 2 Ju { J
00 

(4a/(f'(g(a)))
2>213c(g(a),g(a) +n113g'(a)(b-a). 

t a 
.((f'(g(a)))2 /(4a)) 113)db} da 

= Skn-
113 

J~ a/{g'(a)(f'(g(a)))
2

} da=8kn-
113

J:~:~ f(x)dx= 

= 8kn -l / 3 (F(g(u)) - F(g(t))), 

where k ~ J~ C(O,b)db, and F is the distribution function corresponding 

to the density f. 
1 / 3JM j I -1 / 3 In particular, Var(n 

O 
Un (a) - g(a) da) ~ 8kn , n-+ ..,» 

which shows that the asymptotic variance is independent off. 

Now, let A (t) = E J
0
t I U (a) - g(a) l da, and let the process (B (t), t E [O,M]) 

n n n 
be defined by 

The process 

follows by 

B (t)=n1{Jot lu (a)-g(a)lda-A (t)}, O:it:iM. 
n n n 

B converges weakly in C[O,M] to a Gaussian process. 
n . 

This 

standard arguments, using 

z u I 4 n E{f l U (a) - g(a) da - (A (u) -A (t))} ~ 
t n n n 

2 u l 2 2 2 ~ 3n {Var(J !u (a)-g(a) da)} ~ 192 k {F(g(u))-F(g(t))}, 
t n 
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and the fact that B has asymptotically independent increments (as 
n 

defined in Billingsley (1968), p.157). Since E(B (t)) =0, for each t, 
n I 

the limiting process is a zero-mean Gaussian process. Thus n 2 B (M) tends 
n 

in law to a normal distribution with mean zero and variance 8k. 

Finally, 

n½An(M) - 2n
116

EiV(O) IJ~l½f'(t)f(t) i 113dt = 

Thus we have the conclusion of Theorem 3.1: 

Remark 3.4. In the proof of Theorem 3.1, the remainder terms have to be 

treated with some care. Here the condition that f has a bounded and 

continuous second derivative is used, together with the "Hungarian 

embedding" technique (see Section 2). 

It can be deduced from Theorem 4.1 in Section 4 that the conditional 

expectation k(a, t) = E( IV (0) I IV (a) = t) satisfies, for a< 0, 

the integral equation 

(3 .1) k(a,t) =!ti+ J~{J;g(t-b,w-b){k(b,w)-k(b,t)}dw}db, 

where g(t,w) is the density appearing at the right-hand side of (4.9), 

and k(a,t) satisfies the boundary condition k(O,t) = ltl. 

Clearly, the variance 8k of the limiting distribution of the 

standardized version of II fn -f 11 1 can be deduced from the values of k(a, t), 

using the stationarity of the process (V (a) - a, a E JR). At present, a 

computer program is being developed for calculating the values of k(a,t), 

using (3.1). Preliminary results suggest a rather rapid convergence of 

k(a,t+a) to the limiting value EIV(O)j ~ 0.41, as a • - 00 • 

Nothing seems to be known about the asymptotic distribution of the 

1 2-distance between fn and funder the conditions of Theorem 3.1. It is 

proved,in Groeneboom & Pyke (1983) that a standardized version of this 

1 2-distance tends (very slowly) in law to a normal limiting distribution, 

if f is the uniform density on [0,1]. A proof of this last result via 

Brownian motion is given in Groeneboom (1983). 



4. ANALYTICAL PROPERTIES OF THE UNDERLYING PROCESS. 

It was shown in Section 3 that the limiting distribution of 

the L1-distance II fn - f 11 1 between a monotone density and its MLE fn 

can be derived from the structure of the process (V(a), aEm.), where 

V(a) = sup {t E: ll: W(t) - (t-a)
2 

is maximal}. Moreover, the limiting 

distribution of n 113(f (t) - f(t)) at a fixed point tis given by the 
n 

distribution of V(O) (apart from a scale factor). In this section we 

will briefly discuss the analytical properties of the process (V(a), a Em.), 

and also show how the density of V(O) can be found from the solution of an 

integral equation (instead of the usual approach, using the numerical 

solution of a heat equation). This will throw some new light on the . 

nature of the density of V(O). 

It was shown by Chernoff (1964) that the density of V(O) is 

given by 

(4.1) g(t) = ½ limx t t2 2_u(t,x).1_u(- t,x), 
clx clx 

where 

(4.2) (t x){ 2 u(t,x) = P ' W(z) > z , for some z i;:; t} 

is the probability that space-time Brownian motion, starting at (t,x), 

will cross the parabola f(z) = z2 at some time z i;: t. It is also shown 

in Chernoff (1964) that u(t,x) is a solution to the (backward) heat 

equation (in the domain { (t,x): x < t 2
}) 

(4.3) 2 cl u(t,x)= - ½ cl u(t,x), 
at clx2 

under the boundary conditions 

(4.4) 

heat 

(4.5) 

u(t,t
2

) = limx t t2 u(t,x) = 1, lim u(t,x) = O. 
X -+-co 

The process V can also be characterized by solutions to certain 

equations. Let v(t,x,w) be defined by 

(t x) 2 
v(t ,x,w) = P ' {W(z) > z , for some z E (t ,w)}, 

that is, v(t,x,w) is the probability that space-time Brownian motion, 

starting at (t ,x), will cross the parabola f(z) = z
2 before time w. 

Then v(t,x,w) is a solution to the heat equation 

9 
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(4 .6) a v(t,x,w) = -½ a2 v(t,x,w) 
at ax2 

2 1.n the domain { ( t, x) : t < w, x < t } , under the boundary conditions 

(4. 7) 

(4.8) 

v(t,x,w)=tl, x=t
2

, lim v(t,x,w)=O. 
2 x+-oo 

0 t=w x<t , ' 
For notational convenience,.we define 

u2 (t) = limx t t2 ~u(t,x), 
ax 

where u(t,x) is defined by (4.2). We now have the following "infinitesimal" 

characterization of the process V. 

Theorem 4. 1 • Let (V (a) , a ElR.) be the process defined by 

V(a) = sup{ t ElR.: W(t) - (t - a) 2 is maximal}, 

where Wis two-sided Brownian motion originating from zero. Then, 

for w > t, 

(4.9) limh.;. 
0 

P{V(h) E dwj V(O) = t}/h = 

= 2 (w - tH u2 (w) /u2 (t) H limx+t2 - a2 v(t ,x,w)}dw. 
axaw 

By the stationarity of the process (V(a) - a,a ElR), the 
process (V(a), a ElR.) is completely characterized by relation 

(4.9), and we now discuss some analytical properties of the right-hand 

side of (4.9). For numerical purposes, the right-hand side of (4.9) 

looks rather unpromising, and in fact our original attempts in getting 

the value of this expression numerically (using the same kind of methods 

as can be used for solving the equation (4.3)) failed completely. 

Therefore another approach, using integral equations, was tried, 

and this not only gave a satisfactory numerical evaluation of (4.9), 

but also yielded considerably more insight into the solutions of the 

heat equations (4.3) and (4.6) (under their respective boundary 

conditions). 

Let v(t,x,w) be defined by (4.5) and let h(t,x,w) be defined by 

, 2 ½ 2 
(4.10). h(t,x,w) =~v(t,x,w)/4>((w -x)/(w-t) ), x<t, t<w, 

aw 
where 4> is the standarq normal density (j>(u) = (2,r)-lexp( - ½u2). 
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Then h(t,x,w) satisfies the integral equation 

(4. 11) 
-3/2 2 

h ( t , x, w) = ( w - t) ( 2 tw - x - w ) + 

+ (2,r)-½ J; (w- y) ½exp{-Hw-y). 

2 2 
. ((w- t) (y- t) - (t -x)) }h(t x )d 

(w - t)(y - t) ' ,y Y 

Relation (4.11) follows from Ferebee (1982), formula (2.7), where an 

integral equation is given for Brownian exit densities with respect 

to quite general boundaries. This integral equation was discovered 

independently by Durbin (1981). 

Since h(t,x,w) only depends on w- t and t 2 - x, we can write 
2 h(t ,x,w) = h

1 
(u,a), where u = w- t, a= t - x, and where h

1 
(u,a) 

satisfies the integral equation 

(4.12) -3/2 2 -½Ju ½ h
1
(u,a) =u (a-u) + (2,r) 

0 
(u-y) • 

2 
.exp{-½(u-y)(uy-a) }h1(y,a)dy. 

uy 

The factor limx t t2 -2.:_v(t,x,w) in the characterization (4.9) of the 
3xaw _

1 process V can be found from this by determining lima 
4 0 

a h
1 
(u,a). 

. . -1 -3/2 
However, s1.nce 11.ma 

4 0 
a h

1 
(u,a) ~u , for u 4 O, we consider instead 

the function p:[O,~) ~1R, defined by 

-3/2 
(4.13) p(u)=limaiO (h

1
(u,a)-au )/a, 

removing the singularity at zero. This function satisfies the integral 

equation 

(4.14) p(t) = (2,r)-½ f~ p(y)exp{-hy(t -y) Ht - y) ½dy + dt), 

where 

(4.15) 
1 

l 3/2 -½ r l 3 -3/2 r(t)=-(ir/2) +t -(2,r) .,(1-y) (1-exp{-h y(1-y)})y dy, 
0 

and p satisfies the i~itial condition p(O) = -(,r/2) ½. Equation (4.14) can be 

derived by first considering the function p
1
(t,a)=(h

1
(t,a)-at-312)/a, 

which, by (4.12), satisfies the integral equation 
2 

p
1
(t,a) = (271")-½J~(t-y)½exp{-½(t-y~;ty-a) }p

1
(y,a)dy - t 1/a+ (4.16) 

2 
+ {Z,r)-lf~y-3/2(t-y)iexp{-½(t-y!;ty-a) }dy, 
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and by analyzing the asymptotic behavior of the right-hand side of 

( 4 • 1 6) , as a + 0 • 

The remainder term r(t), defined by (4.15), has the representation 

(4.17) 3/2 ½ 3 r ( t ) = t - ( 1r / 2) 2 F 2 ( -½ , 3 / 2 ; 1 , ½ ; -t / 8) 

in terms of the hypergeometric function 2F2(a1,a
2

;b
1
,b2;z), defined by 

the power series 

(4.18) 

where (a) = r(a+n)/r(n). This representation of r(t) was brought to my 
n 

attention by Nico Temme. 

The solution of the integral equation (4.14) can be written as 

a power series in powers of t 312 , where the coefficients are defined 

recursively. Specifically, let 

2F2(-½,3/2;1,½;-t3/8) =I:n:O cnt3n; 

note that the coefficients c can be defined recursively by c0=1, 
-4 2 n 

c =-2 {(2n-3)(2n+1)/(n (2n-1))}c 
1

• We have the following result. 
n n-

Theorem 4.2. 
• ;32 

(i) The factor f(t,w) = - hmx t t2 axaw v(t,x,w) in the characterization (4.9) 

of the process V can be written 

(4. 19) 

where 

(4.20) 

-½ 2 -3/2 f(t,w)=(27f) exp{-Hw-t)(w+t) }{(w-t) +p(w-t)}, 

and the coefficients an and bn are defined recursively by a0=1, b 1=2/3, 

k 
(4.21) an= en- ~=6 (-i~ bn-kB(3n-2k-½ ,k+3/2)/1r, n ~ 1, 

(4.22) 
n-1 (-½)k+1 . 

bn=~=O k! an-k-lB(3n-2k-2,k+3/2), ni!2, 

and where B(x,y) is the the value of the Beta function in (x,y). 

(ii} 
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where c = 2. 9458... satisfies the equation 

(4.23) -½ (X) ½ 3 ,-
(21r) Io sin(½.3 .cu) exp{-u /6 + ½cuhu du=-1. 

The function u2 : JR -+ JR, defined by (4. 8), which is needed in 

the characterization of the process V, and also needed in the definition 

of the density of V(O) (see (4.1)), can be expressed in terms of the 

function p. This is described in the following theorem. 

Theorem 4.3. The function u2 , defined by (4.8), can be written as 

(4.24) -½ (X) 2 u2(t) = 2t - (21T) I
O 

p(u)exp{-½u(2t + u) }du + 

-½ 00 2 2 2 -½ + (21r) I
0 

(4t +8tu+3u )exp{-½u(2t+u) }u du, 

where the function pis defined as in Theorem 4.2. Furthermore, 

(4.25) 

and 

(4.26) 

u2 ( t) ~ 4 t , as t -+ oo, 

u2 (t) ~ c 1exp{-(2/3) ltl
3

- cit!}, as t-+-oo, 

where the constant c=2.9458 ..• is the same as in Theorem 4.2, and 

where c 1 f::;$ 2.2638. 

Theorem 4.3 gives a much easier way of determining the density 

½u2 (t)u2 (-t) of V(O) (Chernoff's (1964) result) than first solving the 

heat equation (4.3) numerically and then computing numerical derivatives 

on the boundary. Proofs of Theorems 4.2 and 4.3 will be given in a joint 

publication with Nico TeIIlllle. 

In conclusion, we believe that the analytical results, discussed 

in this section, make the limiting distributions of a class of isotonic 

estimators more tangible (and at least more tractable). These results 
? 

and methods can also be used to specify the local and global behavior 

of estimators of failure rates. 
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