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l. INTRODUCTION 

Every mathematician is probably familiar with the situation where he (she) is asked to describe to 
non-mathematicians the research he (she) is doing and to explain why this is an interesting and 
worthwhile endeavor. A very realistic description of what happens in such a case is given in the book 
by DAVIS and HERSH (1981), where on pp. 37-39 a "researcher on the decision problem for non­
Riemannian hypersquares" is interviewed by a public information officer on the occasion of a renewal 
of his research grant. 

A statistician who has to explain to a general mathematical public the kind of problems he (she) is 
interested in finds himself (herself) in a similar situation. In the following notes I will try to explain 
some current developments in the theory of (probability) density estimation in such a way that every 
mathematician should be able to understand it, and I apologize to statistical readers for the triviality 
of some of the remarks I will make. Furthermore, I have chosen for the approach of treating some 
typical examples in depth (with proofs), rather than covering a large area without really entering into 
the mathematics of the subject. 

In statistical consultation, one is often confronted with the following problem. Someone (the client) 
shows graphs of a certain observed frequency distribution and asks "what theoretical probability dis­
tribution would fit this observed distribution?". 

Figure 1.1 below shows an example of such a graph. 
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FIGURE I.I. Frequency polygon, based on 100 observations, 
generated by a decreasing density on [O, 1 ]. 

.975 

The graph is based on a sample of 1 OOO observations, generated by the STATAL random number 
generator from a decreasing density on [0,1] (to be specified later). The number of observations in 
each interval (of length 0.05), [0,.05), [.05,.1), etc. has been determined, and the graph connects 
linearly the values of these fractions (which are assigned to the midpoints of the intervals). This type 
of graph is called a frequency polygon and is familiar to everyone from the cartoons about worried 
businessmen looking at decreasing frequency polygons of sales figures. 

Another method of summarizing these data is given by the histogram of figure 1.2. In this case one 
represents the fractions (or numbers) of observations in the intervals [0,.05) etc. by blocks where the 
height of the block indicates the fraction of observations in the interval. 
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FIGURE 1.2. Histogram, based on 1000 observations, 
generated by a decreasing density on [O, 1 ]. 
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A third method of representing the observed distribution is given by kernel estimators. A kernel 
estimator of an unknown density f on [0,1], based on a random sample XI>···•Xn generated by the 
density f, is a function Ji,,n :[O, 1 ]"'R defined by 

1 n 1 
Ji,,n(X) = -;; ;~J;K((x -X;)/h), (1.1) 

where the kernel K is a probability density (usually a Gaussian or "normal" density) and h is the win­
dow size, representing the degree of smoothing. Figure 1.3 shows a graph of a kernel estimate fn, 
based on the same sample of n = 1000 observations that was used in figures 1.1 and 1.2. The density 
/(x) = 3(1-x)2, xe[0,1], from which the observations were generated, is also shown in the graph. 
The area of the shaded region equals the L 1-distance between the kernel estimator and the density f. 
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n = 1000, f (t)=3(l -t)2, t E[O,l], K(x)=(2w) -2 exp(-f x2) 

FIGURE 1.3. Kernel estimate 

Returning to the general question "What theoretical probability distribution would fit this empirical 
distribution (provided by the client)?", we can remark first of all that this question is meaningless if 
one does not specify beforehand 
(i) the family ~of densities one wishes to consider, 
(ii) a loss function (usually a distance, such as the L 1 distance on§), measuring the deviation between 

the real density and the estimator of the density. 
In the same way, questions like "how big should the window size of my kernel estimator be?" or 
"how should I choose the intervals of my histogram?" are meaningless if (i) and (ii) above have not 
been specified. 

In the old days, one only considered certain standard families of curves in the fitting problem, for 
example the Gaussian densities 

I 1 2 f (x ;µ.,o) = 
0 

VI/ii exp{-
2

a2 (x -µ.) }, x E IR (1.2) 

which are completely specified by the two parametersµ. and o. But during the last two decades there 
has been an explosive development of techniques that are meant for the more general situation where 
one does not restrict the family of possible densities to a family parametrized by a subset of !Rm 
(m < oo ), but instead considers infinite dimensional families. These techniques fall under the heading 
of nonparametric density estimation and have been greatly stimulated by developments in computer 
graphics. 



5 

In sections 2 and 3 we will give a discussion of the best performance one can expect from non­
parametric density estimators according to the criterion of minimax risk. We will restrict ourselves to 
the choice of the Li-distance as our loss function for densities on Rd(d<oo). See for example figure 
1.3, where d = 1. This is a very natural loss function, since it corresponds to the total variation dis­
tance 

D(P,Q) = sup IP(B)-Q(B)I 
BEf!il 

(1.3) 

between probability measures P and Q on Rd, where ~ is the collection of Borel sets of Rd. If P and 
Q are abso!utely continuous with respect to Lebesque measure, with densities p and q respectively we 
have 

f jp-q I = 2D(P,Q), 
R• 

(1.4) 

and unlike the L 2-distance for example, the Li -distance is always well-defined and invariant under 
monotone transformations of the coordinate axes (a lucid account of the Li -theory is given in the forth­
coming book by L. Devroye and L. Gyorfi "Nonparametric density estimation: the Li -view"). 

The minimax risk is defined as follows. Let X i , ... ,Xn be a random sample of n d-dimensional vec­
tors,Agene~ated by a density /belonging to a class of densities 1fon Rd. The risk under /of an estima­
tor fn = fn(. IXI>;..··•Xn) off, based on a sample x., ... ,Xn from f, is the expected value of the Li­
distance between fn and f: 

EJ'fi{r,,,f) = J..J d1(r,,(. lx., ... ,Xn),f). (1.5) 
R 

J (x t ) •• f (Xn )dx i ···dxn 

where di denotes the Li-distance and x;ERd, l~i~n. The minimax risk for the class~ correspond­
ing to samples of size n and loss function d 1, is now defined by 

(1.6) 

A 

where the infinum is taken over all possible density estimators fn based on a random sample of n 
observations generated by a density in the family~ Thus, a minimax estimator (if it exists), would 
minimize the maximum risk over all density estimators. 

If one wan!S to estimate a parameter 0 belonging to a finite-dimensional parameter set ~cRm by 
an estimator On based on a sample of n observations, one usually has convergence of yn(On -8) to a 
limiting Gaussian distribution under the probability distribution ~pecified by 0, as the sample size n 
tends to infinity. This means that the Euclidean distance between On and 8 is of the order of n-'h (the 
so-called " yn law"). In nonparametric density e~timation, the situation is radically different. The 
Li -distance between a density f and its estimator fn, based on a sample of n observations generated 
by f, is typically of an order n -a, with a< 1h. 

In section 2 we will discuss the relation between the metric entropy (for the definition, see section 
2) of the set of densities one wishes to consider and the rate of convergence to zero of the minimax 
risk. To our knowledge, this relation has for the first time been clearly pointed out by L. Birge in his 
dissertation [4) (see also BmGE (1983a)). Once this relation has been established, one can use results 
from approximation theory to give bounds and rates of convergence for the minimax risk. Roughly 
speaking, the bigger the metric entropy, the bigger the minimax risk (this relation can be exactly 
specified in certain cases, see Theorem 2.1 ). This is not surprising, since the metric entropy measures 
the "massivity" of a set, and the identifiability of a density within a set of densities will depend on the 
massivity of this set. Generally, (uniform) smoothness assumptions for the densities are reflected by 
the metric entropy of the set of densities: the smoother the densities are, the smaller the metric 
entropy will be (but we will give an example of a situation where things can go badly wrong, even for 
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a class of very smooth densities). Completely different types of restrictions can be put on the class of 
densities; for example, we may consider a class of decreasing densities on the interval [0,1], without 
any smoothness restrictions. The metric entropy of this set will again give us the rate of convergence 
to zero of the minimax risk. Hence, using the entropy concept, we can treat smoothness restrictions 
and order restrictions in a similar way. 

In section 3 we give a fundamental lemma (Assouad's lemma), providing a lower bound for the 
minimax risk. We will also briefly discuss the concept of local asymptotic minimax risk, and give a 
local minimax result for the estimation of a monotone density (Theorem 3.1 ). Apart from this, the 
treatment of the minimax risk in sections 2 and 3 mainly uses the elegant techniques of BIRGE (1983a, 
1983b, 1983c), with some simplifications which were made possible by the fact that we look at more 
special situations and do not try to obtain the best constants. 

In section 4 we will discuss the behavior of a particular density estimator. We will also take a quick 
look at some distribution theory and the connection with Brownian motion. 

2. METRIC ENTROPY AND UPPER BOUNDS FOR THE MINIMAX RISK 
We first recall some definitions (see KOLMOGOROV and TIKHOMIROV (1961)). Suppose Sis a subset of 
a metric space with metric d and let £>0. An £-net or £-covering of Sis a subset N CS such that 

'VsES 3nEN: d(n,s)~£ (2.1) 

(often the£ in (2.1) is replaced by 2£). A subset A CS is called £-separated (on £-distinguishable) if 

x,yEA, x=f=y =? d(x,yy;;;:.£ (2.2) 

Suppose Sis totally bounded. Then, for each £>0, the (metric) £-entropy H£(S) of Sis the loga­
rithm of the minimum number of elements of an £-net of S. The £-capacity CE(S) of Sis the loga­
rithm of the maximum number of elements of an £-separated subset of S. The £-entropy and £­
capacity satisfy the set of inequalities 

(2.3) 

Suppose '1f' is a set of probability densities on a compact set S C Rd, matrized by the L 1 -distance. 
Here and in the following, "density" will always mean "probability density with respect to Lebesgue 
measure". The following theorem specifies a relation between the behavior of the £-entropy, as EJ,0, 
and the rate of convergence to zero of the minimax risk as the sample size increases. 

THEOREM 2.1. Let '1f' be a set of probability densities on a compact set S cRd, matrized by the L 1 -
distance d 1• Suppose that there exist numbers 8>0 and C 1 >O such that for all £>0 the £-entropy 
satisfies 

H£(6J)~C1£-8 

Then there exist a constant C2 >0 such that 

RM(d1>n)~C2n- 11<2H>, nEN, 

(2.4) 

(2.5) 

where RM(d I>n) is the minimax risk for the class ~ corresponding to samples of size n and loss function 
d1, defined by (1.6). 

REMARK 2.1. The following result is (a part of) Theorem 1, Section 4 of Devroye and GYORFI (1985). 
Let G be the set of densities on [0,1], bounded by 2+8 (some 8>0), and infinitely many titJ.!es con­

tinuou~ly differentiable on (0,1). Then we have for any sequence of density estimators (fn)nEN, 
where J,. is based on a sample of size n, 

(i) 
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inf SUP E1 f if,,-f I ;;;;.: 1 
n /EG 

(ii) For any sequence (an)n EN of positive numbers an tending to 0, 

sup limsup a;; 1E1J lfn-fl = oo. 
/EG n-->oo 

This result shows that conditions like compact support and smoothness are not sufficient to ensure 
a reasonable identifiability of the unknown density, but that we need a condition like (2.4) on the 
metric entropy of the class of densities, to have the risk of our estimators tend to zero uniformly for 
all densitie..; in the class. No matter how sophisticated or "adaptive" our estimators fn are, there will 
always be some densities in the class G which will be estimated rather poorly by this estimator. 

Before giving the proof of Theorem 2.1, we give two examples of its use. 

Ex.AMPLE 2.1. (Smooth densities) Suppose that 'if is the class of densities on [O, 1] such that, for some 
aE(O, l], 

(2.6) 

where p EN U {O} and C>O is a constant independent off (i.e. condition (2.6) holds uniformly for 
f E'if). Then there exists a constant C 1 >0 such that the t:-entropy H(('if) satisfies 

H(('if)..;;; C1t:-11<p+a>, 

and hence, by Theorem 2.1, 

Rm(di.n)..;;; C2n-(p+a)/(l+2p+2a>, 

(2.7) 

(2.8) 

for some constant C2 >0 and all n EN. Results like (2.7) can be found in papers on approximation 
theory, see e.g. KOLMOGOROV and TnrnOMIROV (1961) and LORENTZ (1966). 

By the techniques that we will discuss in Section 3, it can be shown that there also exists a constant 
C 3 >0 such that 

(2.9) 

for all n EN. Hence the "speed of estimation" in this density estimation problem is n -(p +a)t(I +2p +2a). 
We now sketch the construction of an t:-net for the case p =O, i.e. 

lf(x)-/(Y)l ..o;; Clx-yr, x,yE(O,l), aE(O,l], (2.10) 

for f E'if (jis uniformly a-Holder continuous). 
Fix t:>O, let 11=1/{l+[(t:/C)- 11a]}, where [x] is the largest integer ..o;;x, and let~ be the set of 

functions '1> on (0, 1] such that 

'1>(i11) = jt:, i,JENU{O}, t-=;;;11-I 

'1>((i + l}'I) = '1>(i11)+kt:, k= -1,0, or 1 

q, is linear on the intervals [i11,(i + l}'I] 

Figure 2.1 shows a picture of such a function '1> on a part of the interval [O, 1] 
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FIGURE 2.1 

For each /E'F there exists cpE<£ such that di(j,cp)~2£. The set N of functions cpE<£ such that 
d 1 (f,4>)~2£ for some f E'F is contained in the set of functions cpE<£ such that l -£~cf>(i11)~ 1 +£ for at 
least one index i (since [f (i11)- lj~f. for at least one index i, if /E<SJ, using the fact that f is a proba-
bility density). _, 

Hence Card(N)~{11+ 1)-13" . Picking one density /E'F in each L 1-ball B(cp;2£) of radius 2£ 
around a cf> such that B ( cp;2£) n <f¥ 0 provides us with a 4£-net N <k of 'F such that 

I 

log{Card(N<k)} ~ C111- 1 =C'1£ a 

Thus there exists a constant C' 1 >0 such that, for all £>0, 
H(('ff) ~ C'1£-11a 

For example, if a=l (a uniform Lipschitz condition on 'ff), we get H(('ff)~C'1 £- 1 , and hence the 
speed of estimation is of order n - 113

• We will meet the same speed of estimation in the next example 
on decreasing (but possibly discontinuous) densities on [0,1]. 

ExAMPLE 2.2. (Decreasing densities, BIRGE (1983c)). Suppose 'Fis the family of decreasing (i.e. non­
increasing) densities f on [0,1] such that f~M, for all /E<F. We will show that there exists a C 1 >O 
such that the £-entropy H(('ff) satisfies 

(2.l l) 
The following construction of a 4£-net for 'Fis based on BIRGE (1983c), with some simplifications due 
to the fact that we do not try to obtain the best (or at least a "very good") constant C 1. 

Let f.E{O, l) and p EN satisfy 

M = (1 +£)1'- l. (2.12) 
To avoid trivialities, we suppose M> l (otherwise 'F only consists of one element: the uniform density 
on [O,l]). Define, for O~i~p 

X; = M-1{(l+f.Y-l}, y; = (l+f.Y-1, 

and for O<i~, 
(2.13) 

I; = [X;-1>X;) (2.14) 
The length I; of the i-th interval I; is M- 1£(1 +£y- 1• The 4£-net that we will construct, will be based 
on the finite set § of functions g, which are constant on the intervals I; and take values in the set 

Y = {yo, ... ,yp}· (2.15) 
Now let /be a decreasing density on [O,l]. We define 

f; = f(x;); ]; = r1 1 ff(x)dx. (2.16) 
I, 



Then "2,lf = 1 l;f; ~"2,lf = 1 l;f; = 1. Suppose. 

fO~A~l 
f; :;= AYj-1 + (1-A)Yj l!j-J.YjE y 

(see figure 2.2). 

I; 

FIGURE 2.2. 

Then we define the approximating function g on I; by 

Yj-1' if A> i 
g= 

The function g is decreasing, non-negative, and g~M. If A~ i, we get on the interval I; 
- - l -
lfi-gl = lfi-yjl ~ 2E(l + /;) 

and similarly [{;-gl ~ i E(l + ];), if A> i . Hence 

f [{;-gldx ~ i E/;(l + ];). 
I, 

Since 

and 1;+ 1 = (1 +E)l;, we now get 
I 

J lf(x)-g(x)ldx .~ f {/ lf(x)-fildx+ J [{;-gldx} 
O i=I I, 11 

l p-1 
~ 2{/ifo+E~l;f;}+E~2E 

i=I 

9 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Thus, for each decreasing density f on [O, 1 ], such that f ~M, there exists a decreasing function g, 
which is constant on the intervals I; and takes values in the set Y = {y 0 ,. • .,yp }, satisfying 

I 

J lf (x)-g(x)ldx~2E (2.21) 
0 

The number of functions g of this type equals the number of ways one can choose p non-negative 
integers kj such that ~ = 1 kj ~· This number in tum equals the number of ways we can pick p + 1 
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non-negative integers kl>···,kp+I such_that ~1lkj=p. This number is (1) (see e.g. Feller (1968), 
Section II. 5) 

Choosing one f E'ff for each g E§ in such a way that d 1 (j,g ):s;,.2£, provides us with a 4t:-net N 4£ of 'ff 
such that 

Card(N 4£):s;;.(1) 

21.p 
Since (2p):s;;_ _ r.=- , we have 

p V"'P 
log(M +I) 

H 4£(6.f) :;;;;_ 2p log2 = (2log2)' log(l +t:) 

and l/log(l +t:}-,t:- 1, as t:tO. Thus there exists a constant C 1 >0 such that: for all t:>O, 

H,(6.f) :;;;;,_ Cit:- 1 

and hence, by Theorem 2.1, 

RM(d1>n) :;;;;,_ C2n- 113 , 

for some constant C 2 >0. We will show in Section 3 that there also exists a constant C 3 >0 such that 

RM(d1>n);..C3n- 113 , nEN, 

implying that the speed of estimation is of order n - 113 for this estimation problem. 

The proof of theorem 2.1 is based on the felicitous idea, introduced by Le Cam and further 
developed in the context of density estimation by BIRGE (1980, 1983), of constructing estimators on 
the basis of a family of tests of hypotheses. Birge calls these estimators "d-estimators': where d 
denotes the distance function, used to define the loss-function (in our case the L 1 -distance). These 
estimators are concentrated on a t:-net and they give a connection between the t:-entropy. and the 
minimax risk. 

We now give the construction of the d-estimators based on one observation generated by a proba­
bility distribution p 9 , where() belongs to a parameter set 0. Suppose 0 is metrized by a metric d and 
totally bounded for this metric. Let, for t:>O, N, be an t:-net of 0 and {B8 , sEN,} be the family of 
balls, with radius t: and centers sEN., covering 0. Furthermore, let {</>9,1} be a family of tests <Ps,t 
between the balls Bs and B1 for parameters s,tEN., s=/=t, and let J8(X) be the set of t's in N, such 
that the tests <f>s,t rejects Bs and accepts B, on the basis of the observation X. We suppose that <f>s,t is a 
real-valued function, defined on the space of possible observations, such that O:s;;.<f>s,r :;;;;,_ 1, and 

{

<Ps,1(X) = l ~ Bs is rejected and B1 is accepted 
<?s,r(X) = 0 ~ Bs is accepted and B1 is rejected (2.22) 

Define 

{

max d(s,t) 
IEJ,(X) 

L5 (X) = 
0, if J5 (X) = 0 

(2.23) 

A d-estimator is now defined in the following way 

A 

DEFINITION 2.1. A d -estimator, based on the family of tests { <f>s,t} is a point O(X) = t EN, such 
that 

L,(X) = min L5(X). 
seN< 

(2.24) 
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In other words: ad-estimator is a point sENE such that the maximal distance d(s,t) to "preferred" 
points tENE (i.e. points t such that cJ>;,,(X) = 1) is minimized. 

Now let Xi. ... ,Xn be a sample, generated by a density fE6J, where §'is as in Theorem 2.1, metrized 
by the L 1-distance d 1. A sample X = (X1>···,Xn) can be considered as one observation, generated by 
the product measure PJ, where P1 is the probability measure corresponding to f We identify 1¥ with 
the set 8 = {PJ: fE6J} and metrize 8 by d(PJ, P;) = d 1(f,g). 

Let B(/;£) = {hE<?f, d 1 (h,j)~£} and B(g;£)={hE1¥: di(h,g)~£} be two closed f. balls in '?J: In the 
problem of testing a ball B(f ;£)against a ball B(g;£) we call a type I error, the error of concluding 
that the observations were generated by a density h EB (g ;£), whereas they were actually generated by 
a density h EB (f ;£), and a type II error, the error of concluding that the observations were generated 
by a density hEB(/;£) whereas they were actually generated by a density hEB(g;£). The following 
lemma shows that the probabilities of type I and type II errors tend to zero exponentially fast as the 
sample size increases (if the balls B (f ;£) and B (g ;£) are disjoint). 

LEMMA 2.1. There exists a test c/>j,g between B(/;£) and B(g;£), based on a sample of size n, such that 
the sum of the maximal probabilities of errors of the first and the second kind is dominated by am where 

I 
an = exp{ -p;n(d1(f,g)-2£)2+} (2.25) 

Here x + = x, if x ;;;a.O, and 0 otherwise. Otherwise stated: 

sup J cJ>J,gdPg + sup J (1-cJ>J,g )dPg ~an (2.26) 
heBV;tj heBQ;tj 

SKETCH OF PROOF. Let D(P,Q) = supBe~IP(B)-Q(B)j be the total variation distance between two 
probability measures on Rd, where~ is the collection of Borel sets of R8 (generated by the Euclidean 
topology). If P and Q have densities p and q w.r.t. Lebesgue measure, we have 

I 
D(P,Q) = 2di(p,q), 

(see (1.3) and (1.4)). 
Let~ be the set of probability measures on Rd (or, more correctly, on~) and let 

{

B1 = {PE~: 2D(P,P1)~£} 
B2 = {PE~: 2D(P,Pg)~£}. (2.27) 

Then B(f;£)CB 1 and B(g;£)CB2 and the distance between the balls B 1 and B 2 is ~ (d 1 (/,~)-2.f.)+, 
if we use the total variation distance D. The balls B 1 and B 2 are convex and weakly compact (unlike 
the L 1 -balls B (f ;£) and B (g ;£)). It now follows that 

v0 = sup{P: PeBi} 

is a 2-alternating capacity (CHOQUET 1953-1954, 1959) and that 

P1 = inf{P: PEB2} 

is a 2-monotone capacity, see HUBER and STRASSEN (1973) and BEDNARSKI (1982). Let d 1(f,g)-2£>0. 
It then follows from the results in the last-mentioned papers that there exists a mutually absolutely 
continuous pair (P,Q), with PEB 1 and QEB2 , and a test cp of the form 

1, if li ~;, (x;);;;a.1 

(2.28) 
0, otherwise, 

such that 
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Such a pair (P,Q) is called a least favorable pair for testing B 1 against B2 (or a least informative exper­
iment in the terminology of LE CAM (1972) and BEDNARSKI (1982)). 

Take 'flJ,g = <f> and put µ = P + Q. Then it can be shown that 

/'flJ,gdPn+ j(l-'flJ,g)dQn = 1-D(Pn,Qn) 

..;;;exp{-!!..j{(dP )112_(!{Q.)112}2dµ} 
2 dµ dµ 
l 

..;;;exp{--gn(d1(f,g)-2£)2}. D 

REMARK 2.2. We note that the least favorable pair of probability measures (P,Q), introduced in the 
proof of Lemma 2.1, does not necessarily consist of probability measures which are absolutely con­
tinuous w.r.t. Lebesgue measure. Thus the test of B(f ;£) against B(g;£), satisfying (2.26), may be 
based on a pair of probability measure outside these balls. This is caused by the fact that generally 
B(f ;£)and B(g;£) are not weakly compact. 

Proof of Theorem 2.1. 
Fix £>0, and choose an £-net·N( of CJ such that 

log{Card(N()} ..;;;; C 1£-
6 

(2.29) 

(see condition (2.4) of Theorem 2.1). By Lemma 2.1 there exists a family of tests {4'/,g}, based on 
samples of size n, where f,gEN( and 'flJ,g is a test between the balls B(f ;£) and B(g;£) satisfying 
(2.26). A A 

Let ()n = On(Xi, ... ,Xn) bead-estimator, based on the family of tests {4'/,g} (see Definition 2.1.). Fix 
fE'?f and let gEN( be a density such that d 1(f,g)..;;;£. Furthermore, let N; be the number of densities 
hEN( such that (i +2)£..;;;d1(h,g)<(i +3)€. Then we have, by Lemma 2.1, for ;;;;a.I, 

Hence, 

A A 

P1{d1(8mf);;;;. (3+i)£}..;;;Pf{d1(8n,g);;;a.(2+i)£} 

..;;;}:Njexp{- ! nj2~} 
j~i 

Ef':i/on,f)..;;;; 4£+£}:P1{d1(0mf);;;a.(3+i)£} 
i~l 

..;;;; £(4+}: }:Njexp{- ! nj2~} 
i~I j~i 

= €(4+ }:iN;exp{- ! ni 2~}) 
i~l 

Let n;;a.:8C1' where C 1 is as in (2.29), and choose £>0 in such a way that ~+6=8C 1 /n. Then the 
function j ~ j exp { - ! nj2~} is decreasing for j ;;;a. j 0 = 1 + [ 1/ C i], and hence 

EJ<l1(Dn,f)..;;;; £(4+ }:iN;exp{- !ni2~}) 
i~I 

..;;;; 4£+£.ioCard(N()exp{- ! n~} 



= (4+ jo)(8C i)1_1<2H>n -1/(2+6) 

Put C=(4+ j 0·)(8C1) 11<i+6>. Then we get suoEj<11(0m/) ..;;;cn- 11<i+6>. 0 
/e~ 

3. LoWER BOUNDS FOR THE MINIMAX RISK 
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In obtaining lower bounds for the minimax risk, we compare two kinds of "distinguishability" of the 
probability densities: 
1) distinguishability in terms of the loss function on the set of densities 
2) distinguishability in terms of some "information measure". 

Usually the distinguishability in terms of an information measure is measured by the Kullback­
Leibler information 

flog[~] dQ, if Q « p 

K(Q,P) = (3.1) 
oo, otherwise 

One then uses an information-theoretic lemma (Fano's Lemma, see e.g. IBRAGIMOV and HASMINSKII 
(1981), p. 323-325) to give lower bounds for the minimax risk. This technique is used in e.g. BIRGE 
(1980, 1983), BRETAGNOLLE and HUBER (1979) and IBRAGIMOV and HASMINSKII (1980, 1981). 

Here we give another Lemma (Assouad's Lemma), where the Kullback-Leibler information K(Q,P) 
is replaced by the Hellinger distance h (P, Q), defined by 

[ l 1/2 [ ] "2 
h(P,Q) = {; f { ~~ - ~; }2dµ}"2, (3.2) 

where µ is any measure dominating P and Q (for example: µ = P + Q). Roughly speaking, the Hel­
linger distance can be considered as a local version of the Kullback-Leibler information; it has the 
advantage of being a distance. The Kullback-Leibler information, sometimes called "Kullback-Leibler 
distance" is not really a distance (it does not satisfy the triangle inequality). 

We now state Assouad's Lemma in a form slightly adapted to our purposes. 

LEMMA3.I (Assouad, 1982). LetAr={O,lY= {a:a=(a" ... ,ar), a;=Oor l} andlet'ff"beaco/lection 
of probability densities on Rd. Suppose that q,:a~fa is a bijection of Ar on a subset~ of 'ff" and that 
{B 1'···,Br }, is a partition of Rd into measurable sets B" ... ,Br such that, if a =(a1>···•ai-1> 1, a; +l>···,ar) 
and a'=(a1>···•ai-1' 0, a;+l>···•ar) 

; j(f/2 -ftP)2dx:o;;;;{J;:o;;;;l (3.3) 
Rd 

J [fa - h' ldx ~a; >0. (3.4) 

~ ·' A 

Let J,, be any density estimator, based on a sample of size n, generated by a density fe'ff. Then 

SUP E1 f lfn-Jldx~; ±a;max{l-(2n/J;)112
, ; (1-/J;)2'1}. 

/e~ Rd i=l 

We omit the proof of this lemma, but instead discuss some applications. Usually the a;'s are taken 
equal to some a and the /J;'s taken equal to some /J. One then looks for densities which are a­
separated in the L 1-distance, but have the smallest possible Hellinger distance. In fact we are then 
dealing with the (local) a-capacity of the set ~ Hopefully these remarks will become more clear by 
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looking at some examples. 

EXAMPLE 3.1 (.Continuation of Example 2.1). Suppose that '!1' consists of the densities f on [O,l], satis­
fying 

lf(x)-f(y)j ~ Cjx -yja, x,yE[O, l] 

where C is independent off Let £E(0, 1) and T/ = {l +[( ! dC)- 11ar 1. Suppose bj=)TJ~l, for some 
positive integer/ and let fj be the piecewise linear fu~ction defined on [bj-1' bj] by fj(bj-l)=O, 
fj(bj-1+!11)=4£, fj(bj-1 + ~ TJ)=O, fj(bj-1+!11)= -4£, fj(bj)= 1, and fj is linearly interpolated 
for other values xE[bj-l>bj] (see figure 3.1) 

FIGURE 3.1. 

Define r=11- 1 and 1J;.={f:[O,l]~IRI f=l+"2.i=i'A;Ji, 'A;=+l}. Let the function cp:{O,l}'~<ff,. be 
defined by 

r 
cp(a) = l +~>..Ji, 

i=I {

'A;=l, 

'A;=-1, if a;=O. 

ifa;=l 

Then, if a=(a1>···,a;-1> 1, a;+1>···,ar) and a'=(a1>···•ai-1' 0, a;+1, ... ,ar) 
h, 

1 J Ila-fa-ldx = 4£1/, 
b,_, 

and the Hellinger distance satisfies 

2 1 2 h (fa,fa•) ~ 1z11r 

(3.5) 

(3.6) 

Thus the conditions (3.3) and (3.4) of Assouad's Lemma are satisfied, with a;= 114€11 and 
/l;=(l/12)T/t?-, and we obtain for n=[ll(11t!-)] and any density estimator J;. based on a sample of size 
n generated by a density /E6J, 

"' _.!_ 

sup E1 J l.fn- fldx ;;;;.: £(1-6 2 )/8 
fe".f R 

(3.7) 

Hence the minimax risk RM(d1>n) satisfies (for a constant c>O) 



Since, by Example 2.1 ((2.8) withp =O), 

RM(dJ.n) ~ C'. n-a/(1+2a) 

for some C'(>c), the speed of convergence to zero of the minimax risk is of order n-al(l+2a>. 
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EXAMPLE 3.2 (Continuation of example 2.2). Let 'F be the set of decreasing densities on [0,1], such 
that f~M for each f E'ff, with M> 1. We will show that the minimax risk satisfies 

I 

RM(d1>n) ;a. Cn - 3
, nEN (3.8) 

Since it was shown in section 2 that RM(d1>n)~C'n- 113 , for all nEN and some C'>O, the minimax 
risk tends to zero at the rate n - 113 • 

LetE:E(O,;), rEN, u = {(1 +£)'-l}- 1
, i\.=(l +t:)/ {ru£(1 +;£)},and x;=u{(l +£Y- l }, O~i~r. 

Define, for l~i~r, the intervals I; by I; = [x;-i.X;). The interval I; has length I; = u£(l +£y- 1• 

Let the functions f; and g; be defined on the interval I; by 

f;(x) = i\.(l +£)-i(l + ; £), X E/;, (3.9) 

and 

{

i\.(l +£)-;+t, first half of I; 

g;(x) = i\(l +£)-;, second half of I; (3.10) 

(see figure 3.2). 

'-----.......-------"' 

FIGURE 3.2 

Then fI,g;dx = h,f;dx = l/r, and 

J [f;-g;ldx = £/{(2+£)r}, (3.11) 
I, 

(3.12) 

Now let 'F,. be the family of 2r functions, defined on [0,1) by 
r 

f = ~(i\.;/;+(l-i\.;)g;)l1,, (3.13) 
i=I 

where i\.;=O or l and 11, is the indicator function of the interval I;. Suppose that£ and r satisfy 

g 1(0) = l +£1 {(I +£)'-1 }~M. (3.14) 
r£(l +2£) 
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Since jo;;;;g1(0), if f E6J,., we have 6J,. C<!I if (3.14) is satisfied. Hence, by (3.11), (3.12) and Lemma 3.1, 

RM(d1,n);;;;.. t-E-{1- .. rr;;;r} (3.15) 2+E v n;-
Choose, for each rEl\I, the number E7 >0 such that (1 +Erf =M. Then 

I M-1 
(l+E7 ){(1+E7 f-l}/{rE7(l+2Er)},....,, logM • (3.16) 

as r-700. Since (M-1)/logM<M, for M>l, there exists r 0 such that the left-hand side of (3.16) is 
smaller than M, if r;;..r0 • Hence, by (3.15), 6J,. C'F, if r;;..r0 • Taking n =[r!E;] yields 

RM(dJ.n);;;;.. Er (l-..!..),....,(3/16)(logM)113n- 113 
2(2+Er) 4 ' 

as T-700 (and hence Erio, n~oo). Thus there exists a constant C>O such that (3.8) holds. 

REMARK 3.1. BIRGE (1983c) gives a better constant in the lower bound of the minimax risk (at the 
cost of more difficult computations). 

REMARK 3.2. The restriction to the interval [0,1] in Examples 3.1 and 3.2 is not essential, but the res­
triction to compact intervals is. For example, if <!I is the family of decreasing densities on [O, oo ), we 
get arbitrarily slow rates of convergence for the minimax risk (like in Remark 2.1), even if jo;;;;M, for 
alljE1f. 

If <!I is the family of decreasing densities f on [O,L] such that jo;;;;M, for all f E'F, we obtain by simi­
lar computations as in examples 2.2 and 3.2 

C 1(logLM)113n- 113 .;;;;; RM(d1>n).;;;;; C 2(logLM)113n- 113 (3.17) 

Hence, for fixed n, the minimax risk grows at the rate (logLM)113
, as the area LM of the rectangle 

[O,L]X[O,M] tends to infinity. Birge has shown that C2 /C1 .;;;;40, which shows that the minimax risk 
is squeezed in rather tightly by the bounds in (3.17). 

It was shown in Examples 2.2 and 3.2 that the minimax risk for the estimation of decreasing densi­
ties on [O,l], bounded by some M>O (which is the same for all densities in the class), tends to zero at 
the rate n- 113 , as the sample size n~oo, if the loss is measured by L 1-distance. This suggests that a 
more precise picture of what is going on is obtained by looking at neighborhoods around a ( decreas­
ing) density f, which shrink at the rate n - 113

, and by evaluating the (local) minimax risk of estimators 
based on a sample of size n over such a neighborhood. This leads to the following definition. 

Definition 3.1. A A 

Let <!I be a class of densities on Rd and let E pi 1 if,, ,j) be the risk under f of an estimator J,, of f based 
on a sample X 1'···, Xn from f, where d 1 denotes the L 1-distance. Then the local asymptotic minimax 
risk at a density /E<!Jis defined by 

where 

Un,c<f) = {g E~ d 1 (g,f)o;;;;c. n - 113
} 

We now have the following result. 

(3.18) 

THEOREM 3.1. There exists a constant c 1 >0 such that for each decreasing density f on [O,lj, with a 
bounded continuous derivative f such that f <0 on (0,1), 
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(
1 

1/3 RLMif,d1) ~ C1Jo lf(t)f(t)j dt, (3.19) 

where RLM(f,d_i) is defined by (3.18). 

PROOF. We give the proof for the situation where f~a<O and pb>O on (0,1), but only minor 
changes are needed to give the proof for the situation where f (or j) is allowed to tend to zero at the 
right endpoint of (0, 1 ). 

Let x0 , x1'···,x2m be an increasing sequence of points in [0,1) such that x0 =O, and 

~i = X2;-1-X2;-2=X2;-X2;-1 (3.20) 

= ~ n- 113/(x2;-d113 Ilf(x2;-1)1213 

for i=I, ... ,m. Suppose that [x21n-2,x2m-d, [x2m-1>X2m) is the last pair of intervals of this type, 
contained in [0,1). Although m, /);, and the points XJ> ••• ,x2m depend on n, we suppress this dependence to 
avoid cumbersome notation. Furthermore, for ease of notation we put y; = x 2i - l · Define the functions 
f; and g; on the interval J;=[y;-/);,y;+l};) by 

and 

f;(x) = j(y;), XEJ;, 

{

/(y;)+l};[f(y;)j, 

g;(x) = /(y;)-l};[f(y;)j, 

y;-/);~X<y; 

y;~X<y;+l);. 

- -

(3.21) 

(3.22) 

Let fn be a probability density on [O, X2m) such that fnjJ;=knf;. Then kn~I, as n~oo, implying 
that the function gn, defined on [O, x21n) by inlJ;=kng; will be non-negative and hence a probability 
density for n sufficiently large (since Jo"" gn(x )dx =Jo"" fn(x )dx =I). 

As n~oo, we have 

~ j<J,,12 -g-!12
)2- ! l)lJ(y;)-lf(y;)2 (3.23) 

J, 

J[{,,-gnl-Wr lf(y;) I (3.24) 
J, 

Applying Assouad's Lemma we obtain by (3.20), (3.23) and (3.24) 

RLM if ,d 1) ~ n~ n 
113~/)llf '(y;) I { 1- y f n l);3f '(y; )2 If (y;)} 

l 

I 

= tf lf(x)f'(x)j 113dx. D 
0 

A 

The Grenander maximum likelihood estimator fn, to be discussed in section 4, has the property that 
for any "smooth" density f such that f <0 on (0, l ), 

1 

lim n 113 E1 j lfn(t)-f (t)jdt = c. j lf (t)f (t) I 113 dt, 
n-+OO 0 

(3.25) 

where c:=::::0.62 (see GROENEBOOM (1984a). If /(t)=l, tE[0,1] (the uniform density on [0,1)), the 
right-hand side of (3.25) is zero, and it can be shown that in this case 

1im n 112 E1 j lfn(t)-f (t) jdt = #
2

'11 (3.26) 
n-+OO 

(see GROENEBOOM (1984a), Remark 3.2). 

,, 



18 

The behavior of kernel estimators is rather different. For example, it is proved in Devroye and 
Gyorfi that for any kernel estimator of the form (1.1) with a kernel K with bounded support 

gnC°t) = (nh)- 1 ±K((t -X;)lh), 
i=I 

based on a sample XJ, ... ,Xn generated by a density f, we have 

liminf inf n 113 Et J lgn(t)-f (t)idt ~ (8/(9'1T))113 
n->oo h>O (3.27) 

if f is the eniform density on [0,1] (Theorem 7, Ch. 5, DEVROYE and GYORFI (1985)). This shows that 
these kernel estimators can only achieve a rate of convergence n - 113

, whereas the Grenander estima­
tor achieves the rate n - 112 • 

More generally, it can be shown that the Grenander estimator achieves the rate n - 112 for any den­
sity f on [O, 1 ], which only consists of flat parts and a finite number of jumps, whereas kernel estima­
tors would only achieve rate n - 113 in this case. 

A comparison of (3.25) and (3.19) indicates that the Grenander estimator has very good properties 
according to a (suitably defined) criterion of local minimax risk. However, at present it is still an 
unsolved problem how to choose the collection ~of decreasing densities (and, for that matter, the 
corresponding neighborhoods Un,cif) in (3.18)) in order to obtain nontrivial upper bounds for the 
local minimax risk. This has to do with the somewhat peculiar behavior of the functional I 
f _,_. fo If (t)f (t) I 11

3 dt, and the fact that the convergence in (3.25) is certainly not uniform in f 

4. THE GRENANDER MAXIMUM LIKELIHOOD ESTIMATOR 

DISTRIBUTION THEORY. 
At the end of section 3 it was noticed that a particular density estimator "the Grenander maximum 
likelihood estimator" has a better performance in estimating decreasing densities than kernel estima­
tors. We will now describe the construction of the Grenander estimator and we will offer an explana­
tion for its good performance. The general consequences of an analysis of the behavior of the 
Grenander estimator are rather striking and not limited to the case of decreasing densities. 

Suppose XI>···,Xn is a sample of n independent random variables generated by a density f on 
[O, oo ). The empirical distribution function Fn of the sample is defined by 

Fn(x) = .!. #{i: X;:s;;;x}, (4.1) n 

where #A denotes the number of elements in the set A. Thus Fn(x) is the fraction of observations 
less than or equal to x. The concave majorant Fn of Fn on [O, oo) is by definition the smallest concave 
function ~ Fn on [f), oo ). Figure 4.1 shows a picture of the empirical distribution function Fn and its 
concave majorant Fn for a sample of n = 100 observations, generated by the uniform density 

f(t) = 1, tE[O,l]. (4.2) 
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Grenander shows (in GRENANDER (1956)) that the maximum likelihood estimator (MLE) of a 
decreasing density, based on a sample generated by this density, is given by the derivatjve of the con­
cave majorant Fn of the empirical distribution Fn of the sample. Since the function Fn is piecewise 
linell[ with at most n changes of direction, the derivative is meaningful except at (at most) n points. 
Let fn denote this derivative, defined at points of discontinuity by taking left-hand limits. This func­
tion satisfies 

(4.3) 

A 

where <ff' is the set of decreasing left-continuous densities on [O, oo ). Thus fn is that density fin the 
class <ff' for which the "joitit" density Ilf=if(X;) at the observed points X 1, ••• ,Xn attains it~ highest 
value, and for this reason fn is called the maximum likelihood estimator. For a picture of fn, based 
on the same sample as used for figure 4.1, see figure 4.2. 
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FIGURE 4.2. Grenander estimator. 

The distribution theory of the Grenander estimator is still incomplete. An interesting early result js 
given in SPARRE ANDERSEN (1954), where it is proved that the number of jumps Nn of the function fn 
is of order log n, if the observations are generated by the uniform density defined by ( 4.2). More pre­
cisely, he proved that the distribution of the random variable (Nn -logn )/ Vfci1l tends to a Gaussian 
distribution with mean zero and variance l (the "standard normal distribution"), as the sample size n 
tends to infinity. The proof in Sparre Andersen (1954) is based on rather elaborate enumeration 
techniques. At present it is possible to give a very quick proof of this result by using some properties 
of Brownian motion. 

Since the further distribution theory of the Grenander estimator (and of density estimators in gen­
eral) has been developed by using the relation between the empirical distribution function and 
Brownian motion, we now turn to an informal description of Brownian motion. 

Let Xi.X2 , ••• be an infinite sequence of independent identically distributed random variables such 
that P { X; = l} = P { X; = - l} = l /2 for each i. For example, X; could represent the outcome of the i-th 
trial in a fair coin-tossing game, where X;= I represents "heads" and X; = -1 represents "tails". 
Corresponding to each infinite sequence (XI>X2, ••• ,) we define a function Wn:[O,oo)~R by 

{

Wn(O) = 0 
. (4.4) 

Wn(} In) = n- 112;~1X;, jEN 
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and Wn(t) is defined by linear interpolation for other values of tE[O,oo). Each such function Wn is a 
possible realization of a random walk ·of a particle which jumps up or down according to the out­
comes of a f* coin tossing game. By the central limit theorem we have that the distribution of 
Wn(j In) tends to a Gaussian distribution with mean zero and variance t, as n~oo and j ln~t>O. 
More generally, it has been shown by Wiener that one can define a limiting process consisting with 
probability one of continuous (nowhere differentiable) functions (or "paths") W on [O, oo) such that 
W(t) has a Gaussian distribution with mean zero and variance t, for each t, and such that the distri­
bution of W(t)- W(s) is independent of that of W(s) for t>s (the process has independent incre­
ments). This process is called Brownian motion and can be considered as the limit (as n~oo) of the 
random walks Wn, defined by (4.4) on the basis of coin-tossing sequences (Xi.X2, ••• ). 

The Brownian bridge on [0,1] is a process of continuous paths B:[O, l]~R which are obtained from 
Brownian motion paths W by the transformation 

{

B(t) = (1-t)W(t /(l .;_t)), tE[O, 1) 

B(l)~ 0 (4.5) 

This transformation is called Doob's transformation. For a discussion of these concepts see e.g. BIL­
LINGSLEY (1968), DOOB (1949) and ITO and MCKEAN (1974). 

Brownian motion and the Brownian bridge arise in the context of density estimation in the follow­
ing way. All the density estimators used in practice are based on the empirical distribution function 
Fn. Now it is already known for a long time (see e.g. DooB (1949)) that the so-called empirical pro­
cess 

t 

yn(Fn(t)- jf(u)du), tE[O,oo), (4.6) 
0 

where Fn is the empirical distribution function based on a sample of size n generated by the density f 
on [O, oo ), behaves for large n as a Brownian bridge with a changed time scale. More precisely it has 
been shown by KOMLOS, MAJOR and TuSNADY (1975) that the supremum distance (overt) between 
the empirical process defined by (4.6) and a Brownian bridge process (with changed time scale) 

{Bn(F(t)), tE[O,oo)} (4.7) 

where F(t) = fbJ(u)du, is smaller thank. n- 112logn, with a probability tending to one as n~oo, for 
some fixed constant k >0. In particular we will have that well-behaving functionals of the empirical 
process will converge in distribution to the corresponding functional of the Brownian bridge; this is 
the so-called invariance principle. As an example, we have the following result. 

A 

THEOREM 4.1. Let fn be the Grenander density estimator, based on a sample of size n, generated by the 
uniform density f on [0,1] (see (4.2)). Then we have, as n~oo, 

I 

n 112 J l/;,(t)-f (t) ldt ~2max B(t), 
O tE(O,I] 

(4.8) 

i.e. the L 1-distance between};, and f, multiplied by n 112, converges in distribution to 2 times the max­
imum of the Brownian bridge. 

A A 

Sketch of proof. Since fn is the slope of the confave majorant Fn of the empirical di,_stribution func-
tion Fn on [O, 1 ], we have that n 112

((,, - 1) is the slope of n 112(Fn - F), where 
F(t)= fbJ(u)du= J&du=t, for tE[O, l]. 

This means that Sn =n 112lfn-f) is the slope of the concave majorant of the empirical process 
n 112(Fn-F) on [0,1]. 



22 

Applying the invariance principle, we get that the functional JA ISn(t) ldt of the empirical process 
converges in distribution to the corresponding functional JA IS(t) ldt of the Brownian bridge, where 
S(t) is the slope of the concave majorant of the Brownian bridge at t. But JA IS(t)Jdt is just 2 times 
the maximum M of the Brownian bridge, since it is obtained by integrating S (t) from 0 to the loca­
tion f of the maximum and by integrating - S (t) from f to 1. See Figure 4.3. 

Brownian bridge 

FIGURE 4.3. 

(The slopes S (t) will tend to oo( - oo) as t J,0 (tj 1 ), which cannot be adequately shown in the picture.) 
D 

Since the mean (or first moment) of the distribution of 2max1e[o, 11B(t) equals y;ii72, we obtain 
relation (3.26) as a corollary of Theorem 4.1. Similarly, by using the relation between the empirical 
process and the Brownia11_ bridge, one can derive Sparre Andersen's result on the number of jumps of 
the Grenander estimator fn if the underlying density is uniform (using the techniques of GROENEBOOM 
(1983)). 

Theo!em 4.1 is typical in the sense that the computation of the distribution of the functional 
n 112 JAl!n-Jldt of the empirical process n 112(Fn - F) is transferred to the computation of the distribu­
tion of a corresponding functional of the Brownian bridge, but atypical in the sense that for function­
als corresponding to density estimators we usually have to make a much closer (local) comparison 
between the behavior of the functionals for the empirical process and the Brownian bridge, using the 
results of KOMLOS, MA.TOR and TuSNADY (1975) (see the paragraph preceding Theorem 4.1). Also, the 
uniform density is a very "atypical" decreasing density, ¥d the results are completely different if the 
density is strictly decreasing. In this case the "risk" E1J [[,,-fldt decreases at a rate n - 113 (instead of 
n - 112 

). More precise information is given in the following theorem (Theorem 3.1 in GROENEBOOM 
(1984a)). 

THEOREM 4.2. Let f be a decreasing density, concentrated on a bounded interval [O,B 1 with a bounded 
second derivative, and such that f(t)=j=.O, for tE(O,B). Then there exists a constant C=C(f) such that 
the distribution of the standardized L 1 -distance 

B 

n 116 {n 113 ji/,,(t)-f(t)ldt-C} 
0 

converges to a Gaussian distribution with mean zero. 

(4.9) 

The precise form of the constant C and the limiting Gaussian distribution cannot be given here, 
and the proof of this theorem is also omitted. However, we Awill try to describe informally the rather 
striking difference in behavior of the Grenander estimator fn under the conditions of Theorem 4.1, 
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resp. Theorem 4.2. Figure 4.4 below shows a picture of the Grenander estimator J,, based on a sample 
of 1000 observation from the density f on [O, 1 ], defined by 

f(t) = 3(1-t)2, tE[O, l], (4.10) 

which satisfies the conditions of Theorem 4.2. 
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n = 1000, f (t)=3(1-t}2, t E[O,l]. 

FIGURE 4.4. Grenander estimator. 
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In this case the number of jumps is of order n 113 (instead o{ order logn, as in the case of the uniform 
density), and it can be shown that the number of jumps of J,, in an arbitrary interval (c,d) c:;_(O, 1) will 
tend to infinity with probability one, as n ~ oo. In contrast to this, the number of jumps of J,, in each 
interval (t:, 1-t:), t:>O, will remain bounded (in probability) as n~oo, if the underlying density f is uni­
form, and in this case the only cluster points will be 0 and 1 (for a picture, see figure 4.2). In the case 
of the density f, defined by (4.JO), the curvature of the distribution function F(t) = fbJ(u)du,te[O, l], 
forces the concave majorant Fn of the empirical distribution function Fn to have many changes of 
direction, and as n~oo, the distributions of the derivatives Sn(t) and Sn(u) at two different points t 
and u of the interval (0,1) will become more and more independent. For the uniform density, there 
will be dependence over the whole interval, even as n ~ oo. · 

Thus the Grenander estimator "adapts" itself to the curvature of the underlying distribution 
whereas the usual kernel estimators don't have this property. This explains the better behavior of the 
Grenander estimator. Recently, there have been attempts to make the kernel estimators more "adap­
tive" (see HABBEMA et al. (1974), DUIN (1976), BREIMAN et al. (1977), CHow et al. (1983), HALL 
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(1983)). For example, with the (kernel) density estimators proposed by HABBEMA et al. (1974) the 
window size is determined "adaptively", according to a criterion applied on the data set (the method 
of "cross-valid.ation"). However, it seems clear that none of these adaptive kernel estimators can 
detect jumps of a density, whereas the Grenander estimator actually adapts itself both to jumps and 
to flat parts of a density. Also, the foregoing considerations apply to a much more general situation 
than the estimation of a monotone density, since, essentially, the discussed properties were based on 
local monotonicity of the density. So, although in the case of the estimation of non-monotone densi­
ties the Grenander estimator would no longer be applicable, we still are dealing locally with the ran­
dom process on which the Grenander estimator in based globally in the case of a decreasing density. 
This process is a jump process of locations of maxima of Brownian motion with respect to a family of 
parabolas (the shape of which is determined by the underlying density; the structure of this process is 
determined in Section 4 of GROENEBOOM (1984b)). We will discuss the relevance of this process for 
the estimation of densities and distribution functions in a forthcoming paper. 
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