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I. INTRODUCTION 

-I n 
Statistics of the form T = n l· 1 c. X. , n ~ I, where X. , n · i= in in in 

i = 1,2, ... ,n denotes the ith order statistic of a random sample x1, ... ,Xn 

of size n from a distribution with distribution function (d.f.) F and the c. , in 
i = 1,2, ... ,n are known real numbers (weights), are said to be linear com-

binations of order statistics. In the last decade there has been considerable 

interest in these statistics with regard to the problem of their asymptotic 

normality, which has been investigated under different sets of conditions 

by many authors in this area. We refer to the important papers of SHORACK 

(1972) and STIGLER (1974) and the references given in these papers. More 

recently attention has been paid to the rate of convergence problem. 

Berry-Esseen type bounds for linear combinations of order statistics were 

established by BJERVE (1974) and HELMERS (1975). An account of these results 

is given by VAN ZWET (1977). 

The purpose of this paper is to establish Edgeworth expansions for 

linear combinations of order statistics with remainder o(n- 1) for the case 

of smooth weights. BJERVE (1974) has shown that trimmed means admit asymp

totic expansions. However his method employs special properties of the 

trimmed means and does not carry over to the more general linear combinations 

of order statistics we consider. Our method of proof was outlined by 

VAN ZWET (1977). In his paper he obtained a bound on the characteristic 

function of a linear combination of order statistics, which solves a 

crucial part of our problem. The paper is organized as .follows: In section 

2 we state our results in the form of two theorems. Section 3 contains a 

number of preliminaries. Theorem 2.1 is proved in section 4, theorem 2.2 in 

section 5. Extensions and applications are discussed in section 6. 

2. THE RESULTS 

Let J 1 and J 2 be bounded measurable functions on (0,1), where J 1 is 

twice differentiable with first and second derivative J; and J¥ on (0,1). 

Let J~ be bounded on (0,1) and let F be a d.f. with finite fourth moment. 

The inverse of a d.f. will always be the left-continuous one. XE denotes 

the indicator of a set E. Let tthtt = supO<s<I lh(s) I for any function hon 
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(0,1). Introduce functions h 1,h2 and h3 by 

I 

J -I 
(2.1) h 1 (u) - J 1 (s)(x(O,s/u)-s)dF (s) 

0 
I 

(2.2) 
r -I - j Ji (s) (x(o,s/u)-s) (X(O,s](v)-s) dF (s) 

0 
I 

(2.3) h3 (u,v,w) = - J J¥(s)(x(O,s](u)-s)(x(O,s](v)-s)(x(O,s](w)-s)dF-l(s) 

0 

for 0 < u,v,w < I. Furthermore define, for each n ~ I and real x, the func

tion K by 
n 

(2.4) 

where¢ and¢ denote the d.f. and the density of the standard normal distri-

bution. 

(2. 5) 

and 

(2.6) 

where 

(2. 7) 

The quantities K3 = K3 (J 1 ,F) and K4 = K4 (J 1 ,F) are given by 

I I I 

K3 = K3 (J 1,F) = [f 3 ff l 
3 h 1 (u)du+3 h 1 (u)h 1 (v)h2 (u,v)dudvJ 

cr (J 1 ,F) 
0 00 

I 

K4 = K4 (J 1 ,F) = - 4- 1-- [f h~(u)du-3cr4 (J 1 ,F) + 
cr (JI 'F) 0 

I I I I I 

+ 12 If hi(u)h 1 (v)h2 (u,v)dudv + III (4h 1 (u)h 1 (v)h 1 (w)h3 (u,v,w) + 

2 
cr 

00 

I 
2 r 2 

cr (~,F) = j h 1 (u)du. 

0 

000 

In our first theorem we shall establish an asymptotic expansion with 
-) * * remainder o(n ) for the d.f. F (x) = P(T ~x) for - 00 < x < 00 where 

n n 



(2. 8) * T = (T -E(T ))/cr(T) 
n n n n 

for the case of smooth weights. 

THEOREM 2.1. Suppose tha.t positive 

a 1,a2 ,c,m and numbers y > I and O 
l. 

n 

numbers B,C] ,c; ,c;•,c2,D4,KJ ,K2,MI ,M2, 

$ t 1 < ~2 $ I exist such that 
l. 

n 

3 

(2.9) max c. - n f J 1 (s)ds - I J 2 (s)ds $ Bn-y for n = 1,2, ... ; 
in ]$i$n 

i-1 i-1 
n n 

J1 is twice differentiable on (0,1) with first and second derivative Ji and 

J 111 on (O, I); 

(2. I 0) IIJ 111 $ c1, IIJ 11II $ C' IIJ"II $ C" IIJ 11 $ C 
I' I I' 2 2 

and 

(2. I I ) IJ"(s )-J"(s ) I 
I I I 2 

(2.12) JI (s) ~ c 

F possesses a finite fourth moment s4 with 

(2. I 3) 

-1 -1 
and on (F (t 1), F (t2 )) Fis twice differentiable with density f and 

-1 -] 
second derivative f' such that on (F (t 1), F (t2 )) 

(2. I 4) and 
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limo = O, such that for all n ~ 
n-+<x> n 

sup 
X 

I F*(x) - K (x) I 
n n 

Note that the expansion Kn does not depend on the function J 2 . This is 

due to the exact standardization we have employed in theorem 2.1. 

Our second theorem is a modification of theorem 2.1 which lends itself 

better to applications. Since a different standardization is used in this 

case our expansion will not only depend on J 1 and F but also on J 2 . We shall 

establish an asymptotic expansion with remainder o(n- 1) for the d.f. 
! 

G (x) = P(n 2 (T -µ)/o~x) for - 00 < x < 00 where 
n n 

1 

(2. I 5) µ=µ(Jl,F) = I -I 
F (s) J 1 (s)ds 

0 

2 2 and o = o (J 1,F) as in (2.7). Introduce a function h4 by 

I 

(2.16) = - I 
0 

for O < u < 1. Furthermore quantities a= a(J 1,J2 ,F) and b = b(J 1,J2 ,F) 

are given by 

(2.17) 

and 

(2.18) 

1 

a= a(J 1,J2 ,F) = f -I f L2 o(J1 ,F) 
0 

I 

-I -1 l 
F (s) J 2(s) dsJ 

0 

I 

b = b(Jl,J2,F) = _2 ___ [f (hl(u) 
2o (JI ,F) O 

I I 

+ff (2- 1hf(u,v) + h 1(u)h/u,v,v)) dudv]. 

0 0 



Finally define, for each n 

(2.19) L (x) 
n 

~ 1 and real x, the function L by 
n 

5 

THEOREM 2.2. Suppose that the assumptions of theorem 2.1 are satisfied. Then 

there exists A> 0 depending on n, the c. and F only through the same 
in 

constants as in theorem 2.1 and a sequence o1, o2 , ... as in theorem 2.1 

such that for all n ~ 1 

sup 
X 

I G (x) - L (x) I ::; 
n n A o n 

-1 
n 

It may be useful to connnent briefly on assumption (2.9). In spite of its 

unusual appearance this assumption is satisfied in a number of interesting 

situations. Three examples of the validity of this assumption are provided 

by 

(2.20) c. = J ( i \ 
1. n l\n+l) 

(2.21) c. = J (i\ 
in 1\nJ 

and 
i 
n 

(2.22) c. = n I J 1(s)ds 1.n 
i-1 
n 

where J 1 is a function on (0,1) satisfying the assumptions of theorem 2.1. 

In each of these three cases it is easy to verify that assumption (2.9) holds 

with J 2 (s) = (½-s)J;(s), J 2(s) = ½J~(s) and J 2(s) = 0 respectively. The 

weights (2.20) were considered by CHERNOFF et.al. (1967) and STIGLER (1974). 

MOORE (1968) studied weights of type (2.21) and BICKEL (1967) investigated 

weights of the form (2.22). 

We conclude this section with a remark concerning the way we have 

presented our results. Although our theorems are formally stated as results 
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for a fixed but arbitrary value of n they are _in fact purely asymptotic 

results, because we do not make precise the way in which the constant A 

appearing in our estimate of the re~ainder depends on certain constants 

occurring in our assumptions. Since our estimate of the remainder depends 

on n, the c. and F only through these constants, we have, in effect, in-in 
dicated classes of linear combinations of order statistics and d.f.'s for 

which our expansions are valid uniformly. 

3. PRELIMINARIES 

In this section we present a number of preliminary results which will 

be needed in our proofs. 

Let, for each n ~ I, U , •.• ,U be independent uniform (0,1) r.v.'s and 
I n 

let Uin (J$i$n) denote the i th order statistic of u 1, ••• ,un. It is well-

known that the joint distribution of x1, ••• ;Xn is the same as that of 

(F- 1(u 1), ••• , F- 1(u )) for any d.f.F. Therefore we shall identify X. with n i 

F- 1(u.) and also X. with F- 1(u. ). The empirical d.f. based on u 1 , ••• ,U 
i in in n 

will be denoted by r . Throughout this paper we shall assume that all r.v.'s 
n 

are defined on the same probability space (Q,A,P). For any r.v.X with 
A 

0 < a(X) < 00 we write X = * X - E (X) and X = X/a(X). For any positive number 

£ the £th absolute moment of F will be denoted by Bi· 
We start by stating a very simple but useful lenuna. 

LEMMA 3.1. Let {X} and {Y} be two sequences of1,.v.'s and let there exist 
n n 

positive numbers A and band a number n > I such that for all n > 

(i) a2(x -Y) $ A n-n, and 
2 n n _ 1 

(ii) a (X) ~ bn holds. 
n 

Then there exists C > 0 depending on A, band n, but not on n, such that 
2 * * -n+I a (X -Y ) $ Cn for aU n ~ I • 

n n 

PROOF. Note first that 

(3. I) 
2 

a (X -Y) = 
n n 

(a(X )-a(Y )) 2 + 2(1-p) a(X )a(Y) n n n n n 

where p denotes the correlation coefficient of X and Y. Because of 
n n n 

assumption (i) and the fact that each of the terms on the right of (3.1) is 



non-negative we find that 

(3. 2) 
I n 

o (X ) - o (Y ) ::; A 2 n- 2. 
n n 

and also that 

(3. 3) 
-n 

2(1-p ) o(X ) o(Y ) :,; An 
n n n 

Using now assumption (ii) and (3.2) and noting that n > I we see that 
2 -] 

o (Y) 2 en for some e > 0 depending only on A, band n. Combining this 
n 

-n+l 
and assumption (ii) with (3.3) we find that 2(1-p):,; Cn for some 

n 
2 * * C > 0 depending only on A, b and n. Because o (X -Y ) = 2 ( I - P ) we have n n n 

proved the lemma. 0 

Secondly we present an obvious result concerning the finiteness of 

certain integrals. 

7 

LI::MMA 3.2. a. Let fl be a number > I and let., for some o > 0., s9,+ 0< 00 Then 

there exists A> 0., depending only on fl and o., such that 

(3. 4) 

I I 

f (s(l-s))!l dF- 1(s) :,; 

0 

Ho 
A S £+a < 00 

b. If£= I and o = 0 then (3.4) holds with A= I. 

PROOF. Applying integration by parts we obtain 

(3. 5) 

I I 

f (s(l-s))Q, dF- 1(s) 

0 

I 

= (s(l-s))£ F- 1(s) 

0 

-] 
- Q, 

I I 

f -1 . £ - I 
F (s)(s(l-s)) (1-2s) ds. 

0 

Both under the assumptions a. and b. the first term on the right of (3.5) is 
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easily seen to be zero. To conclude the proof of part a. we apply Holder's 

ineaualitv to the second term on the right of (3.5): 

I £ - I 
I .!.~1 

f F- 1(s)(s(l-s))£ ds 

I 

$ f 
I 

-I --1 
F (s) J (s(l-s)l ds $ 

0 

Ho 
$ 13 Ho . ( 

0 

1 -1 + o f (s(l-s)) £(£+a-I) ds) 

0 

Hc5-l 
£+a < 00 

The proof of part b. is immediate from (3.5) and the remark made after it. 

This completes the proof the lemma. 0 

The third lemma of this section will enable us to estimate certain 

moments. 

LEMMA 3.3. Let£ be a positive integer and Let, for some 8 > O, S£+o < 00 • 

Then, for any number p far which p £ ~ 2, there exists A > 0 depending only 

on p, £ and 8, such that 

1 

(3 .6) E(f I 
0 

I p -1 £ r (s)-s d F (s)) 
n 

£ 
Ho 

$ A SHo n 

p£ 

2 

PROOF. By Fubini's theorem we have 

I 

E(f I 
0 

I 

= f 
0 0 

An application of H~lder's inequality shows that 

1 

I r (s.) - s. I P < ri (E I '.' (s.) - s. I p£/ 
n i i i=I n i i 



for all O < s 1 , ••• ,sf< I. Hence we know tha~ 

I 

E(f I 
0 

I 

rn(s)-s I Pd F- 1(s))f::; <f 

0 

-I n 
Since r (s) = n l (x(O J(U.)-s) for all O < s < I and n ~ I the 

n i=l ,s i 
MARCINKIEVITZ, ZYGMUND, CHUNG inequality (see CHUNG(l951)) yields for 

pf~ 2, n ~ I and O < s < I 

_pf 

E I r ( s )-s I Pf ::; B n 2 s (1-s) 
n 

where B > 0 depends only on p and f. It follows that 

I _ pf I I 

E(f I rn(s)-s jPd F- 1(s){::; B n 2 <f (s(l-s))f d F- 1(s)l. 

0 0 

An application of lennna 3.2 completes our proof. D 

9 

To formulate the following lennna we introduce functions H1, H2 , H3 and 

H by 
4 

(3. 7) 

(3. 8) 

(3. 9) 

(3.10) 

H1 (u) 

H2(u) 

H3 (u) 

H4 (u) 

= 

= 

= 

= 

I 

f 
0 

I 

f 
0 

I 

f 
0 

I 

f 
J 
0 

I J 1 (s) I• I X (o,s J(u)-s I d F-I (s) 

I 1; Cs) I ~ I -I 
\o,s/u)-s I d F (s) 

I J"Cs) I · I -I 
\o.s/u)-s Id F. (s) I 

I 1 2 cs) I • x(O,s](u)-s \ d 
-I 

F (s) 
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for O < u < l. Note that the integrand of Hi majorize the integrand of hi and 

hence that Hi majorize hi(l:5i:54). Remark also that h2 and h3 are symmetric in 

their respectively arguments. 

LEMMA 3.4. a. Take i ~land suppose that there exist positive numbers c1 , 

Ci, Ci', c 2 and Di such that Si::; Di and assumption (2.10) is satisfied. 

Then 

(3. l l) 
i E H1(U 1) :5 (4C 1) i Di 

(3. I 2) i 
E H2 (U l) :5 (4c;) i Di 

(3.13) i 
E H3 (U l) :5 (4c;\ i Di 

(3.14) i 
E H4 (U l) :5 (4C2)i Di. 

b. Let J 1 be twice differentiable with bounded second derivative Ji' on (O,l), 

let J 2 be bounded on (O,l) and let s1 < 00 • Then E h1(Ui) = E h4 (ui) = 0 

for any i, and with probability one E(h2(u.,u.) I u.) = 0 for i I j and 
l. J J 

E(h3 (ui,uj,uk) I uj,Uk) = o if i I j and i / k. 

PROOF. a. We first prove (3.11). It is innnediate from (3.7) that 

f -1 
• ( s d F (s) 

(O,U 1) 

Applying the c -inequality we find 
r 

f -1 
+ (1-s)d F (s)). 

[U l, l) 

E H~(U 1)::; 2i-l • IIJ111i • [E( f sd F- 1(s)f + 

(O,U 1) 

+ E( f (1-s) d F- 1(s))i]. 

[U l , I J 

Using integration by parts, the finiteness of Si, and applying the er

inequality once more we see that 
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E( f ds I£ s; 

I 

s; 2£-I.(E(jF- 1(ul) 1.2, + cf IF- 1(s) jds).Q,) s; 2£-)(Elxl 1.2, + (Elx1 ll) s; 

0 

Similarly we can show that 

i i i I Ii i · so that E H1 (U 1) s; 4 IIJ111 E x 1 s; (4C 1) D£ which proves (3.11). The 

other statements of part a. can be proved in essentially the same way. 

b. We shall prove that with probability one E(h3(ui,Uj,Uk) luj,Uk) = 0 for 

i 1 j and i 1 k. Note first that using Fubini's theorem for non-negative 

integrands and applying (3.13) with£= I we see that with probability one 

I 

E(f IJj'(s) I lx(O,s] (Ui)-s I lx(O,s] (Uj)-s I jx(O,s] (Uk)-s I 

0 

for all values of Uj and Uk. Therefore the conditional expectation 

E(h(U.,U.,Uk)jU.,Uk) is well-defined andFubini's theorem can be applied 
j l. J J • 

to see that E(h3 (ui,Uj,Uk)juj,Uk) = 0 with probability one. The other two 

statements of part bare easier and can be proved in essentially the same 

way. D 

REMARK. Lennna 3.4 will be applied frequently in the following sections. 

In particular the proof of lemma 4.6 depends heaviiy on it. In this remark 

we give two typical examples of the way we shall use lemma 3.4. 
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(i) Suppose that s2 < oo and Ji is bounded on (0,1). Then E h 1(u1)h2(u1,u2) = 
2 = E h 1 (U 1) h2(u 1 ,u2) = O. 

(ii) Suppose there exist numbe1°s C 1, C;, C ;' and D 4 such that II J 111 :,; C1 , 

IIJ i II :,; Ci , II J ;' II :,; Ci' and B 4 :,; D 4 • Then there exists A > 0 depending 

only on c1, c;, c;' and D4 such that E(h 1(u 1)+h 1(u2)) 4 jh2(u 1,u2) I :,; A. 

2 
PROOF. (i) We first prove that E h 1 (U 1) h2(u 1,u2) = O. It follows directly 

from (2.1), (2.2), (3.11) and (3.12) and the independence of u1 and u2 that 

jE h;(u 1) h2(u 1,u2)j :,; E H~(U 1) E H2(u2) < 00 Hence we can write 

because of lemma 3.4.b. This proves the assertion. The other statement can 

be proved in essentially the same way. 

(ii) We remark that E(h 1(u1)+h 1(u2)) 4 jh2(u 1,u2) I 
+ 8 E hi(U2) jh2(UI ,U2)i = 16 E hi(Ul) lh2(UI ,U2) j :,; 

= 16 E Hi(U 1) E H2 (u2) :::; 47CiCiD1D4 < 00 , 

using lemma 3.4 and the independence of u1 and u2 • This completes the 

proof. D 

The fifth and last lemma of this section gives conditions which guarantee 
2 2 that a = a (J 1,F) (c.f.(2.7)) is bounded away from zero. 

LEMMA 3.5. Let J 1 be bounded on (O,I) and let s1 < 00 • Suppose that positive 

numbers M1 and c and numbers O :,; t 1 < t 2 :,; I exist such that on (F-I (t 1), 
-I -1 -I 

F (t 2)) F possesses a density f, such that on (F (t 1),F (t2)) f ~ M1 and 

on (t 1,t 2) J 1 ~ c. Then there exists a~> 0 depending only on M1, c, t 1 and 

t 2 such that 

(3.15) 
2 2 

a (J 1 ,F) ~ o0 . 



PROOF. Note first that because J 1 is bounded on (0,1) and B1 < 00 the 

function h 1 is well-defined and finite for every O < u < 1. Secondly we 

13 

2 fl 2 ft2 2 remark that a (J 1 ,F) = h 1 (u) du~ h 1(u) du. It follows directly from 
0 ti -I 

(2.1) and the assumptions of the lemma that h 1(u2) - h 1(u 1) ~ c M1 (u2-u1) 

for ti < ul < u2 < t2. The geometry of the situation ensures now that 

I:: 2 du is minimized for h 1(u) 
ti t2 C 

h 1 (u) = (u-T -T) M. Hence 
I 

2 
a (JI ,F) ~ 

This completes the proof of the lemma. D 

4. PROOF OF THEOREM 2.1. 

The purpose of this section is to provide a proof of theorem 2.1. Since 

our proofs will depend on characteristic function (c.f.) arguments let us 
* * ~ denote by p (t) the c.f. of T and by p (t) the Fourier-Stieltjes transform 
n n n 

00 

pn(t) = J exp(itx) d Kn(x) of Kn(see (2.4.)). 

-oo 

We shall show that for some sufficiently smalls> 0 

( 4. I) I 

and that 

( 4. 2) f 
s I I 3/2 n < t ::::n 

and 
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( 4. 3) f 
-1 = o (n · ) , 

ltl>log(n+l) 

hold as n ➔ 00 • An application of Esseen's smoothing lemma (ESSEEN (1945)) 

will then complete our proof. 

* We first prove (4.1). We shall essentially have to expand p (t) for 
n 

these "small" values of jtj. To start with we define for O < u < 1 

( 4. 4) 

where J. 
i 

I 

ij;.(u) 
i = f J.(s) ds - (1-u) J. 

i i 

I 

= f 
0 

u 

J.(s) ds for i = 1,2. Then it is easy to check (see SHORACK 
i 

(1972) for a similar approach) that with probability one 

(4.5) 

I 

Tn = f (iJ; 1(rn(s) + n- 1iµ 2 (rn(s)) d F- 1(s) + 

0 

n 

-I 
n 

i 
n 

i 
n 

-1 J JI (s) f J2(s) 
-] 

+ n I (c. -n ds - ds) F (U. ) • in i=I in 
i-1 i-1 
n n 

Let J 1 be twice differentiable with first and second derivative Jj and J;' 

on (O,I). Let Ji' and J 2 be bounded on (0,1) and let s1 = Ejx 1 I < 00 • In

troduce for each n ~ 1 the r .v. S by (a prime denoting differentiation) 
n 

( 4. 6) 

I 

Sn= f {iJ; 1(s) + n- 1iJ; 2 (s) + (rn(s)-s) (iJ;j(s)+n- 1iµ;(s)) + 

0 
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2 3 
(r (s)-s) (r (s)-s) 

(s) } 
-I n lji" (s) + 

n ljJ Ill + d F (s) + 2 I 6 I 

+ (JI +n - I J 2 ) -I 
n 

-I 'i' n I. F (U.). 
i=I 

]_ 

Note that \ijJ.(u) I :s; 4 IIJ.11 u(l-u) for O < u < I, i = I, 2 and that lji' = 
i i I 

= - JI + J 1 , lji2. = - J 2 + J 2 , lji;' = - Jj and ljij" = -Jj' on (0, 1) so that it 1.s 
easily verified that S is a well-defined r.v. Later on in this section it 

n 
will become clear that T* - s* is, under appropriate conditions, of negligible 

n n 
order for our purposes. 

It is convenient to introduce some more notation. Define r.v.'s I mn 
form= 1,2,3,4 and n 2 I by 

1 

(4. 7) I -1 -1 n 

Iln JI (s) (r (s)-s) d F (s) = n I h I (U i) n 
i=1 

0 

(4. 8) 

1 2 

-I er (s)-s) 
d F-l (s) -I -2 n n 

I2n Ji (s) 
n I I h2 (U. ,U.) = = 2 n 2 i=1 j=1 ]_ J 

0 

(4. 9) 

1 3 

- f 
(r (s)-s) 

dF- 1(s) -1 -3 n n n 
I3n J "( s) n -I I I = = 6 n 1 6 i=I j=I k=1 0 

h3 (ui,Uj,Uk) 

1 

(4.10) -1 
f 

-1 -2 
n 

I4n = - n J2(s) (r (s)-s) d F (s) = n I h4(Ui) n i=1 
0 

where the functions h 1,h2 ,h3 and h4 are given by (2.1) - (2.3) and (2.16). 

It is easily checked that 

(4.11) s = s 
n n 

- E s 
n 

4 

I 
m=1 

~ 

I 
mn 

4 
= I 

rn= 1 
(I -EI). 

mn rnn 
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Furthermore define r.v.'s J form= 1,2,3,4 and n;::,: I by 
mn 

( 4. I 2) 

so that 

(4.13) 

J =I /0(S)=(I -EI )/0(S), mn mn n mn mn n 

* s = 
n 

4 

I 
m=l 

J mn 

The proof of (4.1) will now be split up in a number of lemma's. Throughout 

the remaining part of this paper we shall frequently use order symbols in 

our proofs to indicate the order of certain remainder terms. We remark that 

these order symbols will always be uniform for fixed values of the constants 

appearing in the statement we are proving. 

LEMMA 4. 1 • Suppose that positive numbers C 1 , Ci, C j' , and D2 exist such that 

s2 $ n2 and assumption (2.10) is satisfied. Then there exists A> 0 

depending on n, J 1, J 2 and F only through c1, c1, Cj', c2 and D2 such that 

5 

(4.14) I 2 -] 2 -2 2 -2 
0 (S) - n 0 - 2n 0 bJ $An 

n 

where 02 = 02(J 1,F) is as in (2.7) and b = b(J 1,J2 ,F) as in (2.18). In 

addition 02 $ A1 and 02 Jbj $ A2 for some positive constants A1 and A2 de

pending only on c1, D2 and c1, c;, Cj', c2 and D2 respectively. 

4 
PROOF. In view of (4. 11) 02(s) = 02 ( I _1 I ). It follows directly from 

2 n _1 2 m- mn 
(2.1) and (4.7) that 0 (I 1n) = n 0 . Also note that it is immediate from 

(4.7), (4.8) and an application of lerrnna 3.4. that 

-3 = n 

I 

n n n 
l l l E hl(Ui) h2(Uj,Uk) 

i=I j=I k=l 

= n-2 f h 1 (u) h2(u,u) du. 

0 



2 Next we consider a (I2n). Using lennna 3.2 and lennna 3.4 once more we 

directly find that 

E 12 
Zn 

Because we know also that (E r2n) 2 

that 

I I 

n ➔ oo 

-2 ff 2 -3 n h 2(u,v) dudv + O(n ), as n ➔ 00 

00 

Similarly we can prove that 

I 

17 

-2 = n J f 
-3 h 1(u) h3 (u,v,v) dudv + O(n ), as n ➔ oo 

0 0 

and also that 

I 

2 cov(I 1n,I4n) = Zn-z J h 1(u) h4 (u) du. 

0 

Finally we remark that it is easy to prove by using similar arguments as 

above that 

and also that 

5 
2 

= O(n ), as n ➔ oo 
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2 
Combining all these results we have proved (4.14). Note that a ~ A1 follows 

from lemma 3.4 (relation (3.11) witµ£= 2). The assertion o2 jbj ~ A2 is a 

simple consequence of lemma 3.4 (with£= 2) and the formula for b given in 

(2.18). □ 

LEMMA 4. 2. Suppose that positive numbers C 1 , C; , C ;', C 2 , D 2 and a~ ex1~s t 

such that o 2 (J 1,F) ~ a~ and the asswrrptions of lemma 4.1 are satisfied. 

Then there exists A> 0 depending on n, J 1 , J 2 and F only through c1 , c;, 
c;', c2 , n2 and ai such that for any fixed real number m 

m m 
1 

(4.15) jo-m(S) 2 a-ml ~ An 2 - n n 

where 2 2 is (2.7). a = a (Jl,F) as 1,n 

PROOF. The statement is immediately from lermna 4.1. D 

* * The next lermna will enable us to show that T - S is of negligible 
* n * n 

order for our purposes. Let T denote the c.f. of S. 
n n 

MMA 4 3 S th t . . b I " C "' 2 LE .. uppose a pos1,t1,ve num ers B, c1, c1, c1, 2 , u, D~+cS' a0 , 2 
K1, K2 , a 1, a 2 and a number y > 1 exist such that s2+c5 ~ D2+c5' a (J 1,F) ~ a0 
and the assumptions (2.9), (2.10) and (2.11) are satisfied. Then there 

exists A > O depending on n, the cin and F only through B, c1, c;, c;', c2 , 
2 

6, D2+c5' a0 , K1, K2 , a 1, and a 2 such that for every s > 0 and all n ~ I 

(4. 16) f + s 

PROOF. It follows from lemma X.V. 4.1. of FELLER (1966) that 

(4.17) * * * * IP (t) - T (t) I ~ !ti EjT - snl n n n 

for all t and n ~I. Using (4.5), (4.6), assumption (2.11) and applying 

Taylor's theorem we see directly that 



(4.18) 

I 

o2(Tn-Sn) $ 3 K~ E(f 
0 

3 K2 -2 + n 2 

I 

E(f 
0 

19 

l+a.2 2 
Ir (s)-sl d F- 1(s)) + n 

1. i 
n n 

2 -1 I (c. -n f J 1(s)ds -I J2(s) ds) 
-I 

+ 3 o (n F (U. ) ) . 
I.TI "-J I.TI 

1.- i-1 i-1 
n n 

Application of lemma 3.3 with£= 2 and p = 3 + a 1 and p =I+ a 2 respec

tively implies that the sum of the first two terms on the right of (4.18) 

l.S 

(4.19) 
-3-min(a 1 ,a2) 

O(n ), as n ➔ 00 • 

To treat the third term on the right of (4.18) we need the following simple 

n 
inequality: 0 2 ( l 

i=I 

2 n 
a. X. ) $ o ( l b. X. ), provided a.a. $ b.b. for all 

I. in i=l I. in I. J 1. J 

I $ i, j $ n. (The proof of this inequality is immediate from the well

known fact that the covariance of any two order statistics is always non

negative). Using this and assumption (2.9) we see directly that 

i i 
n n 

2 -1 I (c. -n I Jl(s) ds -I J2(s) ds) F-I (U. ) ) o (n $ 

"-J I.TI I.TI 
1.- i-1 i-1 

n n 

Combining this result with (4.19) it is easy to conclude that 

(4.20) n ➔ co 



20 

To complete our proof we remark that it follows from an application of the 

lemma's 3.1 and 4.2 (with m= -2) th.at (4.20) implies that 

-2-min(a 1 ', a.2 ) 
= O(n ) + O(n-2Y), as n ➔ oo, 

This combined with (4.17) proves (4.16). 0 

Next define for real t and n ~ I 

(4.21) 
itJ ln (. ) 2 

= E . (I . (J +J J ) it J2) e +it 2n 3n+ 4n + 2 2n · 

In the following lemma we shall approximate T: by Tin for all ltl 
£ 

~ n . 

4 4 S th t 't. wrib I II s: d 2 LEMMA . . uppose a pos1,, 1--ve n ers c1, c1, c1, c2 , u, n3+o' _an ao-

exist such that s3+o ~ n3+o' o2(J 1,F) ~ a~ and assumption (2.10) is 

satisfied. Then there exists A> 0 depending on n, J 1, J 2 and F only through 
2 c1, Ci, Ci', c2, o, n3+o and a0 such that for every £ > o and all n ~ I 

(4.22) 

PROOF. Application of lemma X.V.4.1. of FELLER (1966) yields 

itJ1n it(J2 +J3 +J4) 
= IEe (e n n n -1-it(J +J +J ) -

2n 3n 4n 

for all t and n ~ I. It is not difficult to verify from the proof of 

lemma 4.1 and from lemma 4.2 that the coefficient of t 2 in the above in-



3 
2 equality 1.s O(n ) , as n ➔ 00 • An application of the c -inequality, lemma, 

r 
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3.3 with£= 3 and p = 2,3 and 4 respectively, and of lemma 4.2 shows that 
3 

J 1 3 O(n 2), as n ➔ 00 • Combining these results we 
4n 

easily check that (4.22) is proved. D 

We continue with the analysis of Tl (t). For convenience we write a 2 to 
2 n n 

indicate na (Sn) and we denote the c.f. of h 1(u 1) by p. To start with we 

remark that it follows from (4.21) that 

(4.23) T) n ( t) = pn(_1t_) + 
n 2a n 

it 
(hl(Ul)+hl(U2)) -,-

n 2a 
it Pn-2(-t-) n(n-1) E e n 

•h2(Ul ,U2) + + 
3 

n 2a 2 n 
2n a n 

it 
-_-, - h 1 (U 1 ) 

it n-1 ( t ) 
n 2a 

E e n 
h2 (U 1 ,u 1) + + P -,-n 3 n 2a 2 2n a 

n 
n 

it 
(hl(Ul)+hl(U2)+hl(U3)) -,-

n 2a 
it n-3 t E n + P (-1 -)n(n-l)(n-2) e 
5 

n 2a 2 
6n an 

n 

•h/U I ,u2 , u3) + 

it 
(hi (U I )+hi (U2)) -!-

n 2 a it n-2 t E e 
n 

h3(UI ,UI ,U2) + P (-1 -)3n(n-l) 
5 

n 2a 2 n 6n a 
n 

it 
-_-,-hl(UI) 

it n- I ( t ) 
n 2 a 

E n 
h3Cu1 ,ul ,ul) + + 

5 P -,-n e 
n 2a 2 n 6n a n 

+ 
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it n-1 ( t ) +-3-p -_-1-n 
- n 2 a 2 n 
na 

n 

+ (i;): pn-4 (+)n(n-l)(n-2)(n-3)· 
Sn a n 2 a 

· (Ee 

n n 

it 
-l-
n2a 

n 

( . ) 2 3 1.t n- t 
+ 3 2 p (-1-)4n(n-l)(n-2) • 

Sn a n 2 a 
n n 

~t (hi (Ul)+hl (U2)+hl (U3)) 
n 2 a 

. Ee n h2(Ul,U2)h2(Ul,U3) + 

(it) 2 3 + -- pn- (-t-)2n(n-l)(n-2) • 
Sn3a 2 n 2a 

n n 

(it/ n-2 t 
+ -- p (-1 -)4n(n-l) • 

Sn3a 2 n 2a 
n n 



(it) 2 n-2 t + ~~ p · (-1 -)2n(n-1) 
Sn3o 2 n 2o 

n n 

it 
~1 (Ul) 

(it/ 
n 2 o 

n-2 t n 
P (-1 -)n(n-l)(Ee + ~---'--

8 3 2 n o 
n 

n 2o 
n 

+ 

+ 

In the next lennna we derive an asymptotic expansion for the factors 

pn-m(-1t-) appearing in the terms on the right of (4.23). 
n 2o 

n 

ha .. b 'II d2. 

23 

LEMMA 4.5. Suppose t t pos&t&ve num ers c1, c1, c1, c2 , n4 an o0 ex&st 

such that o2(J 1,F) ~ o~ and the assumptions (2.10) and (2.13) are satisfied. 

Then there exist A> 0 and a> 0 depending on n, J 1 , J 2 and F only through 

C 1, C 1, Ci'• c2 , D 4 and o~, a sequence of positive numbers o 1 , o 2 , ••• with 

o depending only on n and with limo = O, and a fixed polynomial Pint~ 
n n-+00 n t 

such that for any fixed m ~ 0 and all ltl<:: an 2 and n ~ I 

(4.24) IPn-rn(_1t-) 
n 2o 

n 

I 

I 

_ s/ 2 (it) 3 f hf (u)du 

_ e 2 (!-(it) (~+b) +---0.-----+ 
n 2 6n½o3 

I 

(it)4cJ 
4 4 h 1 (u)du-3o ) (it) 6 (f hf(u)du) 3 

0 0 ) I<:: + 
4 + 6 24no 72no 

t2 

<:: A 0 
-I It! P(t) e 

4 n n 

2 
(2. 7) and b b (JI , J 2 , F) as in (2.18). o (JI ,F) &S as &n = 
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n-m -1 
PROOF. Since (o(n-m)) 2 I h 1(U.) is a properly standardized sum of 

i= I 1. . 
independent identically distributed r.v. 's with expectation zero, variance 

one, and finite fourth moment, it follows directly from the classical theory 

of Edgeworth expansions for such sums ·(see e.g. GNEDENKO-KOLMOGOROV (1954), 

§41, theorem 2.1, inequality (b)) that there exist a> 0 and a sequence of 

positive numbers o1, o2 , ... satisfying the assumptions of the len,ma such 
! 

that for all ltl ~ an 2 and n? I 

I 

( 4. 25) 

(it) 3 I 3 
t2 h 1 (u)du 

I n-rn ( t \ -T( 
+ 

0 
+ 

p 'cn-rn)~o) 
e \ 1 ! 3 

6n 2 o 

1 1 

(it) 4 (J h7(u)du-3a4) (it) 6 (J h~(u)du) 2 

0 0 \ 
+ + 

72na 6 ) 24no 4 

t2 
-I 

4 ) ' = O(o n ltl P(t) e as n ➔ co 
n • 

where P 1.s a fixed polynomial int. We perform now a change of variables 
- t 2 

n 
I I 

t = t n 2o /(n-m) 2o). It follows after expanding e 
n n 

-2-
around t and using 

the result of lemma 4.1 that we obtain (4.24). [j 

The expectations appearing on the right of (4.23) are expanded 1.n the 

following lemma. 

MMA 4 6 S h . . b I II d 2 . t LE .. uppose tat posbtbve num ers c1, c1, c1, c2 , D4 an a0 ex~s 

such that a 2(J 1,F) ? a; and the assumptions (2.10) and (2.13) are satisfied. 

Then there exists A> 0 depending on n, J 1, J 2 , and F only through c1, Ci, 

Ci'• c2 , D4 and a; such that for all t and n ? 1 



(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

2 3 0 0 
n o 

1 I I 

I 

it f 
- n½o 

0 

(it) 3 

3 
2 3 n a 

f If h 1(u)h 1(v)h 1(w)h3(u,v,w)dudvdwl 

0 0 0 

I I 3 

25 

3 

-I 2 21 I s A(n t +n 1t ). 

5 
-2 4 -- 3 

s A(n t +n 2 1tl ). 

-nit f f I -I 2 21 I h 1(u)h3(u,v,v)dudv s A(n t +n t ). 

0 0 

I 3 

it I 
- n!o 

0 

-I 2 21 I h 1(u)h4 (u)dul s A(n t +n t ). 
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( 4. 32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

5 
-2 15 -3 4 

$ A(n It +n t ). 

3 
-2 3 -2 2 

$ A(n ltl +n t ). 

3 

h2(Ul,Ul)h2(U2,U3)1 $ An 2 ltl3. 

_1 

$ An i It 1. 

:s: A. 
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PROOF. Because the statements (4.26) - (4.38). are all proved in essentially 

the same manner we shall only prove, by way of an example, (4.26). Expand-

ing exp{ ~t (h 1(u 1)+h 1(u2))\} around t = O and applying part (i) of the remark 
'h 2 0 n 

made after lennna 3.4 we find that for all t and n ~ 

(4.39) 

(it) 3 

3 
23 

n o 
n 

1 

(it) 2 

2 
non 

ff h7(u)h 1(v)h2(u,v)dudvj ~ 
0 0 

1 

f f 
0 0 

Application of part (ii) of 

term on the right of (4.39) 

the remark made 
-2 -4 4 is O(n o t ), 

lennna 4.2 implies 

in (4.39) we have 

n -1 -1 -1 
that o = o + O(n ), 

n 

after lennna 3.4 shows that the 

as n ➔ 00 • Next we remark that 

as n ➔ 00 • Inserting this result 

proved (4.26). D 

We are now in a position 
et. I et.2 

0 < E < min(-,-, ,-2 ,y-1) to see 
-1 L 

O (n ) , as n ➔ 00 • Secondly we 

to prove (4.1). We first 

that the integral on the 

use lennna 4.4 with O < E 

apply lennna 4.3 with 

left of (4.16) is 

< ¼ to find that "the 
-I integral on the left of (4.22) is also o(n ), as n ➔ oo, To proceed let us 

note that we can write down p (t) explicitly as 
n 

(4.40) p (t) 
n 

2 t .3 3 426 -- l.t K K4t -K 3t 
= e 2 (I- 3 + 72 n ) . 

6n 2 

Next we apply (4.40) and the results of the lemma's 4.5 and 4.6 to check 

that for all n ~ 1 
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( 
' 
J 

I l 
it I :O:an 2 

A o 
n 

-] 
n 

with A, a en the o as in lermna 4.5. Hence we can conclude that (4.1) holds n 
al a2 I 

for 0 < E < min(2 ,- 2 , y-1 ,b) under the assumptions (2. 9), (2. IO), (2. I I), 

(2.13) and the assumptions of lemma 3.5. 

Next we consider (4.2) and (4.3). Finding sufficient conditions for 

(4.2) is a problem of an entirely different nature, which was solved by 

VA.J.~ ZWET (1977). In his theorem 4.1 he obtains a bound for the character

istic function for a linear combination of order statistics. This result 

of VAN ZWET (1977) provides the argument at exactly the same place in our 

proof where Cramer's condition (C) (see CRAMER (1962)) is used in the 

classical proof for sums of independent identically distributed r.v.'s. 

To prove (4.2) we remark first that application of theorem 4.1 of 

VAN ZWET (1977) shows that his bound applies to our situation, provided 

positive numbers c1, c2 , m, M1, M2 , B, y, c, t 1 and t 2 exist such that 

IIJ 111 :": c1, IIJ2II :": c2 and the assumptions (2.9), (2.12) and (2.14) are satis

fied. It is also clear from VAN ZWET (1977) that the only missing ingredient 

to complete the proof of (4.2) is the requirement that there exist positive 
l 

numbers e and E such that e :o: n 2 o(T) :o: E for all n ~ I. To see this we 
n 

first use the lemma's 3.5 and 4.1 to find that 
l 

n 2 o(S) is bounded away from 
n 

zero and infinity and then apply (4.20) (c.f. also (5.10)). Hence (4.2) is 

shown to hold if we suppose that, for some o > 0, s2+o :o: n2+o < 00 and that 

the assumptions (2.9), (2.10), (2.11), (2.12) and (2.14) are all satisfied. 

To prove (4.3) we simply use (4.40) and note that, under the assump

tions (2.10) and (2.13) and the assumptions of lemma 3.5 there exist 

positive constants A3 and A4 , depending only on c1, Cj, Cj', D4 , M1, c, t 1 , 

and t 2 , such that IK 3 j:o: A3 and jK4 j :o: A4 . Since the assumptions of theorem 

2.1 imply those of lemma 3.5 this completes the proof of theorem 2.1. 

To conclude this section it may be useful to mention that if we 
4+8 

suppose that, for some o > 0, s4+o = Ejx 1 I < 00 and that the assump-

tions of theorem 2.1 are all satisfied the expansion K established in 
n 
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theorem 2.1 is in fact an Edgeworth expansion; i.e. K3n-~ and K4n-I are the 

first order terms in the asymptotic. expansions for the third and fourth 

cumulant of T*, whereas the higher order terms in these expansions can be 
n -I 

proved to be of order o(n ). 

5. PROOF OF THEOREM 2.2. 

In this section we present a proof of theorem 2.2. To start with we 

remark that for each n ~ I and real x 

(5. I) G (x) 
n 

* - 1 -I -1 = F (xon 2 o (T) + (µ-E(T ))o (T )). n n n n 

Using this identity and applying theorem 2.1 we find that for all n ~ 

(5. 2) suplG (x) - K (xon-i o- 1(T) + (µ-E(T ))o- 1(T )) 
x n n n n n 

with A and the o as in theorem 2.1, holds under the assumptions of theorem 
n -1 -1 I 

2.1. To proceed we shall need expansions for on 2 o (T) and (µ-E(T ))o- (T ). 
n n n 

In the following lemma we give these expansions. 

LEMMA 5.1. Suppose that positive numbers B, c1 , c1, Cj', c2 , o, n2+o' K1 , 

a 1, a 2 , o~ and a number y > I exist such that e2+o ~ u2+o and o 2(J 1,F) ~ 
and the assumptions (2.9), (2.10) and (2.11) are satisfied. Then there 

exists A > O depending on ~• the cin and F only through B, c1 , Cj, Cj', c2 • 

o, n2+o' K1, K2, a 1, a 2 , o0 and y such that for all n ~ 

(5.3) 

and 

(5. 4) 

al a2 
0 -1 (T ) -11 -l-min(·l2 - - y-1) -l+bn ~An '2'2' 

n 

with a= a(J 1,J2 ,F) and b = b(J 1 ,J2,F) as in (2.17) and (2.18). 
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PROOF. We first prove (5.4). Application of lennna 4.1, (4.20) and the 

Cauchy-Schwarz inequality yields 

(5.5) 
2 CJ 

-2--= 
nCJ (T) 

n 

2 CJ 
2 nCJ ( S ) 

n 

Lennna 4.1 implies that 

(5.6) 
2 3 

--;-- = 1 - 2* + O(n 2 ), 
nCJ (S ) 

n 

Combining (5.5) and (5.6) we find 

(5. 7) 
2 CJ 

2 
nCJ (T) n 

as n ➔ 00 

as n ➔ 00 • 

as n ➔ 00 

Inequality (5.4) is an innnediate consequence of (5.7). To prove (5.3) we 

first use (4.20) again to see that 

(5. 8) ET =Es + O(EIT -s I)= n n n n E s 
n 

3 . °'1 °'2 
2 -mrn(2'2' y-1) 

+ O(n ), 

3 Using the definition of S (cf. (4.6)) and noting that E(r (s)-s) = 
n n 

= n - 2s ( 1-s) · ( l-2s) we can easily check that 

,- -1 O ( -2). c S = µ - a CJ n + n , as n ➔ 00 

n 

so that (5.8) implies that 

(5.9) µ - E T 
n 

= a CJ n 
-I 

3 

+ O(n 2 

Because (5.7) directly implies that 

, I °'J 0,2 _ 
min( 2 ,2 ,2 , Y I) 

) , as n ➔ 00 

as n ➔ 00 • 
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(5.10) as n ➔ ·00 , 

we have proved (5.3). D 

To complete the proof of theorem 2.2 we use (2.4), (2.19), (5.3), (5.4) 

and lerrrrna 3.5 and apply a simple Taylor expansion argument to find that 

(5. I I) (µ-E(T )) a- 1(T )) = L (x) + 
n n n 

a. 1 0'.2 
-I-min( 1 - - y-1) 

2 '2'2' + O(n ), as n ➔ 00 , 

uniformly in x. Combining this with (5.2) completes the proof of theorem 

2.2. 

6. EXTENSIONS AND APPLICATIONS 

In the theorems 2.1 and 2.2 we have established asymptotic expansions 

for the d.f. 's of linear combinations of order statistics with remainder 

o(n- 1). However, it is clear from the proofs given in this paper as well as 

from statement and proof of theorem 4.l of VAN ZWET (1977) that, in 

principle, asymptotic expansions for the d.f. 's of linear combinations of 

order statistics to any order can be obtained, of course at cost of 

stronger conditions, in essentially the same way. 

An extension in a different direction is concerned with the order of 

the remainder of the asymptotic expansions established in this paper. In 

thoerem 2.l and 2.2 we have been content with a remainder that is o(n- 1). 

However, no new difficulties will be encountered when showing that under 

somewhat stronger conditions the remainder of our expansions is of order 
3 
2 

n which is of course the natural order of the remainder term. We will 

state the result without further proof. 

Suppose that positive numbers B1, c 1 , c;, c;', C;", c2 , c2, D5 , K1 , K2 , 
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M, M, a , a , c, m and numbers y > 12 and O ~- t 1 < t 2 ~ I exist such that 
I 2 I 2 -

assumption (2.9) is fulfilled; J 1 is three-times differentiable with first, 

second and thirci derivative Ji , J ;• and Ji" on ( 0, I) and J 2 is di ff eren

tiab le on (O,I) with derivative J 2 on (0,1); 

~ c" IIJ"'II ~ c"' IIJ2 11 
I ' I I ' 

and 

IJ"' (s ) - J"' (s ) I 
I I 1 2 

for O < s 1 , s 2 < I; 

F possesses a finite absolute fifth moment s5 with 

and the assumptions (2.12) and (2.14) are satisfied. Then there exists 

A > O depending on n, the cin and F only through B, c1, c;, c;', c;", c2 , 

C2, D5 , K1, K2 , M1, M2, a 1, a 2 , c, m, t 1 and t 2 such that for all n? I 

and 

3 

sup Ip* (x) - K (x) / ~ An 2 
x n n 

3 

sup I G (x) - L (x) I :::; An 2 
x n n 

Throughout this paper we have considered T 
n 

-I = n 
n 

I 
i=l 

c. X. , i.e. a 
in in 

linear combination of the X .• More generally, one may also consider 
in 

-] 
n 

n 
l c. h(U. ) and under suitable conditions on h obtain parallel results. 

i=I in in 
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An important application of the asymptotic expansions established in 

this paper lies in the computation 0f asymptotic deficiencies in the sense 

of HODGES and LEHMANN (1970) for estimators and tests based on linear com

binations of order statistics. These computations will be given in a sep

arate paper. 
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