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Mean convergence of orthogonal series and Lagrange interpolation 

Richard Askey*) 

We will primarily be concerned with the convergence of Lagrange 

interpolation taken at the zeros of orthogonal polynomials. This is a 

very old problem, the first results being Stieltjes's results on 

mechanical quadrature. In the course of solving some of the problems 

that have been posed about LP convergence, we will be lead to consider 

a number of other problems. Some of these we can solve, but most of 

them are now only conjectures or even just problems. The problems and 

conjectures are probably the most interesting part of this paper and I 

hope that others will find them interesting and solve some of them. 

Let drn ( x) be a nonnegative measure on [-1 , 1] and let p ( x) be the 
n 

sequence of polynomials orthonormal with respect to da(x) and normal-

ized by p (1) > 0. Let xk be the zeros of p (x) ordered by 
n ,n n 

- 1 < x < ••• < x 1 < 1. For a continuous function f(x) on [-1, 1], 
n,n ,n f 

the Lagrange interpolation polynomial L (x) is defined to be the 
n 

unique polynomial of degree n - 1 which satisfies 

( 1 ) 
f 

L (xk ) = f(x.. ). n ,n K,n 

It was shown by Faber that Lf(x) does not necessarily converge uniformly 
n 
1 

to f(x). For do.(x) = (1-x2 )- 2dx, Grunwald and Marcinkiewicz have shown 

the existence of a continuous function f(x) for which Lf(x) is every-
n 

where divergent. See Szego [37, chapters XIV and xv] for references to 

these results, as well as to all other results that are mentioned with

out a specific reference. As we remarked above, Stieltjes proved a 

convergenc:e theorem for all continuous functions. He proved that 

( 2) 

*) 

r 1 f 
j [ L ( X) - f ( X )] da ( X) = 0, 
-1 n 

lim 
n-+oo 
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There are various theorems related to or generalizing (2). The most 

satisfying one is due to Erdos and Turan [15]. They prove 

(3) lim 
n-+oo 

[ L f ( X) - f ( X )] 2 da ( X) = 0 • 

Actually they prove more than this, since the points of interpolation 

are zeros of polynomials that are more general than orthogonal poly

nomials, but we will not be concerned with this generalization since 

we have nothing new to add to their results. 

There is ;another direction in which (2) and (3) can be extended. 

This is to find a value of p > 2 for which 

(4) 
• • J 

lim 
n-+oo r -1 

for all continuous functions. 

ILf(x) - f(x)IP da(x) = O. 
n 

We will show that it is not possible to find a p > 2 for which (4) 
holds for all measures. For certain specific measures, it is possible 

to find some p > 2. In particular, for da(x) = (1-x2 )-~dx Marcinkiewicz 

[26] and Erdos - Feldheim have shown that (4) holds for all p <~.For 
2 1 

da(x) = (1-x ) 2 dx, Feldheim has shown that (4) fails for some continuous 

function for p = 4. We will give the answer to (4) for 

da(x) = (1-x)a (1+x)S dx. In particular, for a= a=-~ we will show that 

(4) holds for p < 3 and that it fails for p > 3, 

Two closely related questions are the following. 

(5) lim C [Lf(x) - f(x)] dx = O, n n-+oo 

( 6) lim C ILf(x) - f(x)lpdx = o, n n-+oo 

where the interpolation is still done at the zeros of p (x). Since the 
n 

notation Lf(x) does not specify the points of interpolation, we shall n 
sometimes use the more complicated notation Lf(x;da), Lf(x;w(x)), where 

n n 
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w(x)dx = da(x), or Lf(x;a,S), where w(x) = (1-x)a (1+x) 6• For these 
n 

problems, Szego proved that (5) holds for do(x) = (1-x)a (1+x) 6dx, 

a, S > - 1, max(a,S) ~~,and Hollo proved that (6) holds for p = 1 if 

max(a,S) <~,and for p = 2 if max(a,S) < ~- A proof of Rollo's result; 

is given by Tu.ran in [39]. In [14], Erdos conjectured that (6) holds 

for all p < 00 if max(a,S) ~ - ~- We will show even more, that (4) 

holds for all p < 00 if max(a,S) < - ~-

The general question that suggests itself is to find the values of 

p for which 

(7) lim 
n-+oo 

jLf(x;da) - f(x)jP dS(x) = 0 
n 

for all continuous functions f(x). In this generality I have no idea 

what the answer might be. But the following special case is a reason

able conjecture. 

Conjecture 1. lim 
n-+oo 

jLf(x,a,S) - f(x)jP (1-x)Y (1+x) 0 dx = O" 
n 

for all continuous functions if the following conditions hold, 

(i) if max(a,S) > - ~, then (7) holds for 

(8) p < min(4(y+1)/(2a+1), 4(o+1)/(2S+1)), 

where a negative term on the right is ignored. If S < - ~, say, then 

we require o ~ a. 

(ii) if max(a,S) < - ~, then (7) holds for all continuous functions 

if y .::_ a , o > f3 and p < oo. 

While this general conjecture is beyond what we can do at present, 

we can show it for a number of interesting special cases. In particular, 

if y = a, o = S (i.e. the case (4)), we can show that the conjecture is 

true. In this case, as in many others, we can also show that these 

results are almost best possible. 
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We will give a proof of this result first, then give our method of 

forming counterexamples, and then go back and sketch a different proof. 

The first proof has the defect of using some extremely deep analysis 

for what should be a relatively easy theorem. We will give the second 

proof in the hopes that someone will be able to help improve it. Once 

this has been done the second proof will be much more elementary than 

the first, and will apply to a more general class of polynomials. As 

we will show, the problem in the case da(x) = dS(x) essentially reduces 

to the problem of mean convergence of orthogonal series, and the numbers 

given by (8) occur in Pollard's work on mean convergence. This result 

of Pollard can be slightly simplified, so we will sketch a slightly 

revised proof. 

We start with the case dS(x) = da(x). Then we must show that 

1 ..!_ 1 ..!_ 
II Lfll = cf ILf(x) lpda(x)]P .:_ A[f lf(x) lpda(x)]P, n = o, 1, ••• , 

n p -1 n -1 

This is sufficient since Lf(x) = f(x) for polynomials of degree n - 1, 
n f 

and these polynomials are dense. We compute ~ L II as follows. 
n P 

By the converse of Holder's inequality we have 

= sup 
II gll q 

J1 Lf(x) g(x) da(x), 
= 1 -1 n 

Since the Erdos - Turan theorem implies that (4) holds for p < 2, we 

may assume 2 < p <~,and so 1 < q < 2. If we expand g(x) in an ortho-

gonal series of p (x) we have 
n 

f 1 Lf(x) g(x) 
-1 n 

f 1 f 
da(x) = L (x) Sg 1 (x) da(x), 

n n--1 

since p (x) is orthogonal to all polynomials of lower degree. 
n 

n 
Sg(x) = L ak pk(x), 

n k=O 

ak = J1 
g(x) pk(x) da(x). 

-1 
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We use the fundamental property of Gaussian quadrature that 

f 1. r(x) d.a.(x) = I r(~ ) 11.k, r(x) a polynomial of degree 2n -1, 
-1 k=1 ,n 

where 11.k are the Christoffel numbers, which are nonnegative. This 

gives 

r Lf(x) 
n f 

s~_ 1 (x) da.(x) = I L (xk ) s~_,(~,n) Ak = 
-1 n k=1 n ,n 

n 
= I f(xk ) 8~-1 (~,n) 11.k. 

k=1 ,n 

Apply Holder's inequality to get 

n 
[I 
k=1 

Using Stieltjes's result (2) we have 

so it is sufficient to estimate 

n 
( 9) [ I 

k=1 

If we could show that 

( 10) 

then we would have reduced the problem to one involving mean conver

gence of ,orthogonal series, and we will say more about this problem 

later. However, I can only prove (10) in a few cases at present, the 

most interesting being da.(x) = (1-x2 )a.dx, a.> - ~- So we must use a 
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different estimate. The trouble with estimating (9) is that Sg 1(x. ) 
n- k,n 

not only depends on n in the argument, but the f1lllction itself depends 

on n. We can do away with this dependence on n be introducing the 

maximal partial sum, Mg(x), defined by 

Mg(x) = sup 
n = O, 1, 

I sg ( x) I , - 1 .::.. x .::.. 1 • 
n 

Clearly we have 

and then we may use Stieltjes's theorem again to get 

1 
n -

[ l I Mg ( X. )] q A I q ~ A II Mg II ,, • 
k= 1 k,n k ~ 

Thus it is sufficient to show that 

( 11 ) 

and this we can do for da(x) = (1-x)a (1+x)S dx, a, S > - 1, for some 

q < 2. B. Muckenhoupt suggested to me that Mg could be used in the 

above way. Inequalities like (11) are very deep and they have only 

recently been obtained for Fourier series by Hunt [21], using ideas of 

Carle son [ 12] • Gilbert [ 19] has shown how to combine their results 

with methods of Pollard for partial sums of orthogonal series to prove 

that 

. l ·f1 
I Mg ( x) I 4 ( 1-x) a ( 1 +x) S dx] q < A [J 

-1 

1 

lg(x) lq( 1-x)a( 1+x)sdx]q, 

for a, S.:. - ~, 4(a+1)/(2a+3) < q < 4(a+1)/(2a+1) and the same 

inequalities with a replaced bys. Actually Gilbert only gives the 

details for a= S, but the more general case follows from the same 

argument. For min(a,S) < - ~, these ideas can be combined with recent 

work of Muckenhoupt [30] to obtain the same type of theorem, with 

< q < <X> if max(a,S) < - ~, and 4(a+1 )/(2a+3) < q < 4(a+1 )/(2a+1) if 

<S<-~.::_a. 
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In summary we have proven the following theorem. 

Theorem 1. Let f(x) be a continuous function on [-1, 1] and let 

1 < p < ex,, a, S > - 1 be given. Then 

lim 

if 

(i) < p < min(4(a+1)/(2a+1), 4((3+1)/(2(3+1), a, S > - ~ 

(ii) 

(iii) 

< p < 4(a+1)/(2a+1), 

< p < 00 

1 1 
< S ~ - ~,a> - ~ 

< s, 

There are other possible extensions of Theorem 1. First, it can 

almost surely be extended to Riemann integrable functions. The tech

niques used by Erdos and Turan can probably be used. There is also a 

possible extension to LP functions. However LP functions are only 

defined almost everywhere so one must use a two dimensional type 

convergence, averaging over translated Lagrange polynomials. The 

appropriate translate is probably the generalized tranlate given in 

[1 o] , andl so these theorems can only be proven for a, S ,;,, - ~ at 

present. See Marcinkiewicz and Zygmund [27] for the 1P result for 

interpolation associated with cos n 8 and sin n 8. Finally Theorem 

· · 1 1 2 f H 11' T ' . can be combined with the and L results o o o - uran to obtain 

some other cases of Conjecture 1. You use the M. Riesz interpolation 

theorem generalized to include the case of a change of measure. How

ever this: method can not hope to give us all of Conjecture 1, for 

among other reasons we have no way of getting results for O < p < 1, 

which is unfortunately a fairly common case. For instance, y = - ~' 

a= 0 leads to the conjecture that (7) holds for p < ~-

Now we consider the problem of showing that the condition 

p < 4(a+1)/(2a+1) can not be improved upon. There is a very simple 

argument which can be given to show that Theorem 1 fails for some 

continuous function if a > 4(a+1 )/(2a+1). 
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In [37], Szego proved the existence of a continuous function f(x) 

for which 

(12) 
f cx+ 1 

L (1) ~An 2 , Cl> - ~, n 

where the interpolation is at the zeros of P(cx,S)(x) the orthogonal n , 
polynomials of (1-x)cx (1+x)s. It is easy to show that 

( 13) 

1 

cf I~\ (x)]P ( 1-x)(l( 1+x) sdx Ip, 
-1 

This can be done in an elementary way using the case p = 2 which is 

classical [37, Theorem 7. 71. 2] as in [38] or by an interpolation 

argument as in [7], now using the convolution structure for Jacobi 

polynomials which is given in [10]. The elementary method is easier, 

but the interpolation argument has the advantage that all of the 

machinary of interpolation theory can be used, and it may be possible 

to obtain inequalities like (13) for more general norms. In particular, 

the classical inequalities of Berstein and Markoff on derivatives can 

be thought of as inequalities on the same polynomials in a Lip 1 norm 

and an L~ norm. This can be used with (13), and it is likely these 

inequalities will also prove useful. In particular they should be 

obtained for Besov spaces with weights like (1-x)cx (1+x)s. 

(14) 

If we combine (13) and (12) we see that 

(2cx+2)/ 
An p 

1 

[f 1 f S cx+ 1 
JLn(x) Ip ( 1-x)cx( 1+x) dx]P .:_ A n 2 

-1 

where A stands for some arbitrary positive constant, independent off 

and n, which may vary even in the same formula. (14) shows that 

1 l (2cx+1)/ - (2cx+2)/ 
( 15) cf IL!(x) Ip ( 1-x)(l( 1+x)sdx]P ~ A n 2 P 

-1 

and the right hand.side goes to infinity if p > 4(cx+1)/(2cx+1). If we use 
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(13) for a= y,S = o, we have 

1 1 lf ILf(x,a,e)lp (1-x)Y(1+x) 0a.x]P > 
-1 n 

(2a+1)/2 - (2y+2)/ 
A n P 

and it is this inequality that suggested Conjecture 1. 

A more general problem than (13) is to find the correct order of 

growth of A(n) in 

( 16) 

1 tf l@n (x) I q v(x)dx] q < A(n) cf 
-1 -1 

1 

~ (x)]P w(x)a.xlP' n 

0 < p .:_ q .:_ oo. 

For 1 < p < q and v(x) = (1-x)Y (1+x) 0 , w(x) = (1-x) 0 (1+x) 6, I can 

give some results, but they are not needed here so I forgo them. Some 

special cases are given by Hille, Szego and Tamarkin [20]. 

If we let a become large in (15) we see that the Erdos - Turan L2 

result cannot be improved. For given any p > 2, we can find a large 

enough so that p > 4(a+1)/(2a+1), and then LP convergence fails for 

this value of panda. Prof. Turan asked the interesting question of 

finding a weight function for which LP convergence fails for all p > 2. 

I am sure that this happens for the weight function of some of the 

Pollaczek polynomials. This function w(x) vanishes so rapidly at x = 

that f 1 

-1 

I log w(x) I 
( 1-x2 ) ~ 

dx diverges. 

It should be possible to show that Theorem 1 fails for 

p = 4(a+1)/(2a+1), a~ e, a> - ~ using the function Szego used to 

prove (12). The technical details are complicated so I will not include 

it here. 

Now to return to the convergence theorem. The only problem that 

arose was in trying to prove that 
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If we could show that 

( 17) 

1 

[ I I sg ( x. ) I q >- 7 q ~ A rf 1 
k=1 n-1 K,n k_J _ 1 

we would only have to show that 

( 18) 11 s: 11 q .:. A 11 g 11 q. 

1 

js:_1(x)lq det(x)]q 

(17) is true for q'= 2 and q = 00 with A= 1 and is known for 1 < q .:_ 00 

2 _1 
if det(x) = ( 1-x ) 2dx. See [4o, vol. II] for a simple proof. This 

result was first proven by Marcinkiewicz [21). The proof Zygmund gives 

for this dCL can be extended to handle dCL(x) = (1-x2 )CL dx, CL> - ;. How

ever this proof uses the positivity of the Cesaro means of some order, 

and it is very unlikely that this positivity can be extended beyond 

Jacobi series, and even there it is still unknown for most values of 

(CL,S). I suspect that the (C,et+ 23 ) means of la P(CL,-;)(x)rvf(x) ~ 0 
n n 

are nonnegative. If so, then the (C,et+S+2) means of 

l an P~CL,S)(x)rvf(x) > 0 should be nonnegative, CL~ a 2:._ - ;. 

Kogbetliantz [23] has proven this result for CL= a> - ; and Fejer has 

proven it for CL= a=; and CL= - a=;. It is this last result of 

Fejer [16] that suggests this conjecture. This positivity follows for 

x = 1 by using Bateman's integral [6] , and would follow for - 1 ~ x < 

if the positivity of the generalized translation operator had been 

proven. This however is still an open problem. See [5]. Also if this 

positivity had been proven then we could use: the positivity of the 

(C,2et+2) means for (et,-;), which would be enough to complete our proof 

for CL> a 2:._ - ;. We will not give any details because (17) should not 

depend on such delicate theorems. It should be a general fact for most, 

if not all, measures, at least for q > 2 and probably for 1 .:_ q ~ 00 • 

Thus the problem we are considering should reduce to showing that 

Let p (x) = k xn + •.• , k > O, be the polynomials orthonormal with 
n n n 

respect to det(x). For g(x) a function integrable with respect to dCL(x) 



we define 

Then Sg(x) is given by 
n 

If a and bare finite then kn 

kn+1 

11 

~ C. See [2]. I would like to thank 

G. Freud for bringing this to my attention. We are thus lead to consider 

p +1(x) p (y) - p (x) p 1(y). We can try to handle each term separately, 
n n n n+ 

and this works if the polynomials are uniformly bounded and the measure 

does not grow too fast at any point. However this almost never happens, 

(for Jacobi polyno?llials it only works for a= S = - ;), so we must use 

some sort of cancellation. Pollard used a complicated procedure to 

obtain ci;mcellation at x = ± 1 at the same time. However this is not 

necessary, and an easier method works. We now consider a - - 1, b = 1 

and we may assume O ~ x ~ 1, since the same type of argument will 

handle - 1 ~ x < 0. Then if - ( ) -1 . 
~ y ~ - (:.. < 0 the factor x-y is 

bounded and we no longer have a singular integral, except at possible 

singularities in da(y). We now assume that 

da(y) = w(y) dy = (1-y)a(1+y)S t(y) dy, 

0 <A~ t(y) ~ B < 00 • Pollard also assumed that a, S ~ - ; and that 

t'(y) was smooth. It is only necessary to assume that a, S > - and 

lt(x+h) -· t(x)I ~ Ah, - 1 ~ x, x + h ~ 1. The argument when a, S > - ; 

is not satisfied is similar to the one we will give, but it is slightly 

more complicated. It is given by Muckenhoupt in [3cI). We will only 

consider a, S > - ; here. Then we have 

( 19) 
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For t(x) = ·1 this is a well known fact about Jacobi polynomials 

[37, ( 7. 32. ~> )] and the general case follows from Korous 's theorem 

[37, Theorem. 7. 13] . The ineg_uali ty ( 19) is an extremely useful ineg_uali ty 

and it would be of real interest to prove it for more general weight 

functions. However it is not necessary for the uses we have, since it 

fails if a< - ~ for the Jacobi polynomials, and Muckenhoupt has proven 

the mean convergence theorem then. 

To get back to our proof we can now consider each of the terms 

Pn+1(x) pn(y) and pn(x) Pn+ 1(y) seperately, and then we need to 

estimate 

We have 

fo1 f1 a-p(~a) 
lh(x) IP( 1-x)a( 1+x)Sdx ~ A O ( 1-x) 2 dx 

rr,: Jg(y)J (1+y)½-jay]P 
-1 

and applying Holder's inequality we have 

jr1 lh(x) Ip ( 1-x)a( 1+x)sdx ~ A J1 lg(y) Ip ( 1-y)q( 1+y)sdy 
0 -1 

if p < 4(a+'I )/(2a+1) and p > 4( S+1 )/(2S+3). These are just the 

conditions that Pollard needed in his proof, and they were shown to be 

best possible by Newman and Rudin [32]. 

The crux of the proof now comes. We consider 

(20) 



The polynomial pn(x) 
p ( 1 ) 

n 

Pn+1(x) = 

Pn+1(1) 

13 

C ( 1-X) 
n 

for some c > 0 
n 

where q (x) are the polynomials orthonormal with respect to 
n 

(1-x) 0 +1 (1+x)S t(x) = (1-x) w(x). Then we also have 

To continue the proof we now need an estimate on the size of Pn+1( 1) 

Equating coefficients of yn+1 we see that pn( 1) 

= 
kn+1 

1 
n 

where ln is the highest coefficient of 4n(x). 

Szego [37 Theorem 12. 7. 1] has shown that if we assume 

( 21 ) 

then 

(22) 

I log w(x) I 
( 1-x2 )~ 

dx < 00 

1 J1 
exp [;1r -1 

log w(x) 

(1-x2 )~ 
dx]. 

In our case (21) is satisfied for w(x) and ( 1-x)_ w(x) so we have 

< A = 

Thus the integrals we must estimate are bounded by 

a , 3 a 

A (x) 
n 

2-ii 4-2 
J 

1 g ( y )( 1-y) ( 1-x ) B ( y) dy 
X - y n 

C • 
n 
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and 

A (x) 
n 

where A (x) and B (y) are bounded functions in both x and n. Since we 
n n 

are interested in LP norms we may ignore them since 

II g(y) Bn(y) II p.:. All g(y) II p' 

Now we have reduced our problem to estimating 

( 1-x) 
- £. + 

2 

£.+a+~ 
a± ~J1 g(y)(1-y) 2 dy 

X - y 
-€, 

and such integrals are classical. They can be reduced to the classical 

M. Riesz transform and an absolutely convergent integral of Hardy type. 

The final theorem that comes out of all this is due to Muckenhoupt [30] 
for Jacobi polynomials with a, B > - 1, while special caes of it were 

obtained by Pollard [33] , [34] , [35] for a, S _:_ - ~. 

Theorem 2. Let w(x) = (1-x) 0 (1+x) 8 t(x), 0 < c ~ t(x).:. C < 00 , 

lt(x) - t(y)I .:.Alx - YI, and let S~a,S)(x) be t;e ~artial sum of the 

orthogonal series I a p (x), p (x) orthogonal on [-1, 1] with respect 

to w( x). Then 

(23) 

for all measurable 

1 < p < 00 and 

n n n 

lim r ls~a,S\x) - f(x) Ip ( 1-x)a( 1+x)bdx = 0 
n-+00 -1 

f with r I f(x) Ip ( 1-x)a ( 1+x? dx finite if 
-1 

(24) max(- 1, (a+ %)p - 1) <a< min((1+a)p - 1, (~ + ~)p - 1) 

and the same inequalities are satisfied with a and a replaced by 

b and S, 
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In the Jacobi case, i.e. t(x) = 1, this theorem is best possible in 

the sense that there is an f satisfying the right integrability 

condition for which (23) fails if either of the inequalities in (26) 

does not hold. 

Pollard [34] asked the very interesting question of trying to extend 

these results to more general measures and said that he did not have 

any conjectures about what the general theorem was. In [3] I made a 

conjecture, but it is not a very useful conjecture, since it is usually 

as hard to solve the Cesaro summability problem, which is the problem 

that I suspect has a strong relationship to the values of p for which 

we get mean convergence. (This is true in one dimension, but not in 

several where mean convergence problems are often extremely difficult). 

There is a fairly general class of weight functions on (-1,1) for 

which it is possible to make a reasonable conjecture. 

j {3. 
Conjecture 2. Let w(x) = (1-x)a TI lx-x. I i (1+x)Y, 

i=1 i 
- 1 <xi<,.,< x 1 < 1. 

Then if a, y > - ! and {3i .::._ 0 (for simplicity only), we have 

J1 f 
lf(x) - S (x)lp w(x) dx ➔ O, 

-1 n 
1 < p < 00 

for all f€ LP if 

4( 1+a) < p,< 4( 1+a) 
2a+3 2a+1 

2( 1 +{3. ) 2 ( 1 +{3. ) 
i i i 1 , 2, < p < , = ... , J, 2+{3. {3 . 

i i 

4( 1+y) < p < 4( 1+r) 
2y+3 2y+1 

For a= y, j = 1, x 1 = 0 this can be proved using Theorem 2 and a 

quadratic transformation on Jacobi polynomials. If we could prove (19) 

then this conjecture would be easy to prove. This conjecture tells us 

what effect an isolated zero of the weight function has on mean 

convergence problems. The next case of interest would be to see what 

the effect of an interval of zeros would be. Thus we should solve the 
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problem for w(x) = 1, - 1 ~ x ~ - a, a< x < 1, a> O, w(x) = O, 

- a < x < a. I am sure this can be done using an idea of Achiezer [1] 
on how to calculate these orthogonal polynomials. Actually he handles 

a different measure but it is possible to extend his ideas in the case 

of a symmetric interval to quite general weight functions. The next 

case to treat after this is the case of a measure that only has point 

masses.On [0, 00 ), the Poisson measure and Charlier polynomials imme

diately suggest themselves. And there is one set of polynomials with 

a discrete measure whose only limit point is at x = 0 that may be 

possible to handle. See Carlitz [13] and Karlin and McGregor [22] as 

well as Maki [24] for further results on this type of polynomial. 

After this the problem becomes very hard and a purely singular measure 

concentrated on the Cantor set should be handled; but I have no idea 

at all how to attack this problem. 

There is quite likely a strong connection between the p for which 

mean convergence holds for a measure da(x) and the rate of growth of 

A(n) in 

or more generally in 

1 l 
cf I~ (x) Ip d.a(x)]P, q > P· 

-1 n 

If so this would be a useful result, since it is easier to work with 

(25) than with mean convergence theorems. 

There is one other set of orthogonal polynomials for which mean 

convergence theorems have been obtained. These are the Laguerre poly

nomials, and their special cases, the Hermite polynomials. The results 

for Hermite series follow from the Laguerre; series so. we will only 

state the results for Laguerre series. The Laguerre polynomials will 

be denoted by La(x) and they are orthogonal on (0, 00 ) with respect to 
n 

w(x) = xa e-x, a > - 1. Pollard [31u showed that an inequality of the 
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form 

1 1 

(26) cJ: lsn(x)lp xa e-x dx]P ~AcJ: I ( ) Ip a e-x dx~ P f X X ::.J 

could hold for all f with the right hard side finite only for p = 2. 

Wainger and I proved [8] that 

a X 1 

(27) cJ00 

1s (x) x2e-2 lp dx]P ~ A[J
00 

lf(x) 
O n 0 

for all f' with the right hand side finite for~< p < 4, and that (27) 
4 fails to hold with A independent n for 1 ~ p ~ 3 and p ~ 4. By analogy 

with the results for Fourier series, and even Jacobi series, there 

should be a theorem which holds for all p, 1 < p < 00 , of the sort 

1 

(28) cf 00 Is ( X) u( X) Ip dx] p ~ A cf 00 

O n 0 

1 

lf(x) u(x)IP dx]P. 

It· is surprising that this is not true. Muckenhoupt [28] has shown that 

if (28) holds for some p, 1 ~ p ~1 or p > 4 then u(x) = 0 almost every

where. 

Muckenhoupt [29] has obtained some theorems for 1 < p < 00 when the 

problem is changed slightly. These theorems are complicated and we will 

only state one of them to give the reader an idea of the type of result 

that can be obtained. 
X a 

Theorem 3. Let 1 < p < 00 , a> - 1, u(x) = e 2 x2 ( 1:x)a (1+x)b, 
X a 

v(x) 

4 - or 
3 

= e 2 x2 (-1x )A (1+x)B (1+log+x) 8 , where S = 
+x 1 if b =Band pis 

4 and S = 0 otherwise. Assume that 

1 a ,) 1 a , a> - - + max(- - 4 , A< 1 - - - max(- -2 , 4), A __ < a. 
p 2' p 
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Then 

if 

b 3 1 1 p .::.. 4, < 4 - p' < 

b 1 1 4, < - 3p' p > = 12 

B 
, 

1 4 
> - Ii - 3p' < p < 3' 

B > 
, 1 4 
Ii - p' -<p 

3 = ' 

b B + ~ 
2 4 < - 3p' < p < 3' = 

4 
b .::._ B, - < p < 4, 3= = 

1 2 4 b < B - 6 + -, < p < (X) 

= 3p 

and if we have equality in one of the last three conditions, we do not 

have equality in the second or third condition. 

These conditions are essentially best possible, except possibly 

for the cases when e = 1. For technical reasons, the lack of suitable 

asymptotic estimates, the proof in [8] was only for the cases o ~ 0 

and o = - ~. Muckenhoupt [29] showed how to obtain these results for 

o > - 1 by obtaining the proper estimates and then in [31] he showed 

how the asymptotic formulas could be obtained by recurrence relation 

from the known estimates for o > 0 of Erdelyi. 

4 
The lack of nice theorems for p = 3 and p = 4 suggest that there 

are only fairly weak results to be obtained for Lagrange interpolation 

at the zeros of the Laguerre or Hermite polynomials. Turan raised this 

question in [39] and I too would like to see some results on this 

question. However I am afraid that they will be weaker than one might 

have suspected. 
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For J"acobi series and even for a large class of Sturm - Liouvo.lle 

expansions it is possible to prove theorems that are much deeper than 

mean convergence theorems. It is possible to set up a mapping between 

Jacobi series and cosine series that is bounded in LP, 1 < p < 00 , and 

so obtain many multiplier theorems for Jacobi series directly from the 

corresponding results for cosine series. See [4] , [9] , and [18]. How

ever not all multiplier theorems can be obtained in this fashion, and 

some, especially those dealing with fractional integration and smooth

ness conditions, must be obtained directly from the generalized trans

lation operators. For ultraspherical series some of these theorems have 

recently been obtained by Lofstrom and Peetre [24] and Berens, Butzer 

and Pawal.ke [11] and the boundedness of the generalized translation 

operator for Jacobi series was demonstrated by Askey and Wainger [10]. 
There are: also some applications given there and in Ganser [17] • 

In another direction Schindler [36] has proven some mean conver

gence and. bounded mapping theorems for Mehler transforms. These are 

integral transforms with P, .t(coshx) as kernel. Due to the complex-
-2+i 

ity of the asymptotic formulas of these functions, this is a harder 

result to prove than the corresponding theorems for Jacobi series. It 

is unlikely that we can prove these mapping theorems for a wide class 

of orthogonal series (and they fail for some p, 1 < p < 00 for 

p(a,S)(x) a< - 1 ) so there is still a need to handle the mean 
n ' 2 ' 

convergence theorems directly. 
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