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Abstract

We consider a stochastic recurrence equation of the form Zn+1 = An+1Zn + Bn+1, where
E[logA1] < 0, E[log+ B1] <∞ and {(An, Bn)}n∈N is an i.i.d. sequence of positive random vectors.
The stationary distribution of this Markov chain can be represented as the distribution of the
random variable Z ,

∑∞
n=0 Bn+1

∏n
k=1 Ak. Such random variables can be found in the analysis of

probabilistic algorithms or financial mathematics, where Z would be called a stochastic perpetuity.
If one interprets − logAn as the interest rate at time n, then Z is the present value of a bond that
generates Bn unit of money at each time point n. We are interested in estimating the probability
of the rare event {Z > x}, when x is large; we provide a consistent simulation estimator using
state-dependent importance sampling for the case, where logA1 is heavy-tailed and the so-called
Cramér condition is not satisfied. Our algorithm leads to an estimator for P (Z > x). We show that
under natural conditions, our estimator is strongly efficient. Furthermore, we extend our method
to the case, where {Zn}n∈N is defined via the recursive formula Zn+1 = Ψn+1(Zn) and {Ψn}n∈N
is a sequence of i.i.d. random Lipschitz functions.

1 Introduction
We consider an R-valued Markov chain {Zn}n∈N defined by

Zn+1 = Ψn+1(Zn), (1)

where {Ψn}n∈N is a sequence of i.i.d. positive random Lipschitz functions and Z0 ∈ R is arbitrary but
independent of the sequence {Ψn}n∈N. For k < n, define the backward iteration as

Ψk:n(z) , Ψk ◦Ψk+1 ◦ · · · ◦Ψn(z).

Define Z(n)(z0) , Ψ1:n(z0). Under some mild conditions (cf. Assumption 2 below), the sequence
{Z(n)(z0)}n∈N converges a.s. to some random variable Z. Moreover, this limit does not depend on the
choice of the initial condition z0 (cf. Dyszewski, 2016, Theorem 3.1) and has the same distribution as
the stationary solution to (1). For simplicity we set

Z(n) , Z(n)(0). (2)

We assume that Ψn is such that Z(n) is increasing in n. Define T (x) = inf{n ≥ 0 : Z(n) > x}.
This paper develops efficient simulation methods for estimating the tail probability of Z, i.e. we are
interested in computing

P(Z > x) = P(T (x) <∞),

when x is large.
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The main example we have in mind, is the so called stochastic perpetuity (also known as infinite
horizon discounted reward). More precisely, we consider the random difference equation, where Ψn is
an affine transformation, that is Ψn(z) = Anz +Bn. The formula (1) can be written as

Zn+1 = An+1Zn +Bn+1, (3)

for n ∈ N. It is well known that if E[logA1] < 0 and E[log+B1] <∞, then the Markov chain given by
(3) has a unique stationary distribution, which has the same distribution as the random variable

Z ,
∞∑
n=0

Bn+1e
Sn ,

where Sn , Sn−1 +Xn, S0 , 0 and Xn , logAn. Such random variables can be found in the analysis
of probabilistic algorithms or financial mathematics, where Z would be called a stochastic perpetuity.
If one interprets − logAn as the interest rate at time n, then Z is the present value of a bond that
generates Bn unit of money at each time point n. Perpetuities also occur in the context of ruin problems
with investments, in the study of financial time series such as ARCH-type processes (cf. e.g. Embrechts,
Klüppelberg, & Mikosch, 1997), in tail asymptotics for exponential functionals of Lévy processes (see
e.g. Maulik & Zwart, 2006), etc. A book devoted to (3) is Buraczewski, Damek, and Mikosch (2016).
Although some particular cases exist that allow for an explicit analysis (see e.g. Vervaat, 1979), it is
hard to come up with exact results for the distribution of Z in general. Thus Monte Carlo simulation
arises as a natural approach to deal with the analysis of stochastic perpetuities, including the large
deviations regime where x in P(T (x) <∞) is large, which is the focus of this paper.

In this paper we develop a state-dependent importance sampling algorithm that can be proved
to be strongly efficient. By state-dependent, we mean that the importance sampling distribution for
generating Z(n+1) is dependent on the current state Z(n). We say that an estimator L(x) for P(T (x) <
∞) is strongly efficient (for a discussion of efficiency in rare-event simulation, see e.g. Asmussen &
Glynn, 2007) if

sup
x>1

EL2(x)

P(T (x) <∞)2
<∞. (4)

To explain the idea behind our algorithm, consider a stochastic perpetuity, where Bn = 1. One
difficulty that arises in our setting—where logA1 is heavy-tailed—is that the Cramér condition is not
satisfied (a study of the Cramér case can be found in Blanchet, Lam, & Zwart, 2012), and hence,
standard techniques such as exponential change of measure cannot be used. The algorithm we provide
in the present paper is based on the fact that the stochastic perpetuity is closely related to the maximum
of a random walk. More precisely, for γ ∈ (0,−EX1) we observe that

Z =

∞∑
n=0

exp(Sn) =

∞∑
n=0

exp{Sn + nγ} exp(−nγ) ≤ exp

{
max
n≥0

(Sn + nγ)

}
1

1− e−γ
. (5)

For a general sequence {Ψn}n∈N, we construct a slightly more involved upper bounding random walk
and use it to construct a coupling. This allows us to leverage an importance sampling algorithm
designed for random walks, in Blanchet and Glynn (2008). We can extend this idea to a general
Markov chain given by (1). The tail asymptotics in this case have been derived by Dyszewski (2016).
Our extension of (5) leads to a shorter proof of the asymptotic upper bound given in that paper.

Note that Z is defined over an infinite horizon, and hence, requires an infinite amount of com-
putational effort for generating each sample; a natural approach to address such an issue is to work
with approximations by finite-time truncation. In this paper we study the bias introduced by such
approximations and show that our estimator has a vanishing relative bias as x → ∞. We also study
the asymptotic behavior of the bias with respect to the truncation time. We show that the relative
bias converges to 0 at a polynomial rate, which depends on the moment condition of logA1. It should
be mentioned that such a convergence rate is due to the heavy-tailed nature of logA1; in case Cramér
condition holds for logA1, geometric convergence rates typically ensue, i.e, the relative bias converges
exponentially to 0 (cf. e.g. Basrak, Davis, & Mikosch, 2002, Theorem 2.8). By identifying such a con-
vergence rate and proving a uniform bound on the relative moment of the associated estimator (slightly
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stronger statement than the strong efficiency proved in Blanchet & Glynn, 2008), we show that one can
apply the bias elimination technique studied in Rhee and Glynn (2015) to construct strongly efficient
and unbiased estimators.

The rest of the paper is organized as follows. In Section 2 we briefly review an efficient simulation
algorithm for the maximum of heavy-tailed random walks proposed by Blanchet and Glynn (2008). In
Section 3 we introduce the random objects that can be handled by our algorithm. In Section 4 and
5 we use the result from Section 3 to prove an asymptotic upper bound of P(Z > x). Moreover, we
construct an efficient algorithm for estimating P(Z > x) and analyze its relative bias. The main result
of this paper is given as Theorem 6. In Section 6 we analyze the asymptotic behavior of the bias with
respect to the truncation time, based on a simple example; we apply the method studied in Rhee and
Glynn (2015) to obtain an unbiased estimator. In Section 7 we present our computational results.

2 Notations and Preliminary Results
In this section we will first introduce several notations, then we will recall some well known preliminary
results.

Let x+ = max(x, 0) denote the positive part of x and let log+(x) = max(log x, 0) = log (max (x, 1)).
We first recall the following lemma, which will be very useful in validating our new estimator.

Lemma 1 (Glynn, 2012). Let {Yn}n∈N be a sequence of random variables on the probability space
(Ω,F ,P). Let {Mn}n∈N be a non-negative martingale that is adapted to {Yn}n∈N for which EM0 = 1.
Let T be a stopping time adapted to {Yn}n∈N. Define a sequence of probability measures as Pn(A′) =
E1A′Mn, for A′ ∈ F . Then there exists a probability measure P̃, such that P̃(A′) = Pn(A′), for A′ ∈ F
and n ∈ N. Furthermore, we have that E1{T<∞} = Ẽ1{T<∞}M−1

T .

Our goal is to find a suitable martingale Mn such that the strong efficiency criterion in (4) is
satisfied. Here we consider first a useful example proposed by Blanchet and Glynn (2008), where
the authors develop an efficient state-dependent importance sampling strategy for estimating the tail
probability of a random walk crossing a certain level. Before we go through the details of the example,
we introduce the following definition.

Definition 1. A random variable X is said to posses a long tail, if for every c ∈ R, we have that
P(X > t+ c) ∼ P(X > t) as t→∞. X is called subexponential if P(X+

1 +X+
2 > t) ∼ 2P(X+ > t) as

t → ∞, where X1 and X2 are independent copies of X. Moreover, X is said to belong to the family
S∗ if the following holds

2EX+P(X > t) ∼
∫ t

0

P(X > t− s)P(X > s)ds

as t→∞.

If X1 belongs to S∗, then both the distribution of X1 and its integrated tail are subexponential (cf.
Klüppelberg, 1988, Theorem 3.2) and, in particular, long tailed. Furthermore, the Pakes-Veraverbeke’s
theorem (cf. e.g. Veraverbeke, 1977 and Zachary, 2004) says

P
(

max
n≥0

Sn > x

)
∼ − 1

EX1

∫ ∞
x

P(X1 > t)dt, (6)

as x→∞, where Sn = Sn−1 +Xn.

Example 1. Consider a random walk {Sn}n∈N generated by a sequence of i.i.d. random variables
{Xn}n∈N, i.e, Sn = Sn−1 + Xn, S0 = 0. Assume that EX1 < 0 and X1 belongs to S∗. We are
interested in estimating P (τ(x) <∞) = P(maxn≥0 Sn > x), where τ(x) = inf{n ≥ 0 : Sn > x}. Let
v(z) be a positive function on (−∞, x), let P (y, dz) denote the transition kernel of the random walk.
Instead of P (y, dz), one can simulate the random walk via another transition kernel

Q(y, dz) = P (y, dz)
v(z)

w(y)
, ∀y ∈ (−∞, x], z ∈ R, (7)
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where w(y) is the normalization constant that is given by w(y) =
∫
R v(z)P (y, dz). Choosing

M−1
n =

n∏
k=1

w(Sk−1)

v(Sk)

and applying Lemma 1, this yields a potential candidate of the estimator, which has the form L(x) =
1{τ(x)<∞}M

−1
τ(x). It is “a potential candidate” because for each a ≤ 0, any M−1

n constructed by the
pair w(· + a) and v(· + a) is also a possible choice. Define a non-negative random variable W that is
independent of {Xn}n∈N with tail probability

P(W > t) , min

[
1,− 1

EX1

∫ ∞
t

P(X1 > s)ds

]
. (8)

Blanchet and Glynn (2008) propose to choose

v(z) , P(W > −(z − x)), (9)

and
w(y) , P(X1 +W > −(y − x)). (10)

From (6) we can see that the choice above of v(·) and w(·) leads to a good approximation of the so-
called zero-variance importance distribution, which involves sampling from the conditional distribution
of the random walk given {τ(x) <∞} (cf. Blanchet & Glynn, 2008, Theorem 1). By showing

w(y)− v(y) = o(P(X1 > −y) ), as y → −∞, (11)

(for details see Blanchet & Glynn, 2008, Proposition 3) and, for each δ ∈ (0, 1), the existence of a
constant a∗ = a∗(δ) ∈ (−∞, 0] such that

−δ ≤ v2(y)− w2(y)

P(X1 > −y)w(y)
, ∀y ≤ x+ a∗, (12)

the authors were able to control the second moment of the estimator via a Lyapunov bound (for details
see Blanchet & Glynn, 2008, Theorem 2, Proposition 2, Proposition 3). We summarize one of their
results in the next theorem, which will prove to be useful in our context.

Theorem 2. (Blanchet & Glynn, 2008, Theorem 3) Suppose that EX1 < 0 and X1 belongs to S∗. Let
v and w be defined as in (9) and (10). For fixed δ ∈ (0, 1), set a∗ = a∗(δ) ≤ 0 satisfying (12). Let an
unbiased estimator of P(maxn∈N Sn > x) be given by

Lτ (x) = 1{τ(x)<∞}

τ(x)∏
k=1

w(Sk−1 + a∗)

v(Sk + a∗)
.

Then

sup
x>0

EQa∗L2
τ (x)

P
(

max
n≥0

Sn > x

)2 <∞,

where EQa∗ denotes the expectation w.r.t. the random process {Sn}n∈N having a one-step transition
kernel

Qa∗(y, dz) = P (y, dz)
v(z + a∗)

w(y + a∗)

=
P(y +X1 ∈ dz)v(z + a∗)

w(y + a∗)

= P(y +X1 ∈ dz |X1 +W > −(y − x)− a∗).
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Theorem 2 implies that the following algorithm is strongly efficient.

Algorithm 1.
STEP 0. For fixed δ ∈ (0, 1), set a∗ ←− a∗(δ) ≤ 0 satisfying (12).
STEP 1. Initialize s←− 0 and L←− 1.
STEP 2. Set s′ ←− s, generate a random variable Y with the distribution given by

P(Y ∈ dz) = P(s′ +X1 ∈ dz |X1 +W > −(s′ − x)− a∗),

where W is defined as in (8). Update s←− s′ + Y and

L←− w(s′ + a∗)

v(s+ a∗)
L.

STEP 3. If s > x then return L. Otherwise, go to STEP 2.

3 Stochastic Perpetuity and Iterated Random Functions
In this section we specify the random object that can be handled by our algorithm. We start with
an example of stochastic perpetuity and construct a stochastic upper bound that can be written as a
functional of a suitable random walk Sn(γ), which will be defined in three different levels of generality—
Example 2, general stochastic perpetuities, and stochastic recursions of the form (19). Furthermore,
using the upper bound we can define crossing levels s(x) (which will be defined in three different levels
of generality as well) and a stopping time

τγ(x) = inf{n ≥ 0 : Sn(γ) > s(x)},

such that
{Z > x} ⊆ {max

n≥0
Sn(γ) > s(x)} and τγ(x) ≤ T (x). (13)

Since the change of measure proposed in Blanchet and Glynn (2008) is strongly efficient for estimating
the tail probability of the maximum of heavy-tailed random walks, a natural strategy is to keep track
of the random process {Sn(γ)}n∈N while simulating Z(m), until the stopping time τγ(x). By doing
this, we can construct a state-dependent change of measure using the path of the random walk until
τγ(x) according to the method introduced in Example 1. Then we simulate the path of the random
walk after τγ(x) under the original measure. In the second step we extend the method to the general
case. Other properties such as efficiency will be discussed in Section 4 and 5.

3.1 Stochastic Perpetuity
To illustrate our idea, let us consider a simple example, namely, a stochastic perpetuity that generates
exact one unit of money at each time point n.

Example 2. Consider the Markov chain defined via the random difference equations

Zn+1 = An+1Zn + 1, t ∈ N, (14)

where E[logA1] < 0 and {An}n∈N is an i.i.d. sequence of positive random variables, which is indepen-
dent of Z0. The unique stationary distribution of this Markov chain has the same distribution as the
random variable

Z ,
∞∑
n=0

eSn ,

where Sn , Sn−1 + Xn, S0 , 0 and Xn , logAn. Let γ1 ∈ (0,−EX1) be fixed. For the stochastic
perpetuity Z, we observe that

Z =

∞∑
n=0

exp(Sn) =

∞∑
n=0

exp{Sn + nγ1} exp(−nγ1) ≤ exp

{
max
n≥0

(Sn + nγ1)

}
1

1− e−γ1
. (15)
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Using (15) we can define s(x) , log x+ log(1− e−γ1) and τγ(x) , inf{n ≥ 0 : Sn + nγ1 > s(x)}, such
that (13) holds. To see τγ(x) ≤ T (x), suppose τγ(x) = Nτ , we have that maxn≤Nτ−1 Sn(γ) ≤ s(x).
Combining this with the fact that

Nτ−1∑
n=0

exp(Sn) =

Nτ−1∑
n=0

exp{Sn + nγ1} exp(−nγ1)

≤ exp

{
max

n≤Nτ−1
Sn + nγ1

}
1− eNτ
1− e−γ1

≤ exp (s(x))
1

1− e−γ1
= x,

we can conclude that T (x) ≥ Nτ = τγ(x).

Example 2 shows that we can bound Z by a functional of the mean-shifted random walk, if we as-
sume that there is no randomness in Bn. However, extending the idea to general stochastic perpetuities
is not straightforward. The reason is that we can not deal Bn separately due to the potential depen-
dence structure between {An}n∈N and {Bn}n∈N. To be precise, consider the Markov chain defined via
the stochastic difference equations

Zn+1 = An+1Zn +Bn+1, n ∈ N,

where E[logA1] < 0, E[log+B1] <∞ and {(An, Bn)}n∈N is an i.i.d. sequence of positive random vectors
that are independent of Z0. First we need to assume the following.

Assumption 1. Assume that (A1, B1) satisfies the conditions as follows.

a) Let A1, B1>0 a.s, E[logA1] < 0 and E[log+B1] <∞.

b) E[(log+(max(A1, B1)))1+η] <∞, for some η > 0.

c) For (A1, B1) we have that

P(A1 > x,B1 ≤ −x) = o(P(max(A1, B1) > x)).

Under Assumption 1, it is well known (cf. Buraczewski et al., 2016 and Dyszewski, 2016) that the
unique stationary distribution of this Markov chain exists, has right-unbounded support and has the
same distribution as the random variable

Z ,
∞∑
n=0

Bn+1e
Sn ,

where Sn , Sn−1 + Xn, S0 , 0 and Xn , logAn. In the next step we want to construct an upper
bound for Z, which can be written as a functional of a suitable random walk Sn(γ). We have the
following Lemma.

Lemma 3. Under Assumption 1, there exists a constant γ2 such that

E[max
(
log+B1 − γ2, logA1

)
] < 0.

Moreover, there exists a constant γ1 ∈ (0,−Emax(log+B1 − γ2, logA1)) such that

Z ≤ eγ2
∞∑
n=0

eS
′
n ≤ exp

{
max
n≥0

Sn(γ)

}
eγ2

1− e−γ1
, (16)

where γ = (γ1, γ2), S′n = S′n−1 + max(log+Bn − γ2, logAn) and Sn(γ) = S′n + nγ1.
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Proof. Under Assumption 1 a) we obtain that

lim
γ′2→∞

max(log+B1 − γ′2, logA1) = logA1, a.s,

since log+B1 and logA1 are finite a.s. Furthermore, we have that

|max(log+B1 − γ′2, logA1)| ≤ |max(log+B1, logA1)|+ | logA1|. (17)

Using Assumption 1 b) we have that E log+A1 ≤ E log+ max (A1, B1) < ∞. Since E logA1 < 0, we
conclude that E |logA1| <∞. Combining this with (17) we have that for any γ1 > 0,

E
∣∣max(log+B1 − γ′1, logA1)

∣∣ ≤ E
∣∣max(log+B1, logA1)

∣∣+ E |logA1|
= E

∣∣log+(max(B1, A1))
∣∣+ E |logA1| <∞.

Using the dominated convergence theorem we obtain the existence of γ2. For the stochastic perpetuity
Z and the constant γ2 > 0, we have that

Z ≤
∞∑
n=0

max (Bn+1, 1) eSn = eγ2
∞∑
n=0

e(log+ Bn+1−γ2)+Sn ≤ eγ2
∞∑
n=0

eS
′
n , (18)

where S′n = S′n−1 + max(log+Bn − γ2, logAn). To see the last inequality, comparing S′n+1 with
(log+Bn+1 − γ2) + Sn component wise, we have that

(
log+Bn+1 − γ2

)
+ Sn =

(
log+Bn+1 − γ2

)
+

n∑
k=1

logAk

≤ max(log+Bn+1 − γ2, logAn+1) +

n∑
k=1

max(log+Bk − γ2, logAk) = S′n+1.

Now let γ1 ∈ (0,−Emax(log+B1 − γ2, logA1)) be fixed. From (18), we observe that

Z ≤ eγ2
∞∑
n=0

eS
′
n = eγ2

∞∑
n=0

exp{S′n + nγ1} exp(−nγ1) ≤ exp

{
max
n≥0

Sn(γ)

}
eγ2

1− e−γ1
,

where γ = (γ1, γ2) and Sn(γ) , Sn−1(γ) + max(log+Bn − γ2, logAn) + γ1 = S′n + nγ1.

Now from (16) we can define s(x) , log x−γ2+log(1−e−γ1) and τγ(x) , inf{n ≥ 0 : Sn(γ) > s(x)},
such that (13) holds.

3.2 Iterated Random Functions
As we indicated in the introduction, stochastic perpetuities can be considered as a special case of (1)
with Ψn being an affine transformation. Thus, it is natural to consider the Markov chain given by (1),
where for each Ψn there exists a random vector (An, Bn, Dn) satisfying

Anz +Bn −Dn ≤ Ψn(t) ≤ Anz+ +B+
n +Dn, (19)

for z ∈ R. We assume that {(An, Bn, Dn)}n∈N are i.i.d. and {Ψn}n∈N is a sequence of i.i.d. positive
random Lipschitz functions with

Lip(Ψn) , sup
t1 6=t2

∣∣∣∣Ψn(t1)−Ψn(t2)

t1 − t2

∣∣∣∣ .
Analogous to Assumption 1, we assume the following holds.
Assumption 2. Assume that Ψn is such that Z(n) defined as in (2) is increasing in n. Moreover, assume
that (19) hold, and that (A1, B1, D1) satisfies the following conditions:
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a) A1, D1 > 0 a.s, E[logA1] > −∞ and E[logLip(Ψ1)] < 0. Moreover, E
[
log+ |B+

1 +D1|
]
< ∞ and

E
[
log+ |B1 −D1|

]
<∞.

b) E
[
(log+(max(A1, B1)))1+η

]
<∞, for some η > 0.

c) The following tail behaviors

P(max(A1, B
+
1 +D1) > x) ∼ P(max(A1, B1) > x),

P(max(A1, B1 −D1) > x) ∼ P(max(A1, B1) > x)

and
P(A1 > x,B1 −D1 ≤ −x) = o(P(max(A1, B1) > x))

hold.

Remark 1. We want to mention that there are interesting examples that satisfy the increasing property
of the backward iteration. For instance, consider the stochastic equation given by

Zn+1 =
√
An+1(Zn)2 +Bn+1Zn + Cn+1.

This corresponds to a second order random polynomial equation, which is studied by Goldie (1991).
Define Z , limn→∞Ψ1:n(0). Recall that (cf. Dyszewski, 2016), under Assumption 2, the unique

stationary solution to (1) exists, has the same distribution as Z, has right-unbounded support and can
be bounded from above with a stochastic perpetuity Z̄, which is given by

Z̄ ,
∞∑
n=0

B̄n+1e
Sn ,

where B̄n , max (B+
n +Dn, 1), Sn , Sn−1 + log(An) and S0 , 0 (cf. Dyszewski, 2016). Analogous

to the previous section, our goal should be to construct an upper bound for Z̄ (and thus for Z) that
can be written as a functional of the maximum of a suitable random walk Sn(γ). First we claim the
following lemma.

Lemma 4. Under Assumption 2, there exists a constant γ2 such that

E
[
max

(
log+

(
B+

1 +D1

)
− γ2, logA1

)]
< 0.

Moreover, there exists a constant γ1 ∈ (0,−Emax(log+B1 − γ2, logA1)) such that

Z ≤ eγ2
∞∑
n=0

eS
′
n ≤ exp

{
max
n≥0

Sn(γ)

}
eγ2

1− e−γ1
, (20)

where γ = (γ1, γ2), S′n = S′n−1 + max
(
log+ (B+

n +Dn)− γ2, logAn
)
and Sn(γ) = S′n + nγ1.

Proof. Analogous to the proof of Lemma 3.

Now from (20) we can define s(x) , log x−γ2+log(1−e−γ1) and τγ(x) , inf{n ≥ 0 : Sn(γ) > s(x)},
such that (13) holds.

4 Asymptotic Upper Bound and Strong Efficiency
Recall that in Section 3 we have developed a stochastic upper bound for each of our random objects.
Moreover, using these upper bounds we also have defined a crossing level s(x) and a stopping time

τγ(x) = inf{n ≥ 0 : Sn(γ) > s(x)},

such that {Z > x} ⊆ {maxn≥0 Sn(γ) > s(x)} and τγ(x) ≤ T (x), for each case respectively.
It turns out that the upper bounds we derived in the previous section are not only helpful for

constructing our algorithm, they can also be used to derive an asymptotic upper bound for P(Z > x)
as x→∞. In this section, we first analyze the asymptotic behavior of P(Z > x). After that, we show
that our estimator is strongly efficient.
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4.1 Asymptotic Upper Bound
In the theory of large deviations, one is interested in results such as the asymptotic behavior of P(Z > x)
as x→∞. More precisely, we are interested in finding a function f(x) such that P(Z > x) ∼ f(x) as
x → ∞. Usually, obtaining an asymptotic lower bound is easier than obtaining an upper bound. It
turns out that the stochastic upper bounds we derived for Z can be used in deriving the asymptotic
upper bound of P(Z > x). To illustrate this, let us get back to our example.

Example 2 (continued). Consider a stochastic perpetuity with Bn = 1, i.e. Z =
∑∞
n=0 e

Sn . Moreover,
assume that the integrated tail of X1 is subexponential. On the one hand, using (18), we obtain that

P(Z > x) ≤ P
(

max
n≥0

Sn(γ) > s(x)

)
.

Since the integrated tail of X1 + γ1 is also subexponential, applying the Pakes-Veraverbekes Theorem
we have that

lim sup
x→∞

P(Z > x)∫∞
log x

P(X1 > t)dt
≤ lim sup

x→∞

P
(

max
n≥0

Sn(γ) > s(x)

)
∫∞

log x
P(X1 > t)dt

= − 1

EX1 + γ1
. (21)

Letting γ1 → 0 we conclude that

lim sup
x→∞

P(Z > x)∫∞
log x

P(X1 > t)dt
≤ − 1

EX1
.

On the other hand we observe that Z ≥ exp (maxn≥0 Sn). Therefore applying again the Pakes-
Veraverbekes Theorem we obtain that

lim inf
x→∞

P(Z > x)∫∞
log x

P(X1 > t)dt
≥ lim inf

x→∞

P
(

max
n≥0

Sn > log x

)
∫∞

log x
P(X1 > t)dt

= − 1

EX1
. (22)

Combining (21) and (22) we conclude that

P(Z > x) ∼ − 1

EX1

∫ ∞
log x

P (X1 > t) dt.

Consider the stationary distribution of the Markov chain given by (1). As we indicated earlier,
Dyszewski (2016) shows that under subexponential assumptions on the random variable log+ max(A1, B1)
the tail asymptotics can be described using the integrated tail function of log+ max(A1, B1). However,
the upper bound we derived in Section 3.2 yields us a shorter proof for the asymptotic upper bound
in Dyszewski (2016, Theorem 3.1).

Lemma 5. (A shorter proof of the asymptotic upper bound in Dyszewski, 2016, Theorem 3.1) Let
Assumption 2 hold. Furthermore, assume that the integrated tail of log max(A1, B1) is subexponential.
Then we have that

lim sup
x→∞

P(Z > x)

F̄I(log(x))
≤ − 1

E[log(A1)]
,

where F̄I denotes the integrated tail of log max(A1, B1).

Proof. From the upper bound we constructed in Section 3.2, we know that

P(Z > x) ≤ P
(

max
n≥0

Sn(γ) > s(x)

)
. (23)

Due to Assumption 2 c) we know that the integrated tail of log(max(A1, B
+
1 +D1, 1)) is also subexpo-

nential. Moreover, we have the following inequality:

log
(
max

(
A1, B

+
1 +D1, 1

))
− γ2 ≤ log

(
max

(
A1, e

−γ2
(
B+

1 +D1

)
, e−γ2

))
≤ log

(
max

(
A1, B

+
1 +D1, 1

))
.
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The increments of the random walk Sn(γ) have a subexponential integrated tail. Using the Pakes-
Veraverbeke theorem we get the following relationship for the RHS of (23), namely

P
(

max
n≥0

Sn(γ) > s(x)

)
∼ − 1

E[max(B̄1 − γ2, logA1)] + γ1
F̄I(log(x)). (24)

Now, letting γ2 →∞ and γ1 → 0 yields the result.

Remark 2. Note that the assumption of an increasing backward iteration of Ψn is not needed in the
proof of Lemma 5. Therefore, it provides indeed a shorter proof of the asymptotic upper bound given
in Dyszewski (2016, Theorem 3.1).

4.2 Strong Efficiency
Given the asymptotic behavior of P(Z > x), we are able to show the strong efficiency of our estimator.
Recall that, based on (13), our algorithm constructs a state-dependent change of measure according
to the methods introduced by Blanchet and Glynn (2008). Define the following elements, which are
needed for the change of measure, via

P(Wγ > t) , min

[
1 ,

1

ES1(γ)

∫ ∞
t

P(S1(γ) > s)ds

]
,

vγ(z) , P(Wγ > −(z − s(x))), (25)

and
wγ(y) , P(S1(γ) +Wγ > −(y − s(x))). (26)

We propose an estimator and show its strong efficiency in the following theorem.

Theorem 6. Suppose that ES1(γ) < 0 and S1(γ) belongs to S∗. Let vγ and wγ be defined as in (25)
and (26). For fixed δ ∈ (0, 1), one can choose a∗ = a∗(δ) ≤ 0 so that

−δ ≤
v2
γ(y)− w2

γ(y)

P(X1 > −y)wγ(y)
, ∀y ≤ s(x) + a∗.

Let

LT (x) , 1{T (x)<∞}

τγ(x)∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
. (27)

Then LT (x) is an unbiased estimator of P(Z > x) and

sup
x>1

EQ
γ
a∗L2

T (x)

P(Z > x)2
<∞,

where EQ
γ
a∗ denotes the expectation w.r.t. the Markov chain {Sn(γ)}n∈N having a one-step transition

kernel
Qγa∗(y, dz) = P (y, dz)

vγ(z + a∗)

wγ(y + a∗)
.

Proof. Let

M−1
n =

n∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
.

Obviously, {Mn}n∈N is a martingale, and therefore, {Mn∧τγ(x)}n∈N is also a martingale. Since τγ(x) ≤
T (x), applying Lemma 1, we can conclude that

EQ
γ
a∗LT (x) = P(T (x) <∞) = P(Z > x).
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For the strong efficiency we have that

EQ
γ
a∗L2

T (x)

P(Z > x)2
=

EQ
γ
a∗

[
1{Z>x}M

−2
τγ (x)

]
P(Z > x)2

≤
EQ

γ
a∗

[
1{max

n≥0
Sn(γ)>s(x)}M

−2
τγ (x)

]
P(Z > x)2

=

EQ
γ
a∗

[
1{max

n≥0
Sn(γ)>s(x)}M

−2
τγ (x)

]
P
(

max
n≥0

Sn(γ) > s(x)

)2

( P
(

max
n≥0

Sn(γ) > s(x)

)
P (Z > x)

)2

,

where the first term in the last equation is guaranteed to be bounded over x ∈ (1,∞) due to Theorem
2. Hence, only the latter term remains to be analyzed. Define

χ(x) =

P
(

max
n≥0

Sn(γ) > s(x)

)
P (Z > x)

.

From Dyszewski (2016, Theorem 3.1) we have that

lim inf
x→∞

P(Z > x)

F̄I(log(x))
≥ − 1

E logA1
. (28)

Since by assumption the integrated tail F̄I is subexponential, it is in particular long tailed. Combining
(24) and (28) we obtain that

lim sup
x→∞

χ(x) ≤ E logA1

E[max(B̄1 − γ2, logA1)] + γ1
. (29)

Using the fact that χ(x) is bounded over a compact interval, we obtain that

sup
x>1

P
(

max
n≥0

Sn(γ) > s(x)

)
P (Z > x)

<∞.

5 Asymptotic Unbiasedness
The estimator derived in Theorem 6 requires the computation of 1{Z>x}, and hence, is unbiased only
if we can generate Z in finite time. Generating a perfect sample from Z in our current setting is not
straightforward, although there is plenty of literature on this topic; see, for example, Blanchet and
Wallwater (2015) and Blanchet and Sigman (2011). Conditional on {τγ(x) < ∞}, using the strong
Markov property, we have that

Z = Ψ1:τγ(x) (Z ′) ,

where Z ′ , limM→∞Ψτγ(x)+1:τγ(x)+M (0)
d
=Z is independent of Ψ1:τγ(x). Therefore, a natural choice

for approximating the distribution of Z ′ is a truncated sum. More precisely, letting M ∈ N be fixed;
our modified estimator takes the form

L∆
T (x,M) = 1{τγ(x)<∞,Ψ1:τγ (x)(Z′(M))>x}

τγ(x)∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
,

where Z ′(M) , Ψτγ(x)+1:τγ(x)+M (0). To illustrate this, let us consider an extension of Example 2.
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Example 2 (continued). Consider a stochastic perpetuity with Bn = 1. Moreover, for α > 0, assume
that X1 is regularly varying with index α+ 1; i.e, for the tail distribution of X1, we have that F̄ (x) ∼
x−α−1L(x) with L being a slowly varying function. Let a(x) denote the auxiliary function of X1 (c.f,
e.g. Asmussen & Klüppelberg, 1996) that is given by a(x) = x/α in the regularly varying case. On the
set {τγ(x) <∞}, using the strong Markov property, we have that

Z =

∞∑
n=0

eSn = A′xZ
′ +B′x,

where A′x = eSτγ (x) , B′x =
∑τγ(x)−1
n=0 eSn , and Z ′ =

∑∞
n=0 e

Sτγ (x)+n−Sτγ (x) is a random variable that is
independent of (A′x, B

′
x). Our modified estimator takes the form

L∆
T (x,M) = 1{τγ(x)<∞, A′xZ′(M)+B′x>x}

τγ(x)∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
,

where Z ′(M)
=
∑M
n=0 e

Sτγ (x)+n−Sτγ (x) . The relative bias is defined as

∆(x,M) =

∣∣∣∣∣ EQ
γ
a∗L∆

T (x,M)− P(T (x) <∞)

P(T (x) <∞)

∣∣∣∣∣.
From {τγ(x) <∞,

∑τγ(x)+M
n=0 eSn > x} ⊆ {T (x) <∞} ⊆ {τγ(x) <∞} we obtain that

∆(x,M) = Θ(x,M)

P
(

max
n≥0

Sn(γ) > s(x)

)
P(Z > x)

, (30)

where

Θ(x,M) = P
(
A′xZ

′(M)
+B′x ≤ x,A′xZ ′ +B′x > x

∣∣∣ τγ(x) <∞
)

= P

(
logZ ′

(M)

a(log x)
≤ log (x−B′x)

a(log x)
− log (A′x)

a(log x)
<

logZ ′

a(log x)

∣∣∣∣∣ τγ(x) <∞

)

= P

(
logZ ′

(M)

a(log x)
≤ log (x−B′x)

a(log x)
−
Sτγ(x)(γ)− τγ(x)γ

a(log x)
<

logZ ′

a(log x)

∣∣∣∣∣ τγ(x) <∞

)
.

Note that we have seen in the proof of Theorem 6, the latter term in the RHS of (30) is bounded.
Therefore, to show that the relative bias vanishes as x→∞, it is enough to show that Θ(x,M)→ 0 as
x→∞. In the following corollary we derive the limiting distribution of ξx conditional on {τγ(x) <∞},
where

ξx ,
log (x−B′x)

a(log x)
−
Sτγ(x)(γ)− τγ(x)γ

a(log x)
=

log
(

1− B′x
x

)
a(log x)

−
Sτγ(x)(γ)− log x

a(log x)
+

τγ(x)γ

a(log x)
.

Proposition 7. Let µ , −EX1. Conditional on {τγ(x) < ∞}, ξx converges in distribution to
ξ
d
= γVα/(µ− γ)− Tα as x→∞, where Vα is a positive random variable and its tail is given by

Ḡα(x) = P(Vα > x) = (1 + x/α)−α, x > 0,

and Tα is defined on the same probability space, such that P(Vα > x, Tα > y) = Ḡα(x+ y). Moreover,
the density of ξ is given by

fξ(y) =
µ− γ
µ

(
1− y

α

)−α−1

1{y<0} +
µ− γ
µ

(
1 +

(µ− γ)y

αγ

)−α−1

1{y≥0}.
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Since both random variables logZ ′
(M)

/a(log x) and logZ ′/a(log x) converge in probability to 0 as
x→∞, the relative bias vanishes.

It should be noted that the result from the example above remains valid, if we assume that X1

belongs to the maximum domain of attraction of the Gumbel distribution. However, we want to show
the result of vanishing relative bias in a general context as described in Section 3.2. Moreover, we are
only assuming that the integrated tail of log(max(An, Bn)) is subexponential. We need the following
Lemma, of which the proof uses a similar technique as the proof of Theorem 1 in Palmowski and Zwart
(2007).

Lemma 8. Let µ , −EX1 and µγ , −ES1(γ). For ν,K > 0 consider the sets

E(1)
n = E(1)

n (K, ν) = {Sj ∈ (−j (µ+ ν)−K,−j(µ− ν) +K) , j ≤ n} ,

E(2)
n = E(2)

n (K, ν) = {Sj(γ) ∈ (−j(µγ + ν)−K,−j(µγ − ν) +K) , j ≤ n} ,

and
E(3)
n = E(3)

n (K, ν) =
{
|Bj | ≤ eνj+K , j ≤ n

}
,

where Bj = Bj −Dj. Then, for ν, ε > 0, there exists K > 0, such that

P

⋂
n≥1

(
E(1)
n ∩ E(2)

n ∩ E(3)
n

) ≥ 1− ε.

Proof. In the proof of Theorem 1 in Palmowski and Zwart (2007), the authors state that for any ν > 0
and any i.i.d. sequence {Yn}n≥0 with E

[
log+ |Y1|

]
<∞, it holds that

P
(
|Yj | ≤ eνj+K , j ≤ n

)
→ 1,

as K → ∞ uniformly with respect to n. Using this argument we conclude that P
(
E

(3)
n

)
→ 1 as

K → ∞ uniformly with respect to n. Further, combining this fact with the SLLN for {Sn}n≥0 and
{Sn(γ)}n≥0 (for details see eg. Asmussen, Schmidli, & Schmidt, 1999, Lemma 3.1), we can always take
K large enough such that

P
(
E(1)
n ∩ E(2)

n ∩ E(3)
n

)
≥ 1− ε,

for all n ∈ N. Finally, since the sequence of sets
{
E

(1)
n ∩ E(2)

n ∩ E(3)
n

}
n≥0

is decreasing in the sense of

inclusion, we obtain the result.

Due to the fact that
{
τγ(x) <∞,Ψ1:τγ(x)

(
Z ′

(M)
)
> x

}
⊆ {T (x) < ∞}, in order to prove the

vanishing relative bias result, it is sufficient to show that

lim inf
x→∞

P
(
τγ(x) <∞,Ψ1:τγ(x)

(
Z ′

(M)
)
> x

)
P (T (x) <∞)

≥ 1. (31)

In the following theorem we use a similar proof technique as in the proof of Theorem 3.1 in Dyszewski
(2016).

Theorem 9. Let Assumption 2 hold. Moreover, we are assuming that the integrated tail of log(max(A1, B1))
is subexponential. Then (31) holds.

Proof. Define

En = E(1)
n ∩ E(2)

n ∩ E(3)
n ∩

{
max

(
An+1, Bn+1

)
> xen(µ+ν)+L+K , Bn+1 ≥ −xen(µ−ν)−K

}
∩ {Z ′(1)

> ν},
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where L > 0 is chosen to be large enough, such that the sets {En}n≥0 are disjoint. Moreover, we can
show that En ⊆ {τγ(x) = n+ 1,Ψ1:τγ(x)(Z

′(1)
) > x} ⊆ {τγ(x) <∞,Ψ1:τγ(x)(Z

′(M)
) > x}. To see this,

on En we have that

Ψ1:n+1(Z ′
(1)

) ≥
n−1∑
k=0

Bk+1

k∏
j=1

Aj +
(
Bn+1 + Z ′

(1)
An+1

) n∏
j=1

Aj

≥ −
n−1∑
k=0

|Bk+1|
k∏
j=1

Aj +
(
Bn+1 + xen(µ−ν)−K + Z ′

(1)
An+1

) n∏
j=1

Aj − xen(µ−ν)−K
n∏
j=1

Aj

≥ − e2K

1− e−µ+2ν
+ min(ν, 1) max

(
An+1, Bn+1 + xen(µ−ν)−K

)
e−n(µ+ν)−K − x

≥ − e2K

1− e−µ+2ν
+ min(ν, 1) max

(
An+1, Bn+1

)
e−n(µ+ν)−K − x

≥ − e2K

1− e−µ+2ν
+ min(ν, 1)xeL − x > x,

for sufficiently large L that does not depend on x. Since {Sj(γ)}j≤n is bounded by K, µ > µγ and

Sn+1(γ) = Sn(γ) + log
(
max

(
B̄n+1e

−γ2 , An+1

))
+ γ1

> −n (µγ + ν)−K + log
(
max

(
Bn+1, An+1

))
− γ2 + γ1

> log x+ n (µ− µγ) + L− γ2 + γ1

> log x+ L− γ2 + γ1 > s(x),

for sufficiently large L that does not depend on x, we can also conclude that τγ(x) = n + 1 < ∞ by
taking x sufficiently large. This implies that

P
(
τγ(x) <∞,Ψ1:τγ(x)(Z

′(M)
) > x

)
≥
∑
n≥0

P(En)

≥ (1− ε)P(Z ′
(1)

> ν)
∑
n≥0

{
P
(

max (A1, B1) > xen(µ+ν)+L+K
)

− P
(
A1 > xen(µ+ν)+L+K , B1 < −xen(µ−ν)+K

)}
. (32)

From Assumption 2c) we conclude that, for any ε′ > 0, by taking sufficiently large x, the following
holds

P
(
A1 > xen(µ+ν)+L+K , B1 < −xen(µ−ν)+K

)
≤ P

(
A1 > xen(µ−ν)+K , B1 < −xen(µ−ν)+K

)
≤ ε′P

(
max (A1, B1) > xen(µ−ν)+K

)
.

Combining this with (32), we obtain that

P
(
τγ(x) <∞,Ψ1:τγ(x)(Z

′(M)
) > x

)
≥ (1− ε)P(Z ′

(1)
> ν)

∑
n≥0

{
P
(

max (A1, B1) > xen(µ+ν)+L+K
)

− ε′P
(

max (A1, B1) > xen(µ−ν)+K
)}

. (33)

Since P (max (A1, B1) > y) is decreasing in y, we observe that, for any n,

P
(

max (A1, B1) > xen(µ+ν)+L+K
)
≥ 1

µ+ ν

∫ log x+L+K+(n+1)(µ+ν)

log x+L+K+n(µ+ν)

P (log max (A1, B1) > y) dy,
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and that

P
(

max (A1, B1) > xen(µ−ν)+K
)
≤ 1

µ− ν

∫ log x+K+n(µ−ν)

log x+K+(n−1)(µ−ν)

P (log max (A1, B1) > y) dy.

Moreover, using the fact that F̄I is long tailed, we obtain from (33) that

P
(
τγ(x) <∞,Ψ1:τγ(x)(Z

′(M)
) > x

)
≥ (1− ε)P(Z ′

(1)
> ν)

(
1

µ+ ν
F̄I(log x+ L+K)− ε′

µ− ν
F̄I(log x+ L+K − (µ− ν))

)
∼ (1− ε)P(Z ′

(1)
> ν)

(
1

µ+ ν
− ε′

µ− ν

)
F̄I(log x)

∼ µ(1− ε)P(Z ′
(1)

> ν)

(
1

µ+ ν
− ε′

µ− ν

)
P(T (x) <∞). (34)

where in (34) we use Dyszewski (2016, Theorem 3.1). Letting ε, ε′, ν → 0 we obtain the result. This
result implies that the relative bias converge to 0, since the numerator in (31) is always smaller than
the denominator.

Let the conditions in Theorem 6 and Theorem 9 be satisfied. The following algorithm for estimating
P(Z > x) has bounded relative error and vanishing relative bias as x→∞.

Algorithm 2.

STEP 0. For fixed δ ∈ (0, 1), set a∗ ←− a∗(δ) ≤ 0 satisfying (12).

STEP 1. Initialize s←− 0, z ←− 1 and L←− 1.

STEP 2. Set s′ ←− s and z′ ←− z. Run Algorithm 1 until the random walk Sn(γ) crosses
s(x). Meanwhile, update s and L according to STEP 2 of Algorithm 1, then update z via
the backward iteration.

STEP 3. Set i←− 0, s′ ←− s and z′ ←− z. While i < M , update z via the backward iteration,
z′ ←− z and i←− i+ 1.

STEP 4. If z > x then return L. Otherwise, return 0.

6 Truncation Index and Unbiased Estimator
In this section we analyze the asymptotic behavior of the relative bias as M →∞ for fixed x, based on
which we propose an unbiased estimator for P(Z > x) using the technique studied in Rhee and Glynn
(2015). We first go back to the Example 2—i.e., the stochastic perpetuity example with Bn = 1.

Example 2 (continued). Consider the Markov chain given by (14). From (30) we know that in order
to analyze the relative bias we need to consider the term Θ(x,M), which is given by

Θ(x,M) = P
(
A′xZ

′(M)
+B′x ≤ x,A′xZ ′ +B′x > x

∣∣∣ τγ(x) <∞
)
.

Let P(x) (·) denote the conditional probability of P (· | τγ(x) <∞) and E(x) the corresponding expecta-
tion operator. Note that

Θ(x,M) =

∫
1{

Z′(M)≤ x−B
′
x

A′x
,Z′>

x−B′x
A′x

}dP(x)

=

∫
P(x)

(
Z ′

(M) ≤ y, Z ′ > y
)
P(x)
ξx

(dy)

=

∫ {
P(x) (Z ′ > y)− P(x)

(
Z ′

(M)
> y
)}

P(x)
ξx

(dy) , (35)
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where (35) follows from the fact that
{
Z ′

(M)
> y
}
⊆ {Z ′ > y}. Using the strong Markov property we

have that Z ′(M) d
=Z(M) and Z ′ d=Z under P(x). Therefore, we can write (35) as

Θ(x,M) =

∫ {
P (Z > y)− P

(
Z(M) > y

)}
P(x)
ξx

(dy) .

Combining this with the fact that the backward iteration Z(M) has the same distribution as ZM , we
obtain that

Θ(x,M) =

∫
{P (Z > y)− P (ZM > y)}P(x)

ξx
(dy) ≤ dTV (ZM , Z) (36)

where dTV denotes the total variation distance. To get a handle on this quantity, we apply the Lyapunov
criterion in Jarner and Roberts (2002, Theorem 3.6), which implies a polynomial convergence rate of
the M -step transition kernel to the invariant distribution in the total variation norm. We assume that
the Markov chain {Zn}n∈N given by (14) is irreducible and aperiodic; this is the case, for example,
if A1 has a Lebesgue density (Buraczewski et al., 2016, Lemma 2.2.2). Moreover, assume that there
exists an integer q ≥ 2 such that E|X1|q < ∞. In order to establish the Lyapunov condition, let
V (x) = 1∨ (log x)q. Note that V (x) = (log x)q1{x>e}+1{x≤e} and hence the binomial expansion gives

PV (x) = E
[

(log (A1x+ 1))
q
1{A1x+1>e} + 1{A1x+1≤e}

]
= E

[(
log

A1x+ 1

x
+ log x

)q
1{A1x+1>e} + 1{A1x+1≤e}

]
= E

[
(log x)q1{A1x+1>e} +

q∑
i=1

(
q

i

)
(log x)q−i

(
log

A1x+ 1

x

)i
1{A1x+1>e} + 1{A1x+1≤e}

]
= V (x) + E(log x)q(1{Axx+1>e} − 1{x>e}) + E(1{A1x+1≤e} − 1{x≤e})

+ q(log x)q−1E
(

log
A1x+ 1

x
1{A1x+1>e}

)
+ E

q∑
i=2

(
q

i

)
(log x)q−i

(
log

A1x+ 1

x

)i
1{A1x+1>e}

For x > e,

PV (x) ≤ V (x) + P(A1x+ 1 ≤ e) + q(log x)q−1E
(

log
A1x+ 1

x
1{A1x+1>e}

)
+

q∑
i=2

(
q

i

)
(log x)q−i E

[(
log

A1x+ 1

x

)i
1{A1x+1>e}

]
.

Note that
∣∣log A1x+1

x 1{A1x+1>e}
∣∣ ≤ | logA1|+ C for some constant C and noting that the right-hand-

side doesn’t depend on x and has finite q-th moment, there has to be ci’s such that
q∑
i=2

(
q

i

)
(log x)q−i E

[(
log

A1x+ 1

x

)i
1{A1x+1>e}

]
≤

q−2∑
i=0

ci(log x)i ≤ ε(log x)q−1

for sufficiently large x. On the other hand, note that log A1x+1
x 1{A1x+1>e} converges to X1 = logA1

almost surely as x→∞ and hence by dominated convergence E
(
log A1x+1

x 1{A1x+1>e}
)
→ E logA1 < 0.

Therefore, for any fixed ε > 0,

q(log x)q−1E
(

log
A1x+ 1

x
1{A1x+1>e}

)
≤ (qEX1 + ε)(log x)q−1

for sufficiently large x. Choosing ε so that qEX1 + 3ε < 0 and noting that P(A1x + 1 ≤ e) → 0 as

x → ∞, as well as (log x)q−1 =
(
(log x)q1{x>e} + 1{x≤e}

) q−1
q for x > e, we conclude that there exists

K such that

PV (x) ≤ V (x) + ε(log x)q−1 + (qEX1 + ε)(log x)q−1 + ε(log x)q−1

≤ V (x)− cV (q−1)/q(x)
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for x > K, where c = −(qEX1 + 3ε) > 0. Finally, since PV (x), V (x) and V (q−1)/q(x) are bounded on
C = [0,K], there exists a constant b such that

PV (x) ≤ V (x)− cV (q−1)/q(x) + b1C ,

which is the sufficient condition in Jarner and Roberts (2002, Theorem 3.6) for polynomial ergodicity;
we conclude that the M -step transition kernel converges to the stationary distribution in the total
variation norm at a polynomial rate with order q − 1, i.e., there exists a constant κ′ satisfying

Θ(x,M) ≤ dTV (ZM , Z) < κM−(q−1), (37)

for all M ∈ N. It should be noted that an exact expression of the constant κ can be obtained in a few
special cases—for example, see e.g. Douc, Moulines, and Soulier (2007), Kalashnikov and Tsitsiashvili
(1999) and the references therein. However, applying the method studied in Rhee and Glynn (2015)
we can get rid of this constant altogether and obtain an unbiased, strongly efficient estimator. In order
to apply the method, a sufficient condition is to bound

EQ
γ
a∗ (L∆

T (x,M)− LT (x))2

P(Z > x)2
(38)

by a decreasing function of M independent of x. Once we can have such a bound, we can construct an
unbiased estimator that is given by

LRG
T (x) ,

N∑
i=0

L∆
T (x, 2i)− L∆

T (x, 2i−1)

P(N ≥ i)
, (39)

whose second moment is
∞∑
i=0

EQ
γ
a∗ (L∆

T (x, 2i−1)− LT (x))2 − EQ
γ
a∗ (L∆

T (x, 2i)− LT (x))2

P(N ≥ i)
,

where N is a random truncation index independent of everything else and L∆
T (x, 2i) is interpreted as 0

if i < 0 (for details see Rhee & Glynn, 2015, Theorem 1). It turns out that such a bound on (38) can
be derived easily, if

sup
x>0

EQ
γ
a∗L2+ε

T (x)

P(Z > x)2+ε
<∞ (40)

holds for some ε > 0. In case this is possible for some positive ε > 0, we can proceed as follows: let
Ex(i) = A′xZ

′(2i) +B′x and Ex = A′xZ
′ +B′x. For β ∈ (0, 1), using the Hölder’s inequality we get that

EQ
γ
a∗
[
(L∆

T (x, 2i)− LT (x))2
]

P (Z > x)2
=
EQ

γ
a∗

[
1{τγ(x)<∞,Ex(i)≤x,Ex>x}(M

−1
τγ (x))2

]
P(Z > x)2

=

EQ
γ
a∗

[(
1{τγ(x)<∞,Ex(i)≤x,Ex>x}M

−1
τγ (x)

)β (
1{T (x)<∞}M

−1
τγ (x)

)2−β
]

P(Z > x)2

≤
EQ

γ
a∗

[
1{τγ(x)<∞,Ex(i)≤x,Ex>x}M

−1
τγ (x)

]β
P(Z > x)β

EQ
γ
a∗

[
1{T (x)<∞}M

−1
τγ (x)

2−β
1−β

]1−β
P(Z > x)2−β

=

[
EQ

γ
a∗1{τγ(x)<∞,Ex(i)≤x,Ex>x}M

−1
τγ (x)

P(Z > x)

]β EQγa∗L 2−β
1−β
T (x)

P(Z > x)
2−β
1−β

1−β

. (41)

The first term in (41) is bounded by
(
κ2−i(q−1)

)β
due to (37), and the second term is uniformly

bounded w.r.t. x. Therefore, the second moment relative to P (Z > x)2 can be bounded uniformly
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w.r.t. x, if we choose β and N in a suitable way. For example, setting β , 1+2ε
q−1 where ε > 0 is small

enough to ensure that β < 1, and then N such that P(N ≥ i) = 2−i(1+ε), one can achieve the purpose.
Finally, we are left with verifying (40), which turns out to be possible by adapting the idea as described
in Blanchet and Glynn (2008). Using the same argument as in the proof of Theorem 6, it is sufficient
to analyze the term that is given by

EQ
γ
a∗L2+ε

τγ (x)

P (τγ(x) <∞)
2+ε . (42)

The following Lemma, which can be considered as an extension of Theorem 2, proves that the estimator
LRGT (x) defined in (39) is an unbiased estimator of P(Z > x) and is strongly efficient.

Lemma 10. Suppose that EX1 < 0 and X1 belongs to S∗. Fix γ ∈ (0,−EX1). Let vγ and wγ be
defined as in (25) and (26). Let ε > 0. For fixed δ ∈ (0, 1), one can choose a∗ = a∗(δ) ≤ 0 so that

−δ ≤
v2+ε
γ (y)− w2+ε

γ (y)

P(X1 > −y)w1+ε
γ (y)

, ∀y ≤ s(x) + a∗.

Let

Lτγ (x) , 1{τγ(x)<∞}

τγ(x)∏
k=1

wγ(Sk−1 + a∗)

vγ(Sk + a∗)
.

Then Lτγ (x) is an unbiased estimator of P(maxn∈N Sn > s(x)) under PQa∗ , and

sup
x>0

EQa∗L2+ε
τγ (x)

P
(

max
n≥0

Sn > s(x)

)2+ε <∞,

where PQa∗ denotes the probability measure associated with the random walk {Sn}n∈N having the one-
step transition kernel

Qa∗(y, dz) = P (y, dz)
vγ(z + a∗)

wγ(y + a∗)
,

and EQa∗ denotes the corresponding expectation operator.

Proof. The proof including the existence of a∗ can be found in Appendix B.

Note that the above discussion can easily be extended to cover the general stochastic recursion. We
conclude this section with the following theorem.

Theorem 11. Suppose that ES1(γ) < 0, S1(γ) belongs to S∗ and Assumption 2 holds. Let vγ and wγ
be defined as in (25) and (26). For fixed δ ∈ (0, 1) and β ∈ (0, 1), set a∗ = a∗(δ) ≤ 0 satisfying

−δ ≤ v
2−β
1−β
γ (y)− w

2−β
1−β
γ (y)

P(X1 > −y)w
1

1−β
γ (y)

, ∀y ≤ s(x) + a∗.

Moreover, assume that E| logA1|q +E| log B̄1|q <∞. Then, it is possible to choose N independently of
x, such that

∞∑
i=0

EQ
γ
a∗ (L∆

T (x, 2i−1)− LT (x))2

P(Z > x)2P(N ≥ i)

converges, and hence, the estimator LRGT (x) defined in (39) is unbiased and strongly efficient.

Remark 3. Note that, in general, the bias elimination scheme of Rhee and Glynn (2015) is not guar-
anteed to produce non-negative estimators, which might not be ideal in the context of estimating (rare
event) probabilities. However, in our case, L∆

T (x,M) increases w.r.t. M , and hence, the resulting
unbiased estimator LRGT (x) is always non-negative.
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Figure 1: Estimated probabilities for changing values of M . The y-axis values indicate the estimated
rare-event probabilities and the vertical bars indicate the 95% confidence intervals. The x-axis values
indicate the truncation index M . In each of the subplot, we can see that as M increases, the estimated
probability converges to a fixed value, which suggests that our estimator is consistent with respect to
M . Comparing the four subplots for different value of x, one can see that the relative bias for small
M decreases as x grows.

7 Numerical Results
Here we investigate our algorithm numerically based on a stochastic perpetuity with Bn = 1. We
consider the increment Xn

d
=W − 3/2 where W is a random variable with Weibull distribution:

P(W > t) = exp
(
−2t1/2

)
.

For the algorithmic parameters, we chose a∗ = −10, γ = 0.5. Moreover, we use a geometric distributed
random truncation index with parameter 0.5. Figure 1 shows the change of estimated probability with
respect to the different choice of M for 4 different values of x = 108, x = 1016, x = 1032, and x = 1064

in each of the four plots. One can see that the estimated probability stabilizes as M grows, which
suggests that our estimator is consistent as M →∞. Comparing the four plots, one can also tell that
the initial bias for small M decrease as x increases, which is consistent with the conclusion of Theorem
9 (vanishing relative bias). Table 1 reports the estimated probabilities, their 95%-confidence intervals
and the estimated coefficients of variation, that is, the estimated standard deviation divided by the
sample mean (based on 200000 samples), for different values of x and M . In the last column, we
present the results produced with the unbiased algorithm as introduced in Section 6. We can see that,
on the one hand the ratio between the estimated probability and the standard deviation stays roughly
constant over a range of x values and M values; on the other hand, the estimated probability using
the fix truncation method tend to converge to the estimated probability produced with the unbiased
algorithm as M grows. These observations are consistent with the strong efficiency—predicted in
Theorem 6 and Theorem 11—of our estimators.
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Est
CI
CV

M = 22 M = 24 M = 26 M = 28 RG

x = 108
1.083× 10−3

±0.009× 10−3

2.06

1.117× 10−3

±0.010× 10−3

2.10

1.120× 10−3

±0.010× 10−3

2.10

1.120× 10−3

±0.010× 10−3

2.10

1.119× 10−3

±0.013× 10−3

2.70

x = 1016
4.271× 10−5

±0.041× 10−5

2.17

4.373× 10−5

±0.042× 10−5

2.22

4.383× 10−5

±0.043× 10−5

2.22

4.383× 10−5

±0.043× 10−5

2.22

4.375× 10−5

±0.053× 10−5

2.76

x = 1032
3.583× 10−7

±0.035× 10−7

2.25

3.646× 10−7

±0.037× 10−7

2.28

3.650× 10−7

±0.037× 10−7

2.29

3.650× 10−7

±0.037× 10−7

2.29

3.663× 10−7

±0.045× 10−7

2.81

x = 1064
4.079× 10−10

±0.037× 10−10

2.05

4.120× 10−10

±0.037× 10−10

2.06

4.123× 10−10

±0.038× 10−10

2.06

4.123× 10−10

±0.038× 10−10

2.06

4.115× 10−10

±0.041× 10−10

2.27

Table 1: Estimated rare-event probability and 95% confidence intervals. One can see that, on the one
hand the ratio between the standard deviation and the estimated probability stays roughly constant
for different combinations of x and M , on the other hand, as M grows, the estimated probability
produced with the fix truncation method tends to converge to the estimated probability produced with
the unbiased algorithm, which suggests the consistency and the strong efficiency of our estimators
predicted by Theorem 6 and Theorem 11.

Appendix
A Proof of Proposition 7
First we claim that, conditional on {τγ(x) <∞}, the first term in ξx converges to 0 in probability. Let
ε > 0 be arbitrary, we have that

P

 log
(

1− B′x
x

)
a(log x)

≤ −ε

∣∣∣∣∣∣ τγ(x) <∞

 = P
(
B′x
x
≥ 1− x− ε

α

∣∣∣∣ τγ(x) <∞
)
.

Let Mτγ(x) denote the maximum of {Si(γ)}i≤τγ(x)−1. It is well known that Mτγ(x) = O(1) (cf. the
proof of Theorem 1.1 in Asmussen & Klüppelberg, 1996). Moreover, B′x is bounded by

B′x =

τγ(x)−1∑
n=0

eSn =

τγ(x)−1∑
n=0

eSn(γ)−nγ ≤ eMτγ (x)

τγ(x)−1∑
n=0

e−nγ ≤ eMτγ (x)(1− e−γ)−1.

Therefore, for α > 0, we have that

P
(
B′x
x
≥ 1− x− ε

α

∣∣∣∣ τγ(x) <∞
)
≤ P

(
Mτγ(x) − log x− log(1− e−γ) ≥ log(1− x− ε

α )
∣∣ τγ(x) <∞

)
= P

(
Mτγ(x)

a(log x)
− log x

a(log x)
− log(1− e−γ)

a(log x)
≥ log(1− x− ε

α )

a(log x)

∣∣∣∣ τγ(x) <∞
)

→ 0, (43)

as x → ∞, since log x/a(log x) = α. The convergence of the last two terms in ξx is an application of
Asmussen and Klüppelberg (1996, Theorem 1.1).
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B Proof of Lemma 10
First notice that the numerator in (42) is equal to EL1+ε

τγ (x). Analogous to Blanchet and Glynn (2008,
Theorem 2), we can derive a similar result for EL1+ε

τγ (x) simply by replacing r with r1+ε, where

r(y, z) =
v(z)

w(y)
,

and v, w are defined in the corresponding way as in (7). Based on this observation we claim the
following Proposition (cf. Blanchet & Glynn, 2008, Proposition 2):

Proposition 12. Let P (y, dz) denote the transition kernel of the random walk {Sn}n∈N. Assume that
w(y) > 0 for y ≤ s(x) and that there exists a finite-valued function h : R −→ [δ1,∞) satisfying

w1+ε(y)

∫
v(z)h(z)P (y, dz) ≤ h(y)v2+ε(y), (44)

for y ≤ s(x). If h(z) ≥ 1 for z > s(x) and v(z) ≥ δ2 > 0 for z > s(x), then we have that

EL1+ε
τγ (x) ≤ δ−1

1 δ
−(2+ε)
2 v2+ε(y)h(y).

Recall that vγ defined as in (25) depends implicitly on x. The Pakes-Veraverbeke’s Theorem implies
that P(τγ(x) < ∞) ∼ vγ(y) for every fixed y as x → ∞. This observation gives us a way to prove
Lemma 10: first find a suitable function h such that (44) holds with v and w being defined as in (21)
and (22), then the result can be yielded using Proposition 12. Define

h(y) = 1(−∞,s(x)−a∗](y) + (1− δ)1(s(x)−a∗,∞)(y).

Now (44) is equivalent to (cf. the proof of Theorem 3 in Blanchet & Glynn, 2008)

−δ ≤
v2+ε
γ (y + a∗)− w2+ε

γ (y + a∗)

P(X1 > −y − a∗)w1+ε
γ (y + a∗)

, ∀y ≤ s(x).

Using the definition of wγ and noticing the non-negativity of Wγ , (11) implies particularly that w(y)−
v(y) = o(w(y)), as y → −∞. Therefore, such a∗ can be found.
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