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A note on the covering of all triples on 7 points with Steiner triple 

systems 

by 

A.E. Brouwer 

ABSTRACT 

We give a partition of the thirty Steiner .triple systems on seven points 

into three sets of ten, each set covering all triples exactly twice. In the 

language of designs, considering the 35 triples on seven points as points, 

we look for block designs with the restriction that each block is a Steiner 

triple system. In particular k = 7 and b = SA. It is well known since 

Cayley that such a design does not exist for A= I, while it was known for 

A= 3. Here we give it for A= 2 thus proving the existence of the design 

for each A> 1. 
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O. INTRODUCTION 

If E is a _design (i.e. a collection of subsets of a finite set) and V 

is a collection of designs then a A-cover of Eby V, called a CA(E,V), is 

a collection {V.lj € J} of designs such that 
J 

(i) 

(ii) 

(iii) 

each V. is isomorphic to an element of V 
J 

U{V. I j € J} = E 
J 

each E € E occurs in exactly A of the V •• 
J 

If A= 1 we will drop the subscript. 

Specializing V and Ewe get all kinds of familiar designs some of which are 

needed below. 

1. Let In be a fixed set of size n, and let Sk(n) be the collection of all 

k-subsets of In. Then a CA(s2(v), {S2(k)lk € K}) is a pairwise balanced 

design with block sizes in K: a PBD(K,A;v). In particular a CA(s
2
(v), 

{S2(k)H is a BIBD(b,v,r,k,A). More generally, a CA (St(v), {St(k)}) is a 

t-design. 

2. Let V be the collection of all Steiner triple systems on v points: 

V := S := STS(v) and Ethe collection of all triples on v points: 
V 

E = s3(v), then an AA(v) := CA(E,V) is a A-fold cover of all triples 

with Steiner triple systems. 

In particular an A1(v) is a partition of all triples in disjoint 

STS(v)'s. Such partitions have been found among others by T.P. Kirkman 

[3], R.H.F. Denniston [2], A. Rosa [5] and L. Teirlinck [6]; it is con­

jectured that they exist for each v ~ 7 (for which an STS(v) exists, 

that is, for v = 1 or 3 (mod 6)), and they are known for all v < 100 

except v = 37, 85, 97. For v = 7 however the maximum number of pairwise 

disjoint STSs is 2 (Cayley [1]), so it is impossible to cover s3(7) 

with 5 disjoint STS(7). Lindner & Rosa [4] showed the existence of an 

A3(7), and in this note we will show the existence of exactly two dif­

ferent A2(7) so that for each A> 1 an AA(7) exists. 

3. Finally, take V = AA(7) and let S7 be the collection of all STS(7). 

Note that IAI = SA for each A€ AA(7) and IS7 1 = 30. Obviously a 

C(S7,AA(7)) can exist only if 5Al30 i.e. if A€ {1,2,3,6}. For A= 6 
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we have the trivial C(S7,A6(7)) obtained by taking {S7}. Lindner & Rosa 

showed the existence of a C(S
7

,A3(7)) i.e. a partition of the 30 STS(7) 

in two A
3
(7)'s, and here we will show the existence of exactly two 

C(S
7
,A/7)) one containing A2(7) 1 s of different types while the other 

contains three isomorphic A2 (7). Finally, since A1 (7) does not exist 

neither does C(S
7

,A1(7)). This settles all cases. 

I. TRIPLES 

On 7 points there are(~)= 35 triples. These triples can be divided 

into five cyclic I-designs: (represent a triple by a characteristic vector 

of length 7) 

A: circ(lllOOOO) 

B: circ( 1001100) 

C: circ(l O 10100) 

D: circ(IOI 1000) 

E: circ(llOIOOO) 

In this way each triple gets a name: A
0 

= (1110000), A
1 

= (0111000), 

C4 = (0100101) etc. 

2. STEINER TRIPLE SYSTEMS 

On 7 points there are 30 Steiner triple systems (all isomorphic), par­

titioned into six orbits (with sizes 7,7,7,7,1,1) under the action of a 

cyclic shift. 

We give from each of the orbits X the element x
0

: 

IO: 1110000 i.e. AO IV
0

: 0001101 E3 
1001100 BO 0110001 D6 
1000011 AS 1000011 AS 
0101010 Cl 0011010 E2 
0100101 c4 0100110 Bl 
001100 I B6 1010100 co 
0010110 D2 1101000 EO 

,, 
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IIO: 0000111 A4 v: 1101000 EO 
0011001 B6 0110100 El 
1100001 A6 0011010 E2 
0101010 Cl 0001101 E3 
1010010 cs 1000110 E4 
1001100 BO 0100011 ES 
0110100 El 1010001 E6 

III
0

: 1011000 DO VI: 1011000 DO 
1000110 E4 0101100 DI 
1100001 A6 0010110 D2 
0101100 DI 0001011 . D3 
0110010 BS 1000101 D4 
0010101 c2 1100010 DS 
0001011 D3 0110001 D6 

That there are no more Steiner triple systems can be seen for instance from 

the fact that V has an automorphism group of order 168 = 7.6.4 (and the 

fact that all STS(7) are isomorphic, which is readily seen by looking at I 0). 

Each triple occurs in six STS(7), i.e. we have the trivial A6(7) = s
7 

and therefore a unique C(S7,A6(7)). 

Incidences between triples and STSs can be read off the following table: 

I II III IV V VI 

A 05 46 6 5 

B 06 06 5 

C 14 15 2 0 

D 2 013 6 - 0-6 

E 4 023 0-6 -

Here the entry 05 in row A, column I means that I
0 

contains the triples A
0 

and A
5 

(and hence I 1 contains A1 and A
6 

etc.). 

Intersections between STSs: two STS(7) have either O or or 3 triples 

in common. If we take all STS(7) with intersectionnr I with a given STS(7), 

then it is found that these STS(7) also have mutual intersectionnr 1. In this 
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way we get the two sets {I
0

_6 , rv
0

_6 , VI} and {II
0

_6 , III
0

_6 , V}; where two 

STS(7) have exactly one triple in connnon iff they are in the same set. 

Each of these two sets covers all triples exactly thrice, that is, we have 

here two isomorphic A3(7) covering S7: an C(S7,A3(7)). 

If two STS(7) have intersectionnr 3 then the three triples they have in com­

mon intersect in a singleton; for instance r
0 

n n-
0 

= {B
0

, B6, c
1

} and 

B
0 

n B6 = BO n c
1 

= B6 n c1 = B0 n B6 n c1 = {3}: 

BO = ( 1001100) 

B6 = (0011001) 

Cl = (0101010) 

{3} = (0001000) 

Conversely, given a singleton, then it is associated in this way with 90 

pairs of STS(7) with intersectionnr 3. 

The following table gives for each singleton and a representative from 

each orbit of STS(7)'s the uniquely determined STS(7) such that the single-

ton is associated with this pair of triple systems. 

0 2 3 4 5 6 

IO II
1 113 III

1 
II 

0 
III2 III

6 I\ 

IIO II IV I rv5 IO IV6 14 16 

III
0 IV l 16 15 VI IV2 IV4 Il 

IVO 116 III3 IIIS V 112 II
1 

III
6 

V IV4 IVS rv
6 

rv
0 IV l IV2 IV3 

VI III
4 IIIS III6 III

0 
III

1 
III

2 
III

3 

Finally, each STS(7) is disjoint from (the remaining) 8 systems; for example 

r0 is disjoint from II2, II4, II5, III0 , III3 , III4, IIIS' V. Since these 

8 systems have always mutual intersectionnr 1, it follows that there are 

no three mutually disjoint STS(7). In particular it is not possible to cover 

all triples with 5 mutually disjoint STS(7), i.e. an A
1
(7) does not exist. 
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3. NOTE ON THE A
3

(7). 

The A
3

(7) indicated above is an interesting system: 

Firstly, if we view the 35 triples as points, then the 15 STS(7) are vectors 

of length 35 and weight 7 and mutual distance 12. But by the. Johnson bound 

the maximum number of vectors with these properties is 15, i.e. A3(7) is an 

optimal constant weight code showing that A(35,12,7) = IS. 

Secondly, if we view the 15 STS(7) as points then each triple determines a 

triple of STS(7) [since the 15 STS(7) cover all triples thrice], while each 

pair of STS(7) determines one triple [their intersection]. 

Therefore we have a block design with v = 15, b = 35, k = 3, r = 7, X = 
in other words, an STS(lS). 

It is easy to see that there are other A3(7)'s besides the one indicated 

above. In fact if one fixes a triple (say D6) then the three STS(7) from 

M
1 

:= {I
0

_
6

, IV
0

_
6

, VI} containing D6(sc.I4 , IV0 , VI) and the three STS(7) 

from M2 := {II0_6, III
0

_6 , V} containing D6 (sc. III3 , III5, III6) contain 

the same triples, namely besides n6 both sets of three STS(7) cover exactly 

those triples which intersect n6 in a single point. Therefore one might 

exchange {I4 , IV0 , VI} and {III3, III
5

, III
6

}, thus obtaining two new 

A3(7): Mj and M2 (which of course together form a C(S7 ,A3(7))). 

This process may be repeated, exchanging three STS(7) between Mj and M2 
giving M1 and M2. In this way we obtain at least three non-isomorphic types 

of A/7) namely MI' M 1 and M1

1
1

• I do not know whether there are any other 

types besides these. 

4. DESCRIPTION OF THE TWO TYPES OF A
2
(7). 

In order to examine all possibilities for an A2(7) we first need to 

know how many different (i.e. non-isomorphic) pairs of STS(7) there are. 

Of course the cardinality of the intersection of the pair is an invariant; 

on the other hand, by examining a few permutations it is readily seen that 

this is the only invariant: two pairs of STS(7) are isomorphic iff they 

have the same intersectionnr. 

BIBLIOTHEEK MP,THEMATISCH CENTRUM 
--AMSTERDAM--
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Now considering the number of triples of each of the types A, B, C, D 

and E contained in STSs of each of the orbits it is found that an A2(7) 

must contain t~o disjoint STS(7), say V and VI. Now it follows in the same 

way that we need 3 systems of types I and II each and 1 system of types III 

and IV each. [Note that an A2(7) contains 10 STS(7).J By using an appropri-

ate cyclic shift we may ensure the the occurrence of 1110• 

The collection {V, VI, III0} can be completed to an A2(7) in four ways, 

giving the systems 

1. V, VI, III0, IO' 12, 13, IIO, II4, 115, rv0 

2. v, VI, III0, IO, 12, 14, 112, 114, 116, rv
6 

3. V, VI, III0, IO' 13, 14, II1, II2, 115, IV 5 

4. V, VI, III0 , 12' 13, 14, IIO, II
1

, 116' rv3 

The permutation (016)(245) maps 2. onto 3. and (015)(246) maps 3. onto 4., 

hence the last three systems are isomorphic. The first two systems however 

are not isomorphic as can be seen as follows: 

Both systems can be partitioned in five pairs of systems with intersec­

tionnr 3 (we write the point associated with such a pair in front of it): 

I. 3: (10,110), 

2. 6: (1
0

,11
6
), 

3:(12,115), 

5: (I2 , II
2
), 

3:(13,114), 

O:(I4,II4), 

3: (V, IV 0), 

2: (V, IV 
6
), 

3:(VI,III0) 

3: (VI, IIIO) 

That is, the first type of A2(7) has associated with it a unique point (in 

the above case the point {3}) while the second type of A2(7) has associated 

with it a pair of points (those not occurring as point associated with a 

pair with intersectionnr 3, in the above case the pair {1,4}). 

The structure of an A2(7) of the first kind - called a centered A2(7) -

can be described as follows: 

I. Colour of the edges of a K6 with five colours 

(three edges of each colour). 

2. Add a seventh point {00 } to each of these edges; this gives 15 triples 

divided in five groups of three. 

3. Each group of three triples can be completed to an STS(7) in exactly 
,, 
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two ways. This gives five pairs of STS(7). 

It is easily seen that these ten STS(7) form a centered A2(7), and 

since all centered A2(7) are isomorphic each A2(7) is obtained in this way. 

Since there are 6 ways to colour a K6 there are 6 A2(7) with a given center, 

and 42 A2(7) in all. 

Two centered A2(7) with the same center have exactly one pair (with 

intersectionnr 3) in common; given an A2(7) with center {i} and a point 

j Ii then there is exactly one A2(7) with center {j} disjoint from the 

given one. Two such disjoint centered A2(7) determine a unique C(S7 ,A2(7)) 

the third A2(7).simply consisting of all STS(7) not occurring in the first 

two. This third one is of the second kind, with associated pair {i,j}. 

Therefore there are 6 A2(7) of the second kind associated with a given pair 

{i,j}, and 126 A2(7) in all. 

Given an A2(7) associated with the pair {i,j} then an A2(7) of the 

second kind disjoint with it must be associated with a pair {i,k} 

or {j,k} with kt {i,j}. Indeed, given an A2(7) associated with {i,j} and a 

point {k} there is exactly one A2(7) associated with {i,k} disjoint with it. 

Two such disjoint A2(7) of the second kind determine a unique C(S7,A2(7)), 

the third A2(7) being associated with {j,k}. Therefore there are two differ­

ent C(S7,A2(7)), the first containing 2 centered A2(7) and the second con­

taining no centered A2(7); there are 126 of the first type and 210 of the 

second type. 
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