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§1. Introduction

A problem in the theory of electromagnetic waves studied by
B. van der Pol [1] led to the qguestion: Does there exist a

function h(t) so that
Y/ Vx2+a2p2
Jolpx)x dx

(1) £(p) =j e _ ,
A cVxTra peed ¥ xeepepe

is the Laplace transform of h(t) in the sense that

(2) £(p) = p fme“pt h(t)dt *

And if the answer is affirmative, give & manageable expression
for this function h(t).

These problems will be solved in this paper by meansg of the
complex inversion theorem for Laplace transforms ([27], Satz 21.2,
p. 182). However, this theorem cannot be applied to f(p). There-
fore, in §2, we shall study a Tunction £ (p), to which the
inversion theorem applies if x>0, and which has the property
£ (p) — f(p) if u~+0. We shall find a function @a;(t) which is
related to Eu,(p) by (2) if «>0. 1In § 3 we prove that Qa‘(t)
has a limit h(t) if «—+ 0, and in § 4 it will be shown that this
function h(t) solves our problem,

Finally, in § 5 we shall give the required manageable ex-
pressions, namely complete elliptic integrals.

Throughout the paper 1t will be assumed that p,z,a,b,c,d

are positive numbers, and a#b,

The method of this paper applies equally well if in (1)
Jo(px) is replaced by J (px), where ¥ is a natural number.



2. A gencralization.

.

In this section we consider the function

o2
.

co VY 2 ‘
- K= N X TR DT ,
O T Salp)x o
° . \/V +ﬂ p +fi \/ -’r'O :

for positive values of . (If w =0 we have again the function

f(p) defined in the previous section.) e shall try to £ind the
original @Ab(t) of ?AL(p) in the sense of (2). Ls we intend to
apply the complex inversion formula fo,- Laplace transforms, we

have to investigate the analytic continuatlon of f (p) into a

right half-plane., Therefore it is necessary to JCLLNG the functions

7

s [ 'L . /v ;. _ .R. -
Vx“+a“p” ard V x +o° p~ for complex values

ﬁ of p. We meke two cuts C and Cb in the

& complex w~p}ane. Ca oon31st of the two

?' intervals (%,100) an(: §,~1oo) on the
:% imaginary aiisn 1+aawa is delined 1in the
4 Fig: 1 w-plane with cut C_ so that the root 1is

a
noslitive on the real axils. If p=xw then

) f\
J’ +a_p is defined as x Y 1+a“w“., In an analogous way ¢, and
+b D are delined. It is not dilfficult to prove that

22
(4) Re V1+2°w" 3 Re aw,
Applying this in the case Re p > 0, we find

\/ 2 2
Re Vx"+ap~ 3 O,

If p=¢ +it (6> 0, T>0), then we have

2. .2 =
Im V zx"4+a“p" > O,

a nd .~ I ~ ~ L} I —
|‘\/x£+a‘ipa b= V?xd+a‘(52—t“)+2a“@~ci] > aV2cT,
And in a similar way

Im J xZ40°p° > 0, f\/x2+b2p21a13V12vr.

Therefare we find
| ¢ Vx ©1a%p° + d\/x “+p° ]}V&EG!%]V;202+b2d2.

The same result holds if T <O,
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1f |t|<6 we also have the estimations

| VX2+agp2 3 2 \/6“2—‘[2, ’\/x2+b9p2‘,> by 6C-1°

}c x“ra”p® + g \/){2+b2p2}>\/6"2-~7&2 2%e% mea”

Applying these results we find

- AL 2 ~
(5) e M z\/x “+a%p* Jolpx)x é(ye A 700 px)!x‘ )
/x2+a2pgﬂiv§2+b2 2 Vaqc2+bmd2
, 1
where Y=(2¢|T|)7%, and ir |T|<c we may also take g’=(62—12)'2.

It follows from this that the integral (3) is absolutely convergent
in the half plane Re p> 0, and that

£, (o) |>0 i |p|—>o

uniformly in the halfplane Re p 2z 22 (ﬁ i1s an arbitrary positive
number) .
Another consequence of (5) is
o+l

£,.(p)
/LLp ‘dp*:@o

¢ =1loo
if &> 0.,
Finally, 1t can be shown that ?xc(p) is an analytic function
in the half plane Re p > 0.
Qu,(p> satisfies the conditions of the complex inversion
theorem ([2] , Satz 21.2, p.182). Hence,the function h (t) defined
by :

+
(6)  n, (¢) :-Q-Lj 4 (p)ap (> 0)

equals O if t <0 and f, (p) 1s the Laplace transform of h , (t t).
Next in (6) we subotltutc the integral expression (3) for

£, (p) and interchange the order of integration. This procedure can

gé justified in the following way. If Re p =o, 1t follows from

(5) that — .
I ¢
(v) ﬁ en-z Ve (o XP)% layg T
e\p/ = S C -
o c\/x2+a2p2+d /x2+b p° T o5 o ir [l
-

where C does not depend on T . Therefore



I = &) e

converges absolutely, and we have

P x-z ¥ x7+a"p
(7) n (tﬁif I (px)dx —_ P x dp _
~ 7 el VP in22eay x2ep2 ot
° «-ico ¢V x"+a"pT+dV x"+b p D,
&4 IS
* 1 S +Lwt—pA+zb 148w —wt ) ;
[ olgren . : g
© dTCl ] r) r\ W
© 12 fuCea V 14p%u7
= -leo

It is easily seen that

price o[22
(8) q ﬁx+z 142w -wt )% du
2wl - p W

52 ¢ Vira2ulia Vasn®

is independent of)ﬁ ; as long as 8 > O, For, if0<q61$ Re w-$/32,
then / A
—Q,+/ V14a w'—wt)

is a bounded function of w. This follows from thc estimate

Re§w+z”V1+agw2»wt)x ;-{/u + (az-t)Re w:}x.

Another consequence of this incquality is that

—9“ +2 12 Buc -t )x is a bounded function of w in the half planc

Re w> 0 if t & az. Thercfore, the integral (8) and hence th(t)
equals zero in this case. Prom now on we assume T» az. We have

deduced that, 1if g >0,
%0 fp +ico Stz V 14 2w E et ) x
1 d
(9)  ng(8) = [ 3 (px)ex = [ g

; W
0 Y oV 1+acwed V1+ba 2

We again want to change the order of the integrations. This can
easily be justified, if

0<p < Ef%E"

In that case we have
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piies  ~(u+z V14270 —wt )

/]
2l 5 W
Bl ¢ V1+a2w2+d V1+bcw“

where B +ico
o o= %_t jf | dw |
[t ~ P
p -ico | ¢4+a£w“+d 14071 | | w )

is independent of x. As u+(2z-t)B > C, the integral
[es)
j’ 3 (fx)e~§x+(az—b)/3)x ax
0
0
converges absolutely. Hence, we have nroved

4 ﬁ +-ico

n, (8) = o | R
B -ico w{c Va+a®u+d ¢4+bﬁw"}

(10) o g2z
Vf JO(Xﬁ>C—pa+z T+a “w™-wt)x dx =

o)

1 3 +ico

= or1

dw

7 P = ;
Ziee wic Y 1422w 4d J1+bdw2 Cilu sz ¥ 1+a§Q§—wt)2
J& 1 f

\/ 2 27 e e
Here ptfurz VA+a“nw"-wt)® must be taken positive il w=}3
([3] ,p.47).

p2+pu+z'v1+a2w2*wt)2 can be factorized into
o0 o} -
(z VA+anZout+n) (z VAata“u®-wts 0 ) (h=u+ip).

Each factor has only one zcro in the w-plane with cut Ca' These

zeros W, en W; have real parts 2 E¢%7->ﬁ . Hence, we can replace
the integration contour Re w =£ by the contour W, which is shown
in fig. 2. In A we have to take

) .—*\\ RS

{ | I o}

\Y%$M/ J;‘4$a+z /A+aewa»wt)2 positive.
} %A Another integral representation of the

i function Qﬂr(t) is obtained by applying
fig.2 ,?y/ thcw9onforma1 mapping
1+agw2

(11) U= =12

W



The cut Cq is mapped onto the interval (-a,n). As to the cut Cb
we have to distinguish the two cases: I, a<b and IL.a> b. In fig,.
3 and fig.4 the cuts for the integrand and the integration con-

tours Vq and V, arc sketched., u, and ﬂ? arc the images of w, and

/]
W;. A' is the image of A.

ngzma;
TR —_
(\-u,, V4 Qu,‘ v,
- A . W
~a & / “& _\Jai_gr|ar 8k @ )
U .
17 /f;:'“ﬂ'
r—;_'_‘_" e T
Vet
fig.3 fig. b
I, a<hb IT. a> b

In this way we {ind, il j=1,2,

, 1 u du
(/‘2) h (E)= IS Y J 5
L oTl S 5 o Y = 5
Vj (cu+d\/u‘+béa“)VJf%tx—32)+§u\;u2—ai+uz—t)

where in A', Vug—ag, M/ua+b2ua2 and Vfg(ue‘ag)fVLVU2“3L+Uz‘t)2

are positive,

Finally, if /u—»o we can cerive in the case t > Ra, whure

R =V fa+z°

that u., and U. tend to

g 1
zt+ip VY £2-a°R°
R2 ’
whereas in the case t <« Ra u, and H: tend to the same point
Zt+ p V28232~t2 '

R
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§3. The limit case u—0.

In accordance with the method explained in §/I, we shall
try to extend the results of the last scction to the limit case
A —>0, It will be proved here, that f/“ (p) and h/u(t) have limits
it =0 (u>0)

First of all, if p>0 then £, (p)— £(p) («—>0). This fol-
lows from Lebesguc's theorem on majorized convergence, for we have

—
oA E=E VxCea2p? 2V x“+a°pe

+a D J (FX)X e +'C! o] J (PX)

\/X +ahp +d \/X; +b p 2 \/X ral q+d \/><:2+bgp2

if /u.wO, and

N
e-/(Ak-—a\/X +a p JQ(PX)X

¢V x2+aep2+d \ x2+bzp2

The function on the right of (15) is integrable over (0,00 ). SO
the conditions of Lebesgue's theorem are satisfied and we have

6o - x-z Y X2+82p2 ® Vx2+a2p2
¢ JO(PX) Jof

dx | € p_g{)x dx___f(p)'

£, (p) =f
A [ n o 5 -
o c¥x +a p +d \/x?+b2 e o ¢ \[x2+a(‘p£+d \[;2+b2p2

In the following we consider lim hﬁ(t) in the two cases
I. a<b and IT, a >h.
I. We take thec integration contour V

e Mg (px) ) x

(15)
c \/xg-!—a a‘paJ.-d \/ x2+bgpa

of §2 fig.3. u, and u,

1 1

are complex continuous functions of u (4 » 0), which assume real
values only in the case t < Ra, s =0, and take never purely
imaginary valucs,

It is easily seen that h, (t) depends continuously on &

o

(#20) in those points A wherc u, and ﬁ? are not real. For we

can take J >0 so small that the sets

s =fuy(u|lw-pgl e} ana T ={E)lle u <},

do not contaln for any 4t with {/u--,uoi,{-c)‘ other gingularities of
the integrand Ko (u,t) of (12) than u, (), ﬁ?ga,) and we may take V
such that S and T are entirely inside V,]. Further, the integrand
k/w (u,t) tends uniformly to the limit

1
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(16) - =
(cu+d\/u2+b2—32)\/92(u2—32)+(uz—t)5
if ue'Vq. So we have proved
- -1 u du
SUBEACES | e 5 v
v, (cu+d V u“+b“-a“) Jf (ua—a2)+(uz—t)L
if £t> Ra.

Next we supposc t<Ra. The forégoing considerations can be
> 16 L S ema Y IS - - ~ -
extended to the Riemann surfacce of Kﬁb(u,t). If s— 0, then quu)

and E;Qa.) tend to points over the same point u, of the u-plane.

/\
The sets S and T on this Riemann curface are defined as in the
_ % /. AR .
case t» Ra. V,I (fig.5) i1s 2 simple contour on the Riemann sup-
face which encircles S and T in

| the positive dircction such that

et at ] . .
¥ for all au with | & -« |¢d the only
VR NP P L , o '
e ~:§? singularitios Cie“)L<U)E) in tac domain
i%, J> With boundary V., are those in the
- ) @ Al o o ~
RN // sets S and T. If w« satisfies
e b
g 0<usd we can deform V,  into a
- LV &R > 1

contour V,l of the type described
above without changing the value
fig.5 of fhe integral., It 1s also true
,*-

that k%c(u,t) tends to (16) uniformly on vV, if wu V0. Hence we

may conclude

R ' 1 ’ u du
(18) n, (6) = 5 |

VH% (cu+d\/u2+b2_ag) J}Q(u2-32)+(uz-t)h

if/u¢ 0.
IT. In an analogous way we can prove the existence of

lim h, (t) if a > b. We shall confine oursclves to a description
e

> - ) . ‘ b
/“of O the limit function. Using now the integration contour V2 of

¢ 2 fig.4, we can deducc

-~ u du W&O)

(19) b (8) = oo 22l 22 (2 a? >
7, (curaV u?4p2a2)V p2(v2-a2)+(uz-t)
if t» Ra.
If £t <Ra we have to take care of the singularity + ag—b2 of
ko (u,t).

s
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18 the greater root of

zt+13VagR2—td
2
R

1
2,2 2 4
(192) p(uF=a%) + (uz-t)@ = 0.
Fig.6 is a u,t-diagram of this equation, It is an ellips with
t
Ra center in the origin. For the

further discussion it is of inter-

/////;: est to know whether u, < V ag~b2 or
. o) o]
ey uy> Y at-bT. From the picture 1t is

>V a“-b“ if

easlly seen that u

za 2 !

ﬁ— >Y a~-b", that is if Rb > pa.

However, if Rb < pa, 1t is also
2 .2

possible that u >Va -b~. Solving t

fig. © from (19a) we find the condition
.2 .2 . 2 .2 PR, _
tezVa -b +pb. Finally, u, < a’-b~ only 1if b < pa and

2 .2 , ¢ .
E>zVa -b"+ pb. As in the case I we take a closcd contour v Ar

2 ) ek 27 s N
1L1>Va -b2 and a closed contour V, if u,<Va~-b (fig.7a and Tb),
and we find

:l:_] u du (/)(',(A/C')

(20) h (t)— "
A el Vg (cu+d\/u5+b2~39)‘/?2(u2-82)+(uz~t)5

if Rb » pa or Rb<pa and t <z ”2*b2+f7b’
du
(21) n (t)~—>1—'1—.—j S N— $0)
A ewd V;*(cu+d‘/u¢+b2-ag)v fL(uz;aa)+(uz~tyg e

if Rbc pa and t > 2 a2~b2+fvb_ _
|

| o % ]

TN, ,

! /ﬂ (' 5

- -\/a.z__gi \/wz_gz Q -a - m |
M i

|

I

|

fig. 7a fig. 7b

Rb:'pa or Rb« ra and t<ZV 82—b2+p13 Rb<joa and t>zV82-b8+]°b
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§4. Justification of the passage to the limit w—0
In the last section it was shown that

lim h, (t) = h(t)
w v o
exists for all but a finite number of values of t. From the same
section we know that
lim £ (p) = f(p)
“ b0 “
exlsts if p> 0. As we have

if w>0, 1t 1s natural to cxpect that this equality holds even in
the 1imit/ﬂae>0, This can be proved by applying Lebesgue's theorem
on majorized convergence, The conditions of this theorem are satis-
fied if a function g(t) exists such that

|0, (£)]<e(s),

and

vl
‘f g(t)e’ptdt < oo (p>0).
0

Such a function g(t) will be given here for the two cases I. b a
and II. b« a.

I. If b»>a we can deform the integration contour Vq of é?,
fig.3 into V% as 1s shown in fig.8. Taking into account the residu
at u=ece we find

(22) h,(t) = ! ,
“ (c+d) f2+yb+z)2

1 u du
Dy ~
- V% (cu+d ¢u2+b2-a2)\/Fd(ue-a2)+9wv'u2-a2+uz—t)2

(LW et
. o U,
BV !
C—N%U — - \___._.../!_._._.;,:.. RN
B | <
AV
<-J-) I'VJS?_'Q_Z
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As ¢>0 and d >0 we can show that by our definition of V u2+b2-a2
yf(u)=cu+d\/u2+b2—a2 has no zeros in the u-plane. Furthermore,
| v (u)| tends to infinity as ful=co. So we have | y(u)|» k for
some k>0,

Now the following inequalities hold

b, ()]s —1e v / uf lau]
(c+d)R 2wk vq‘ \/ ] r)2(112_82)+!(‘U/‘u‘z‘‘_(,j"‘e“;/u Z_t)e ‘
(23) 4 / a |
I ___‘[ _ x| dx N
(C+d)R Tk -a \[z Fz(x -—a +1/LL” -% +X7 t
¢%a?
1 |x] dx
Tk

/T ‘Ji p( x°+a )+(i%/LVx2+az+ixz—t)2l
If « fp s @are real numbers, then

| -a®r(1p ey )% a]-a®ry® ],

Using this inequality we find

ln (e)]s —— ¢+ L i 1X‘dx ¥
e (c+d)R  TK = \/lf (X 2%t (xz- t>2'
_j_Vb -2 lxldx
Tk

N J}- (x%+2%)+£°]

The function on the right of (24) can be taken as a majorizing g(t).
It depends continucusly on t, except at the points t=Ra and t=pa,
where the quadratic expressions in x in the first and the second
integral respectively have colnci01ng zeros. But in this points we
can give the estimations O(log|t® 2_Rr% C\) and O(logitzapgag\)
respectively. It is easily seen that g(t) is bounded if t-=eo ,

II. If bea we deform the integration contour V, of g2, fig.h

into Vé (see fig.9).
\/ t
PN LA~ ~ and we find

AN 3 o, .
- & »vﬂ“a;‘_xz Vai. é? a

fig.9

Again we have a residu in u=ee
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h, (t) = L

(c+d)V p2+f(a,+z)2

4 j‘ u du
2nl

7 f) T
v, (cu+d\/u2+b8»92)\/pg(u“—a2)+§u,Jzé—ag+uz—t)2

Proceeding as in the case I we obtain
dx

x2)+(xz—t)}2

]

L B W
(c+d)R Tk 3 w(_Fz(qz_

—
n
1
~—
\;D-.
—
ct
~
N

The function at the right of (25) is continuous except at the

IS
point t=Ra, where the estimation O(log‘R‘a‘—te)) holds. The function
is also bounded if t—poe |



-13-

§5. Summary of the results.

It is possible to put the solution h(t) of our problem in the
form of complete elliptic integrals over intervals of the real axis.
This can easily be done if we start from the formulac deduced in éB.
We agaln distinguish the two cases I and II.

I. If a <]3 and t»> Ra we use (17). We deform the integration

(P L Veat contour V, into the contour shown in
‘ fig.10, taking into account the residue
v
= at u=oe ., After some calculations we
Al .
k find
b E . i
Q-1 V€2 a?
fig.10

(26) h(t) = + ——
(c+d)R

2 2
1 b~-a dx V b2 2~x ax

- e—
g

Wl_wa_aE {( -d )x } JVR X +21ztx+t -p 82

where the roots are positive if x=0., It is not difficult to see
that h(t) assumes only rcal values.

If t<Ra it is seen from (18) and fig.5 that V:. can be shrunk
to the point u, and so h(t)=0 in this casc.

IT. When a > b, we consider first the case t »Ra. We deform

2

the integration contour V, in (19)
into the contour shown in fig.,11.

. ‘Nmahwi__>~_,\ - Proceeding as in the case a< b we
- <‘ e -
é;ﬂﬁ T ﬁ?]ﬁ find
|
fig.11

2 .2
L1 faq~b x d Vag—bg—xedx
W-v 2_p2 {(CE—dE)X e )ﬁ\/R X -2ztx+t -p a2

5




DI

where the roots are non-negative.
Next we consider Rb<pa and z Va2~bc+.fb-<t< Ra. It can be

_A,’ ® K N
) . /€§F::;t~_71f/; o seen that V, in fig.7b may
N ——— e
~\az_ 4% o g be replaced by the contour

of fig.12.
Therefore we find in this
5 case
a-b" 2.2 2
(28) h(t> = +-:—2— j x d a b T-x"dx )
2 0 >
1 {(c

2y, 2, 2,2 .2 2.2 A e
-d©) C+d£(a -b7)} JR X mLZEX+t£~f28
kaTfr_?r
_ ztypVR A"t~
Re

where u and the roots are non-negative,

d

Finally, 1f Rb > pa or Rb<pa and t « z\/;2~b2+jab we use (20).
The contour V;'of fig.7a can again be shrunk to U, . Therefore we
find h(t)=0.
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