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Abstract. We propose an efficient pricing method for arithmetic and geometric Asian options under exponential
Lévy processes based on Fourier cosine expansions and Clenshaw—Curtis quadrature. The pricing
method is developed for both European-style and American-style Asian options and for discretely and
continuously monitored versions. In the present paper we focus on the European-style Asian options.
The exponential convergence rates of Fourier cosine expansions and Clenshaw—Curtis quadrature
reduces the CPU time of the method to milliseconds for geometric Asian options and a few seconds
for arithmetic Asian options. The method’s accuracy is illustrated by a detailed error analysis and
by various numerical examples.
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1. Introduction. Asian options, introduced in 1987, belong to the class of path-dependent
options. Their payoff is typically based on a geometric or arithmetic average of underlying
asset prices at monitoring dates before maturity. The number of monitoring dates can be
finite (discretely monitored) or infinite (continuously monitored). Volatility inherent in an
asset is reduced due to the averaging feature, leading to cheaper options compared to plain
vanilla option equivalents.

For geometric Asian options a closed-form solution under the Black—Scholes model has
been presented in [18]. Other asset models driven by an exponential Lévy process have been
studied in [15], resulting in an efficient valuation method based on the fast Fourier transform
(FFT).

For arithmetic Asian options the prices have to be approximated numerically. Monte
Carlo methods have been applied for this task, for example, in [18]. An efficient PDE method
for arithmetic Asian options, which works particularly well for short maturities, has been
presented in [21].

Advanced pricing methods for options on the arithmetic average are based on a recursive
integration procedure in which the transitional probability density function of the log-return
of the sum of asset prices is approximated; see [7, 3, 8, 17, 15, 14]. In [7, 3] an FFT and inverse
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FFT have been incorporated into the procedure to approximate the governing densities. The
study in [7] was focused on log-normally distributed underlying processes and required a fine
grid to approximate the probability density function. This method is extended to more general
densities in [3], where the size of the grid was reduced by recentering the probability densities
at each monitoring step, resulting in reduced CPU time. A recent contribution in this direction
was presented in [8], where discretely sampled Asian options were priced via backward price
convolutions. Another pricing approach can be found in [17], where the governing densities
were computed by a special Laplace inversion, for guaranteed return rate products, which can
be seen as generalized discretely sampled Asian options.

In [15] the FFT was used to approximate the density of the increments under Lévy
processes between consecutive monitoring dates, in combination with a recursive Gaussian
quadrature procedure. The total computational complexity in [15] was O(Mn?), with M
the number of monitoring dates and n the number of points used in the quadrature. The
method in [15] is improved in [14], in which it is shown that the Asian option value can be
derived by a price recursion or density recursion procedure. It is transformed into a complex-
valued frequency-domain representation via the z-transform. The z-transform can be seen as a
discrete-time equivalent of the Laplace transform. The Asian option value is then determined
via an inverse z-transform, in combination with a quadrature rule as in [1], which converges
exponentially. For each quadrature point, however, an algebraically converging quadrature
rule is used for approximation. Another contribution in [14] is that via an Euler acceleration
scheme, the number of integral equations that need to be solved remains bounded, so that
the computational cost does not increase significantly when the number of monitoring dates
exceeds a certain level.

Finally, explicit formulas for upper and lower bounds of the Asian option prices have been
derived, for example, in [19] for exponential Lévy processes. The results in [19] are shown to
be more accurate than existing bounds.

In this paper we propose a different pricing method for Asian options and call it the ASCOS
(ASian COSine) method, as it is related to the COS method from [12, 13]. The method is
also inspired by the work in [15], but there are significant differences. Instead of recursively
recovering the transitional probability density function of the logarithm of the sum of asset
prices, as in [15], we recover the corresponding characteristic function by means of Fourier
cosine expansions. The transitional density function is then in turn approximated in terms
of the conditional characteristic function by a Fourier cosine expansion. The characteristic
function for an exponential Lévy process is known analytically, and a Fourier cosine expansion
most often exhibits exponential convergence. Furthermore, the Clenshaw—Curtis quadrature
rule is applied in the ASCOS method to approximate certain integrals appearing. We will
perform an extensive error analysis to confirm exponential convergence for Asian options.

The ASCOS pricing method can thus be seen as an efficient alternative to the FFT and
convolution methods in [7, 15, 3, 19, 8, 14]. The Asian option prices obtained from the ASCOS
pricing method converge at a reliable convergence rate when the number of monitoring dates,
M, increases.

In section 2, the ASCOS method to price geometric Asian options under exponential
Lévy asset price processes (discretely and continuously monitored) is presented. The pricing
algorithm for arithmetic Asian options is then detailed in section 3. An error analysis is given
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in section 4, and numerical results are presented in section 5. We compare our results to those
presented in [15].

The ASCOS method is extended to pricing American-style Asian options in another pa-
per [23]. What is key here is that instead of recovering the density function, like in [7, 15, 3,
19, 14], the characteristic function is recovered, which enables us to also price American-style
Asian options.

Here we focus on fixed-strike Asian options. The extension to floating-strike Asian options
follows directly from the symmetry between floating-strike and fixed-strike Asian options, as
explained in [16, 11].

2. ASCOS method for European-style geometric Asian options. The ASCOS pricing
technique for geometric and arithmetic Asian options is described in sections 2 and 3, re-
spectively. The characteristic function of the geometric or arithmetic mean value of the
underlying is recovered, which is then used to calculate the Asian option value by Fourier
cosine expansions. For geometric Asian options, the characteristic function of the logarithm
of the geometric average of the underlying asset at the monitoring dates is known analytically
for exponential Lévy processes, as we will see below.

2.1. Introduction to the COS method. The starting point for pricing plain vanilla Euro-
pean options by the COS method is the risk-neutral option valuation formula (the discounted
expected payoff approach), i.e.,

(2.1) olanta) = [ " oy, T) f (ul)dy,

where v(x,tg) is the present option value, r is the interest rate, At = T — t¢, and z,y can
be any monotone functions of the underlying asset at initial time ¢y and the expiration date
T, respectively. Payoff function v(y,T) is known for European options, but the transitional
density function, f(y|x), typically is not. Based on (2.1), the transitional density function
is approximated on a truncated domain [a,b] by a truncated Fourier cosine series expansion,
with N terms, based on the conditional characteristic function (see [12]), as follows:

N-1

(2.2) flylz) = % Z/ Re <<;5 <bkjra;$> exp (—i;ﬁl)) cos <k‘7TZ:Z> )

k=0

where ¢(u; ) is the conditional characteristic function of f(y|z), a, b determine the integration
interval, and Re means taking the real part of the argument. The prime at the sum symbol
indicates that the first term in the expansion is multiplied by one-half. The appropriate size
of the integration interval can be determined with the help of the cumulants [12].!

Replacing f(y|z) by its approximation (2.2) in (2.1) and interchanging integration and
summation gives the COS formula for the computation of the price of a European plain
vanilla option:

N-1
k —
(2.3) B(x,tg) = e " kz_ol Re <¢ <ﬁ§$> e_””ﬁ> Vi,

"This is so that | [, f(y|z)dy — fab f(y|z)dy| < TOL.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/07/16 to 192.16.184.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

402 B. ZHANG AND C. W. OOSTERLEE

where 0(x,tp) indicates the approximate option value, and

2 b y—a
Vi = b—a/a v(y,T) cos (knrb_a>dy

are the Fourier cosine coefficients of v(y,T"), available in closed form for several payoff func-
tions.

With integration interval [a, b] chosen sufficiently wide, it was found that the series trunca-
tion error dominates the overall error. For transitional density functions f(y|z) € C*°([a,b] C
R), the method converges exponentially; otherwise, convergence is algebraic [12, 13].

2.2. European-style geometric Asian options. The payoff function of a geometric Asian
option with M monitoring dates and a fixed strike reads as

1
( M+1

M

max H S; - K,0 for a call,
j=0

v(S,T) =g(S) = N

M+1

M
max | K — H S; ,0 for a put.
§=0

\

Here S, K, g(S) denote the stock price, the strike price, and the payoff function, respectively,
and M =1,2,....

For geometric Asian options, the characteristic function of the geometric mean can be
calculated directly. The underlying process is transformed to the logarithm domain, and we
use the following notation:

1
M+1

M ;M . M
(2.4) y = log jl;IOSj =1 ]Z:;)log(sj) = U1 JZ::OJ;]-.

In order to use the Fourier cosine expansion, we need to determine the conditional charac-
teristic function of y given xy. Lévy processes have independent and stationary increments,
which implies that the increments x1 — xg, 9 — 1, ..., Ty — 1 are identically distributed
and all independent of xy.

Denote the (identical) characteristic functions of these increments by ¢ (u, 1), i.e.,

(2.5) o(u, 7) := E(exp(iulog(St++/St))) = E(exp(iu(xisr — x¢))) Vt, 7 >0,

and ¢(u,7) is known analytically for different Lévy processes, for which we refer the reader
o [13]. The characteristic function of y given xg is given by

M+1—j T—t0>

M
. __ iuzo |
(2.0 Sluizo) = e 1}o<u -
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For the derivation of the characteristic function for the geometric mean of an exponential
Lévy process, we refer the reader to [15].

Substitution of characteristic function (2.6) into (2.3) results in the ASCOS pricing for-
mula for European-style geometric Asian options, with the underlying asset modeled by an
exponential Lévy process:

N-1
! km —ikm 24—
(2.7) v(zo,t0) =€ "> Re <¢ <m;x0> e ba> Vi,
k=0
where
. 2 E 7 (Xk(log(K), b) — Ky (log(K), b)) for a call,
k =
p 2= (K (a,log(K)) — xi(a,log(K))) for a put,
with

T2 _
Xk(71,22) := / e’ cos (kﬂy a) dy,
- b—a

(2.8) Yp(z1, 22) = /1‘2 cos <k‘7ry — a> dy,

2 b—a

which are known analytically.

The computational complexity for deriving the characteristic function for each value of
u=kr/b—a, k=0,...,N—1,is linear in M and the complexity of the work in (2.7) is linear
in N, so that the total computational complexity of the method is O(MN).

For geometric Asian options there is no error in deriving the characteristic function
by (2.6). The only errors made are due to the COS formula (2.7). Detailed error analysis
of the COS method for European options can be found in [12]. The ASCOS pricing method
for geometric Asian options under exponential Lévy asset price processes is thus expected to
have an exponential convergence rate in the number of cosine terms for all density functions

that satisfy f(ylx) € C*([a,b] C R).

3. ASCOS method for arithmetic Asian options. For arithmetic Asian options, the
characteristic function of the arithmetic mean will be derived recursively by Fourier cosine
expansions and Clenshaw—Curtis quadrature. The Fourier cosine expansion is used at each
time step (i.e., at each monitoring date), whereas the Clenshaw—Curtis quadrature rule is used
once, at the beginning of the computation. In subsection 2.2 the characteristic function of the
geometric average (2.4) was discussed, which was explicitly a function of z¢p = log(Sy), so that
the characteristic function was naturally written in the form ¢(u;x). In the present section,
we recover the characteristic function of the logarithm of the sum of exponential Lévy asset
price increments, which is independent of xy. Therefore, we write the characteristic function
here in the form ¢(u) rather than ¢(u;xg).
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The payoff function of an arithmetic Asian option reads as
(

o
M+1

max

M
ZS]-—K,O for a call,
j=0

M
1
max K—M+1;Sj,0 for a put.

We first explain the recursion procedure for recovering the characteristic function of the
arithmetic mean value of the underlying. We denote

S
(3.2) Rj :=log <—J> j=1,...,M.
Sj_l
For exponential Lévy processes, the log-asset returns R;, j = 1,..., M, are identically and

independently distributed, so that RjiR. Then, Vu, j, we can write ¢g; (u) = ¢r(u). Char-
acteristic function ¢p(u) is known in closed form for different Lévy processes.

A stochastic process, Y}, is introduced, where Y7 = Ry and for j = 2,..., M we have
(3.3) Y := Ryry1—5 + log(1 + exp(Yj_1)).
We denote Z; := log(1 + exp(Y;)) Vj, so that (3.3) can be rewritten as
(34) Y} = RM+1—j + Zj—l-
In this setting, Y; admits the form
Sm—jy1 Sm—ji2 Sm
3.5 Y; =1lo IT 4 R L ,
(35) 1T < Su-j  Sm- Sm—j
and we have that
M
1 (I +exp(Yr))So
(36) M+1;S’_ M+1 ‘

Convolution scheme (3.4)-(3.6) is also called the Carverhill-Clewlow-Hodges factorization,
which appeared in [7], based on an insight by S. Hodges, and it has been used in [7, 3, 15],
in combination with other numerical methods, to recover the transitional probability density
function of Y;;. Here, however, we will recover the characteristic function of Yy instead, by a
forward recursion procedure, which is then used in turn to recover the transitional density of
the European-style arithmetic mean of the underlying process in the risk-neutral formula (3.7).
The arithmetic Asian option value is now defined as

(3.7) olansto) =72 [ o) i, ()

By (3.6), v(y,T) in (3.7) is of the following form:

+
<S()(1]\"|4'—jiql)(y)) _ K) for a call,
v(y,T) =

+
<K — —So(lj\—; iiql) (y))> for a put.
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3.1. Recovery of characteristic function. To recover the characteristic function of Yjy,
ie., ¢y, (u), we start with Y7, for which the characteristic function reads as

(3.8) Py, (u) = or(u).

Then, at time steps t;, j = 2,..., M, ¢y,;(u) can be recovered in terms of ¢y, ,(u). This is
done by application of (3.4) and the fact that Lévy processes have independent increments.
This implies that, Vj, Ry/4+1—; and Z;_1 are independent, which gives

(39) ¢Yg (u) - ¢RM+17]‘ (u)(ﬁZj—l (u) - (ﬁR(U)(ﬁZj—l (u)

From the definition of characteristic function, we have

o0

(3.10) bz, (u) = Ele1os(+ow(5-1)] = / (& + 1)y, (2)de.

— 00

To apply the Fourier cosine series expansion to approximate the characteristic function, we
first truncate the integration range, i.e.,

~ b .
(3.11) bz, ,(u) = / (e® +1)" fy,_, (w)dx.

If we define the error
GT(X) = / fX(a:)da:,
R\[a,b]
then, as Vj,u € R,
(3.12) |(e®” + 1)“‘| = | cos(ulog(l + €*) + isin(ulog(l + €%)))| = 1,

the error in (3.11) can be bounded by

(3.13)

/ (¢ + 1) fy,_(2)dz| <
R\[a,b]

We apply the Fourier cosine expansion to approximate f3/j71(:17), giving

b= 2 3 e (. (515 oo (07 )
(3.14) : /ab(ex +1)™ cos <(x — a);— a) dz,

where (ZgyJ.71 is an approximation of ¢y, _,.
In this way, ¢3ij1 is recovered in terms of ngyjfl. Application of (3.9) gives an approxima-
tion <;A5yj (u) for any u. Equation (3.14) can be written in matrix-vector form as

(315) q)j—l = MAj—17
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using

;1 = (j_1(k)ny,  joi(k) = bz, (up),
km
b—a’

b
M = (M(k, l))kl 0 Mk = / (e 4 1)k cos((x — a)uy)dz,

up = k=0,...,N —1,

4=3 ’ (A OIGY Aj() = Re(dy,_, (u) exp (~iaw)).

By the recursion procedure in (3.9) and (3.15), characteristic function ¢y,,(u) can be
approximated by ¢y,, (u) efficiently. Application of (2.3) in (3.7) finally gives the European-
style arithmetic Asian option value:

N-1

~ —r ! " km —ikm 42—
(316) ’U(.Z',to) =e Atz Re <¢YM <b_a> e k ba) ij
k=0
in which
2 S() SO *
Xk(z*,b) + — K ) ¢p(z*,0)) for a call,
(3.17) Vi — <M+1 <M+1 ) )

% ((K — MS_?_ 1) v(a,r*) — MS_?_ 1x(a x )) for a put.

Functions xg(z1,22) and ¢ (z1,z2) are as in (2.8), and z* = log(K(]\gi(fl) —1).

3.2. Integration range. We explain how to determine integration range [a, b], so that the
errors er(Y;_1), j = 2,...,M, in (3.13), as well as truncation error er(Yss) in (3.16), can be
controlled. In [12, 13], the integration range for each Yj, j = 1,..., M, was determined by
means of the cumulants as

- L\/C2(Yj) +4/Ca(Y5), 1 (Y5) + L\/C2(Yj) +1/¢a(Y5)

with (1(Y;),C2(Y;),Ca(Y;) the first, second, and fourth cumulants of Yj, respectively. It is
rather expensive to determlne these cumulants here, and therefore we propose a different

integration range, which is very similar to (3.18).
ForY;, j=1,...,M, as defined in (3.5), we have

() e (522)
0 < Ga(exp(Y))) < G2 << >>
0 < citenr) < (125 ))

(3.18)

)
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An integration range for e¥7 can be defined as

SM—ji1 . Sum / . Su
C1 <375M_j > — Ly| G2 <J SM—j> +4/Ca (] SM—]')’

. SM . SM . SM
(3.19) (1 <J SM—j) + Ly | G <J SM—j) +4/Ca <J SM—j)

Denoting

oo o (22)) (e o2) (e (),
o s (w(15)) (e 2 (e (),

we can define suitable intervals [a;, b;]. Note that (3.20) is not strictly derived from (3.19), as
log(¢n(Z)) # ((log(Z)), but this does not influence the fact that, as L — oo, the truncation

error goes to zero. The cumulants of log(j“qg;%il) and log(j S‘iﬁ]) in (3.20) are known in

closed form for exponential Lévy asset price processes, since

G (1og(jﬂ>)zlog<j>+cl<m and, ¥n>2, G (1og(jﬂ>):<n<m,

Sar—; Sar—;

G <log (jSiM)):log(j)ﬂcl(R) and, ¥n>2, G <1og (jSiM_»:m(R),
-J -J

with R the logarithm of the increment of an exponential Lévy process, between any two
consecutive time steps. These expressions are based on log(jZ) = log j + log(Z), for random
variable Z, and on the fact that for an exponential Lévy asset price process, the cumulants of
the log-asset returns, log(S;/Sk) VI > k, are linearly increasing functions of ¢ := (I — k)At.

In order to compute the integration in (3.14) only once, we adopt the following integration
range:

(3.21) [a,b] := J:rlnlnM aj,j:rﬁ?i(M b;
for all time steps, so that the truncation errors, e7(Y;) Vj, can be controlled easily.

An exception may be formed by underlying processes exhibiting very fat tails, as then
interval (3.21) may result in a wide integration range, so that large N values are required to
ensure accuracy. In those cases, it may be more efficient to recenter the range, using (3.20).
In the numerical examples we will show in section 5, interval (3.21) can be safely used so that
the integration in (3.14) needs to be computed only once.

In accordance with [12, 13], we will use L = 10 ~ 12 in (3.20) in our numerical experiments.
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Remark 3.1 (put-call parity for Asian options). For a call option, the payoff is unbounded,
which may lead to large errors when truncating the integration range of the risk-neutral
formula. Assuming that the integration range is sufficiently large, so that the expression

(S@(%ﬁo(b)) — K) > 0, the truncation error, €, based on an integration range [a, b] is given by
e:=e A / (Y. T) fryy (y)dy = e / o ) v, )y
R\ [a,b] b
_ A /boo <50(1]\J/;j:<11) ®) —K> Fyos (1)dy
> e <SO(1]\—;TI; >/ fry (y
The larger the range of integration, the larger the value of (S@(%ff(b)) — K), which grows

exponentially with respect to the upper bound of the range. Therefore, although the value
of fboo fyvy (y)dy decreases as the integration range increases, the total error may increase. To
avoid this, the call option price can be obtained via the put option price by means of the
put-call parity relation. It is well known that a put option payoff is bounded, so that the
problem described above cannot occur.

Assuming that no dividend is paid and denoting the Asian call and put option prices by
¢(So, to) and p(So, to), respectively, we have

1 1 Y 1 U
max M+1]ZOS — K, 0] —max [ K — +1JZ_;SJ»,O :M—I—ljZ_;Sj_K'

Using the risk-neutral valuation formula gives, for to < T,

R Soe~"T &
(S0, t0) — p(So.to) = e "TE S —K|F | =22 eIt _ g,
(S0, t0) — (S0, to) M+1Z] | Fo M+1Z
7=0 7=0
A similar discussion can be found in [14], where the put-call parity relation was used for put
option pricing.

In our numerical examples, we can directly use the pricing method for call options and
the option values obtained from our method converge to the same values in [15]. However,
for deep-in-the-money call options and fat tailed asset price densities, or for call options with
a long time to maturity, the put-call parity is advocated.

3.3. Clenshaw—Curtis quadrature. In this section we denote by n, the number of terms
in the Clenshaw—Curtis quadrature (¢ stands for quadrature). We discuss the efficient com-
putation of matrix M in (3.15). An important feature is that matrix M remains constant for

all time steps t;, j = 1,..., M — 1, so that we need to calculate it only once. Its elements are
given by
b .
(3.22) M(k, 1) = / (e* + 1)"* cos((x — a)wy)dx, k,0=0,...,N—1,
a
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which can be rewritten in terms of incomplete Beta functions (see Appendix A). Here (3.22)
is approximated numerically by the Clenshaw—Curtis quadrature rule, which is based on an
expansion of the integrand in terms of Chebyshev polynomials (as proposed in [10]; more
information can be found in [5]).

The Clenshaw—Curtis as well as the Gaussian quadrature rules exhibit an exponential con-
vergence for the integration in (3.22), but the Clenshaw—Curtis quadrature is preferred here,
since it is computationally cheaper. The weights and nodes of the Clenshaw—Curtis quad-
rature are easy to determine. Moreover, Clenshaw—Curtis quadrature is a nested integration
rule, where the nodes for a small value of NV are also nodes for larger N-values.

To use the Clenshaw—Curtis rule for (3.22), we first change the integration interval from
[a,b] to [—1,1]:

b
/ (e® +1)™k cos ((z — a)u;)da

_/1b—a e b—ax+a+b +1 iUkcos b_aa:+a+b—a u; | dx
— ) T2 \FP T2 2 2 2 L)t

The integral can then be approximated as follows:

b .
(3.23) / (€% + 1) cos((x — a)w)dx ~ (DTd)Ty =: wTy,

where D is an (ny/2 4+ 1) x (ny/2 + 1)-matrix, whose elements read as

(3.24) D(k,n) = — cos ny/2

Tq 1  otherwise.

2 ((n—1)(k—1)7r> { 1/2if n={1,ng/2+ 1},

Vector d and the elements y,, in y = {yn}zqz/o2 are defined as

2 2 2 ! '
d:= (1’ (1—4)’(1—16)""’(1—(nq—2)2)’(1_"3)> 7

s o) (o)

where, in our case,

b—a b—a  a+b ik b—a  a+b
f(z) = 5 <exp< 5 x + 5 >+1> cos<< 5 x + 5 —a>ul>.

V(k,1), the vector w = DTd remains the same, so that it needs to be computed only once
V(k,1). Because D”d is a so-called type I discrete cosine transform, the computational com-
plexity is O(nqlog, ng). Elements y, must be calculated for each pair (k,1), with complexity
O(n,), and the computational complexity, V(k,l), is therefore O(n,N?). When using the
Clenshaw—Curtis quadrature rule to compute matrix M (only once, used for all time steps),
the total computational complexity is thus O(n, log, ng) + O(ngN?).
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Furthermore, at each time step t;, we need O(N?) computations for the matrix-vector mul-
tiplication (3.15) and O(N') computations to obtain qubyj by (3.8) or (3.9). The computational
complexity for this task is thus O(M N?).

The overall computational complexity of our method for arithmetic Asian options is then
O(nglogy ng) + O(ngN?) + O(MN?). The number N? is in practice much larger than log, ng.
The overall complexity is then of order O((n, + M)N?).

We will show, in the section on error analysis for arithmetic Asian options, that for most
exponential Lévy processes, the Fourier cosine expansion exhibits an exponential convergence
rate with respect to N. For the integrand in (3.22) the Clenshaw—Curtis quadrature converges
exponentially with respect to n,. Therefore, the ASCOS pricing method is an efficient alter-
native to the method proposed in [15], which requires O(M N?) computations (N being the
number of points used in the quadrature in [15]), with N > ng, as well as N > N, for the
same level of accuracy. Our pricing method is especially advantageous when the number of
monitoring dates, M, increases. The method is summarized below.

ASCOS Algorithm. Pricing European-style arithmetic Asian options.
Initialization
e Use Clenshaw—Curtis quadrature (3.23) to compute
M = (M(k,1), k,1=0,...,N — 1, with M in (3.15), (3.22).
e Compute ¢r(ug), k=0,...,N —1.
o Set ¢y, (u) = dr(u).
Main loop to recover ¢vy,,: For j = 2 to M,
e Compute the vector ®;_; with elements ézj,l(uk), k=0,...,N —1,
using (3.15).
e Recover quj (ug), k=0,...,N — 1, using (3.9).
Final step:
e Compute (g, ty) by inserting (ﬁyM (ug), k=0,...,N —1, into (3.16).

3.4. Extensions. In a series of remarks, we discuss some generalizations of the ASCOS
method. The American-style Asian options generalization will be discussed in a separate
paper [23].

Remark 3.2 (continuously monitored Asian options). The option values of continuously
monitored arithmetic Asian options, with payoff

v(S,T) = ¢(S) < /S t)dt — > for a call,

<K — —/ S(t dt> for a put,

can be obtained from discretely monitored arithmetic Asian option prices by a four-point
Richardson extrapolation.

Let 0(M) denote the computed value of a discretely monitored Asian option with M
monitoring dates. The continuously monitored Asian option value, denoted by 7, can be
approximated by a four-point Richardson extrapolation scheme as follows:

(3.26) Doo(d) = 2—11(64@(2“3) — 560(2972) + 149(2%F1) — 5(29)).
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The same technique can be applied for continuously monitored geometric Asian options.

Remark 3.3 (Asian options on the harmonic average). Harmonic Asian options may have
their use in the foreign exchange market. For instance, a floating-strike harmonic Asian
call option gives the right, but not the obligation, to exchange dollars into euros at an average
exchange rate over a certain period. Other applications for harmonic Asian options have been
described, for example, in [9].

Asian options with a payoff based on the harmonic average, M/ (Z]Nil 1/5;), can be
priced in a fashion similar to that explained above by the ASCOS method. First, we recover
the characteristic function of a variable y = log(z;n:1 S0/S;) recursively; then we insert the
approximation into the COS pricing formula.

We define R; = log(S;_1/S;). Starting with Y} = log(Ras), we find that, Vj, u,

; Si-1 (=) Tog( 20—
3.27 op (u) =E emlog( 5) =K e( log(5577) = ¢p. (—u),
R; J

with ¢g; available in closed form for exponential Lévy processes. For this reason, ¢y, (u) is
also known analytically.

For j =2,..., M we then define Y; := Ryj41-; + Z;j—1, where Z; :=log(1 +exp (Y;)). In
this setting we have Yi; = log(3_7, So/S;).

Again, Ry;11-; and Z;_; are independent at each time step, due to the properties of Lévy
processes. Therefore

¢YJ (u) = ¢RM+1*J' (u)¢Zj71 (u) Vu,

where ¢ (u) is known analytically from (3.27) and ¢z,_, (u) can be recovered, as ¢3ij1 (u)

from (ZgyJ.71 (u) by Fourier cosine expansions and Clenshaw—Curtis quadrature, as in (3.14). We
thus approximate the characteristic function of Yjs, and the fixed-strike Asian option value is
then given by

iz, to) = e—rAth_:l’ Re (¢ km AR
yto) = 2 v \ =4 ks

in which

5 E 7 (M Soxr(z", b) — Kup(x*,b)) for a call,

2 (Ki(a,a*) — MSox(a,z*))  for a put,
where z* = log(MSy/K), x(z1,z2) = fflz e Ycos(kmi=)dy, and (1, 22) is defined
in (2.8).
Finally, the symmetry between floating- and fixed-strike Asian options also holds for Asian
options on the harmonic average, so that floating-strike options can be valued as well.
Remark 3.4 (a special case: the forward contract). A forward contract, as encountered in
commodity markets, may be defined by the payoftf:

Vi =

M
1
(3.28) 9(8) = +; — ]Z::o S; — K.
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The contract value then reads as

M +1 4

S S
— —rAt 0 Yum 0 _
(3.29) e <—+ 1E[e |+ (—Jr 1 K>> ,

where the last step follows from (3.6). The expected value of exp (Y3s) can be obtained by a
forward recursion procedure. At each monitoring date, t;, we have from (3.4) that

| M
v(zo,to) = e AR Z S;— K
7=0

(3.30) E[e¥i] = E[eftm+1-5(1 4 ¥i-1)].

For exponential Lévy processes, Rary1—; and (1 +exp(Yj_1)) are independent and Rj‘iR V7,
so that (3.30) reads as

(3.31) E[e] = E[e®](1 + E[¥i1)] Vj,

with E[e¥1] = E[e]. The value of E[ef] reads as

(3.32) Ele®] = /_: eV fr(y)dy = Jg’ Re (qu (bk—ﬂa> e—im“a> Yi(a,b),

where function xx(x1,x2) is defined in (2.8) and ¢p is the characteristic function of R, which
is available for various Lévy processes.

The E[e®]-term needs to be calculated only once, with O(N) complexity. In the recursion
procedure to get the forward value, we use (3.31) M —1 times and (3.29) once. Therefore, the
total computational complexity is O(N)+ O(M), and exponential convergence is expected for
probability density functions belonging to C'*°|a, b].

With E[eYM | derived recursively, we can also compute the value of the forward price K

from (3.29) in such a way that v(zg,tg) = 0, that is, K = ]\f—?—l (E[eY™] +1).

4. Error analysis for arithmetic Asian options. Here we give an error analysis of the
ASCOS method for arithmetic Asian options. We first discuss, in general terms, three types
of error occurring, i.e., the truncation error, e, the error of the Fourier cosine expansion, ep,
and the error from the use of the Clenshaw—Curtis quadrature, ;.

The truncation error is defined as

(4.1) er(Y;) = / fr,)dy, G=1,....M,
R\[a,b]

and it decreases as interval [a, b] increases. In other words, for a sufficiently large integration
range [a,b], this part of the error will not dominate the overall error of the arithmetic Asian
option price.

Regarding the error of the Fourier cosine expansions, we know from [12] that, for f(y|x) €
C[a, b], it can be bounded by

ler (N, [a,b])| < P*(N) exp(—(N — 1)v),
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with v > 0 a constant and a term P*(N), which varies less than exponentially with respect
to N.

When the transitional probability density function has a discontinuous derivative, the
error can be bounded by
P*(N)

ler (N, [a,0])| < W,

where P*(N) is a constant and 3 > 1.

Error er thus decays exponentially with respect to N if the density function f(y|z) €
C>Ja, b], or algebraically otherwise.

Let us now have a look at the error from the Clenshaw—Curtis quadrature, which we use
to approximate

b
(4.2) I:= / (e 4 1) cos((x — a)w;)dz,

by I :=w"y in (3.23). In other words, e, = I — I.

According to [20, 22], the Clenshaw—Curtis quadrature rule exhibits an error which can
be bounded by O((2n,)~*/k) for a k-times differentiable integrand. When k is bounded, we
have algebraic convergence; otherwise the error converges exponentially with respect to ng;
see also [4]. The integrand in (4.2) belongs to C*°[a, b], as all derivatives are continuous on any
interval [a, b], confirming that, for the integrand in (4.2), we will have exponential convergence
with respect to ng.

4.1. Error propagation in the characteristic functions. The following lemma is used in
the error analysis.
Lemma 4.1. For any random variable, X, and any u € R, the characteristic function can

be bounded by |px (u)| < 1.
Proof. For any X and u, the characteristic function, ¢x(u), is defined by

bx (1) == E[X] /_ Z e f ()
We have
ol < [ e ),
and thus

|px (u)] < /_OO fx)de=1. =

Now we start with the error analysis and denote by e(dy, (v) and e(¢z, (u)), m =
1,..., M, the errors in ¢y, (u) and ¢z, (u), respectively. From (3.16) the error in the arith-
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metic Asian option price, denoted by ¢, is given by

=

€= e"‘“/ v(y, T) fry, (y)dy — e ™2

kol
o

2 k —ikm 2=
Re <¢YM <b _ﬂ-a> € k ba) Vi
- km —ikm 24—
b—a
> Re <¢YM <b—a>e )Vk
N-1
—rat N kr \ _ 2 km —ikmg2g
rerne (o (575) - (572) ) )

N-1

/ n k —ikm 2
= €cos + e_TAtZ Re (E <¢YA{ <ﬁ>> e K ba> Vi,

k=0

=

=am/ oy, T) fray (y)dy — e

o

where V} is known analytically and e.os is the error resulting from the use of the COS pricing
method. From [12] we know that for a sufficiently large range of integration [a,b], we have
€cos = O(€r), and thus

N-1
(4.3) ¢ = Ofer) + A Re (6 <$YM <z)]i—ﬂa>> eﬂhﬁ) G
k=0

The remaining part of the error (4.3) which we need to estimate is €(dy,, (u)). This is done
by mathematical induction. We first estimate the error in ¢y, (u) and ¢y, (1) and then use an
induction step to bound the error in (ﬁyM (u).

Characteristic function ¢y, (u) is known analytically from (3.8), so that €(dy, (u)) = 0 Vu.

The error in ¢ 7, (u) consists of three parts. The first part is the error due to the truncation
of the integration range, as in (3.11). The second part is due to the approximation of fy, (x) by
the Fourier cosine expansion in (3.14). The third part is due to the use of the Clenshaw—Curtis
quadrature rule to approximate the integral in (3.14). Summing up, we have

0 b
d@mmz/ W+UW&MM—/@“HWhMMx
N

’ ] 2 _1/ l l
+/a (e® + )™ fy, (z)dx — —a ; Re <¢Y1 (ﬁ) exp <_Z.ab i‘ra>> I
(4.4) + LNE_:I/ Re <¢ <l_77> . (_m In >> (-1
| b—ai3 W \p=a) P b—a
' 2 S lm I
- /R\[a,b}(ex TV (@) e Ty ; e <¢Y1 (H) exp <—mb = a>> €q-

The lemma below gives an upper bound for the local error.
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Lemma 4.2. We define

€= / (ex + 1)wfyj (a;)da: +€F
R\[a,b]

N-1
2 ! lm s
(4.5) + - ; Re <¢yj <m> exp (—zab — a>> €q-

Then, with integration range [a,b] sufficiently wide, we have

\eﬂgP(N,nq)(\eFH N\eq\) vi,

where P(N, nq) > 0 varies less than ep and €,, with respect to N,n,.
Proof. Application of (3.13) gives us that, Vj,u € R,

(4.6) < er(Yj),

/ (e" + 1)i“fyj (x)dz
R\[a,b]
with er(Y;) defined in (4.1). Substitution into (4.5) results in
s lm o [ lm
i\b—a) P\ " -4
From Lemma 4.1, it follows that, Vj, [, [¢y,(Ir/b—a)| < 1, and

o I . I
exp | —ia = |cos | —a +isin | —a =1 Vi,
b—a b—a b—a

so that |Re (¢y, (Ir/(b — a)) exp (—ialw /(b — a)))| < 1 Vj,1.
For [a, b] sufficiently wide, e dominates the expression er + e, so that we find, Vj, that

N-1

2 !
lej| < |€T(Yj)|+|6F|+mZ Re
=0

|€q]-

_ _ 2
@D el < POy (lerl + Z|eq| =PN,nq><|eF|+ N|eq|>

where P(N,n,) > 0 varies less than e and ¢, with respect to N,n,. [ |
Using the notation

(4.8) €L = |ep| + N|€q|

b—
we can write |e;| < P(N,ng)er, Vj. Application of Lemma 4.2 and (4.8) to (4.4) gives
(b2, (W) = lea] < P(N,ng)er

We continue with the error in ¢y, (u). From (3.9) we have that

~

(4.9) e(dy, (1) = €(dz, (u)dr(u) = e10r(u) = e1dy, (u) Vu.
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Applying Lemmas 4.1 and 4.2 to (4.9) results in
(4.10) (v ()] = [er||év; (w)] < [ex] < PN, ng)er

Next, we arrive at the induction step, described in the lemma below.

We use the common notation € = O(g(ay,...,a,)) to indicate that a @ > 0 exists, so
that |e| = Q|g(aq,...,an)|, with @ constant or varying less than function g(-) with respect to
parameters ay,...,aN.

Lemma 4.3. Form =3,..., M, assuming that
(m—1)—
(4.11) e(@y,, 1 (1)) = P(N,ng) Z ¢YJ (m-1)—j YU,

where P(N, ng) is a term which varies less than exponentially with respect to N and ng, then

(4.12) e(dy,, (u Z Wem—j | Vu,
and thus
(4.13) le(dy,, (u))| = O(m — 1)eg,

Proof. We find that, for m = 3,..., M and Vu,
(b7, 1 ()

= /°° (e +1)™ fy,,_, (x)dx — % Z/ Re <¢§le <bl__7ra> exp <_mblfa>> I

—oe 1=0

0o ) b .
= / (e + )" fy, _,(x)dx — / (e + )" fy, _,(x)dx

T U 2 / I . I
+ /a (e +1)"fy, (z)dx — - ; Re <¢ym1 <—b — a> exp (—zab — a>> I
N-1
2 / Im I ~
R — —1 I-1

r

2 lm lm .
o i I
e (ml <b—a>>exp< wb-a>>
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Substitution of (4.11) into (4.14) gives

(62,1 (1))
(m—1)—1 N-1

m—1
= em_1+ P(N,n,) ;j 7 2 ~>_ Re <¢xg <blﬂa> E(m—1)~j CXP <_mblja>>j
_ (m1)~1 2 I I -
= em—1+ P(N,ng) Z_; Crm-1-i \ p_4 — Re <¢Yj <m> P <_mb — a>> !
(mj—l)—l

=em 1+ P(N,ng) D emony—;jdz,w).
j=1

The error in ¢y, (u), Yu, is found as

e(by,, (1)) = dr(w)e(9z,,_, ()

(m—1)—1

= ¢r(Wem—1+ P(N,ng) > euno1)—;or(u)dz, (1)
=1
(m—1)—1

= ¢r(u)em—1 + P(N,ng) Z em—1)—j Py, (1)
=1

m—1

= ¢y, (Wem—1 + P(N,ng) > em—jdy, (u)
=2

=0 Zﬁij(u)em—j +O(erer), k,lel,...,m—1.

From Lemma 4.2 we see that |e;| = O(|er| + |¢|) Vj if N and n, increase simultaneously.
Error er decays exponentially with respect to N, and ¢, decays exponentially with respect to
ng, so that e; decays exponentially and the quadratic term, ere;, converges to zero faster than
ej. We thus have that

((bym Z ¢YJ em—j )
and application of Lemmas 4.1 and 4.2 gives, Yu € R,

m—1 m—
Z Py, (w)em—j| < Z Py, (w)lem—;| < P(N,ng)(m —1)er,
— ot

where P(N,n,) varies less than er and €, with respect to IV, n,, respectively. So

(4.15) |e(dy,,, (w))] = O((m = L)er),
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which concludes the proof. |
As a result of the lemma above, we have, Vu,

(4.16) e(Dyy (u Z oy, (W)em—;
and
(4.17) le(Pya (u)] = O((M — 1)ep).

Remark 4.1 (error of ¢y,,). Application of (4.17) and (4.8) results in

e ()] =0 (01 =1) (leel+ 2= Nlel ) ) v

When the number of monitoring dates, M, increases, larger values of N and n, are necessary
to reach a specified level of accuracy.

Moreover, when a large value of IV is necessary for accuracy, we should also increase n, to
control the error. When N and n, both increase, the expression | Ne,| converges exponentially
to zero® and we have that

[e(dyas (W)l = O(M = 1)(Jer| + legl)  Vu.

4.2. Error in the option price. We now focus on the error in the arithmetic Asian option
price. After application of (4.16) in (4.3) the error reads as

M-1 N-1 L -
(4.18) e=0(er) + 0 Z em—j exp(—rAt) Z Re <¢Yj (b — > e—zkwm> Vi

; a
J=1 k=0
When replacing e~ "2V}, (V, defined in (3.17)) by the term
S S, .
bga<j+01X’f( ’b)+<j—i—01_K>w’f(w’b)> for a call,
S oS .
bza <<K 7 _191> P(a,x*) — jflx(a,x )) for a put,
with At; := jAt/M, the expression

M-1 N-1 . .
Z em—j exp(—rAt) Z <<;5yj (b—a) e‘”‘”ﬁ> Vi Vi, k

j=1 k=0

(4.19) e AL W,g e

~

remains of the same order regarding N and n,.
The error in (4.18) therefore satisfies

M-1 N-1
o _—rAt; / km —zk7r J
=O0(erp)+ O jz::lem_je JkZ_ORe <¢yj <b—a>e )W

2Note that N varies linearly but €, decays exponentially, so that Neq| also decays exponentially.
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We can now write, for the overall error,

where A(Sy, 7) stands for the Asian option value with initial underlying price Sy and time to

maturity 7. Then,
M—

le| = O(ler|) + O Z|emJ|A So, AL;)

By Lemma 4.2 we find that
M—1

(4.20) le| = O(ler]) + O <]6F\ + —N]eq]> Z A(Sp, At;)
7=1

Volatility inherent in an Asian option is smaller than that of an equivalent vanilla European
option, due to the averaging feature. This makes Asian options cheaper than their plain vanilla
equivalents. In other words, with the same maturity, the value of an Asian option, A(Sp, 7), is
less than or equal to that of the corresponding vanilla European option, denoted by E(Sp, 1),
written on the same underlying asset. The European option value will therefore be used as
the upper bound for the corresponding arithmetic Asian option value in (4.20), and we have

M-1

2
(121) = Oerl) + 0 | (lerl + 2 Nlel) 3 E(S0, A1)
j=1

We assume that

j:lr,I.l.?J)\{l—l E(S())]Atj) =: E(S(]7 Atj*)7

so that the error in the Asian option price satisfies

(122) e = Olerl) + 0 (lexl + 22 Nleo ) OF = D (S, A1)

What remains is an upper bound for the plain vanilla European option value, E(Sy, (M —
1)Atj«), which is given as follows.
Result 4.1. The value of a plain vanilla European call option can be bounded by

UC(SOaT) < S(]e_qTa
with Sy, T,q the initial underlying price, the time to maturity, and the dividend rate, respec-

tively.
The value of a vanilla Furopean put option can be bounded by

UP(S(), T) S Ke_rT,
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with K, r the strike price and the interest rate, respectively.
Summarizing, the error in the arithmetic Asian option with M monitoring dates can be
approximated by

(4.23) €] ~ o <<|€F| + %]\ﬂeqo (M — 1)506—thj*) for a call
O ((IGF\ + %N!eq\) (M — 1)Ke—rAtj*) for a put.

For f(ylz) € C*®[a,b], e and €, converge exponentially with respect to N and ng,, re-
spectively. Therefore, as N and n, increase, the error in the Asian option price decreases
exponentially:

le] < P(N,ng)(exp(—(N — L)vr) + exp(—(nqg — 1)rg)),

where P(N,n,) is a term which varies less than exponentially with respect to N and n,, and
ve > 0, Vg > 0.

When the transitional probability density function has a discontinuous derivative, the
error in the Asian option price converges algebraically.

5. Numerical results. In this section numerical results for Asian options under the Black—
Scholes (BS), CGMY [6], and normal inverse Gaussian (NIG) [2] models are presented. We
use the same parameter sets as in [15], based on three test cases:

e BS case: r =0.0367, 0 = 0.17801;

e CGMY case: r =0.0367, C' = 0.0244, G = 0.0765, M = 7.5515, Y = 1.2945;

e NIG case: r = 0.0367, a = 6.1882, § = —3.8941, § = 0.1622.
These parameters have been obtained by calibration (see [15]). The characteristic functions
for these processes are presented in Appendix B. In all numerical examples we set time to
maturity T'— tg = 1, and Sy = 100. Strike price, K, and the number of monitoring dates, M,
vary among the different experiments.

MATLAB 7.7.0 is used, and the CPU is an Intel(R) Core(TM)2 Duo CPU E6550 (@
2.33GHz Cache size 4MB). CPU time is recorded in seconds.

The absolute error that we report below is defined as the absolute value of the difference
between the approximate solution at ¢y and Sy and a reference value which is computed by the
ASCOS method with a large number of terms in the Fourier cosine expansions. The values
have also been compared to reference values in the literature. With our own reference values,
however, we can compare up to a higher accuracy.

5.1. Geometric Asian options. First, we confirm the exponential convergence of the AS-
COS method for geometric Asian options under the BS model, for which an analytic result is
available, in Figure 1. For increasing N-values the error decreases exponentially.

The performance of the ASCOS pricing method for the NIG and CGMY test cases is
presented in Table 1. Geometric Asian call option prices with 12, 50, and 250 monitoring
dates are shown. Reference values are taken from ASCOS computations with N = 4096.
In all examples our method also gives the same option prices, up to a basis point, as those
presented in [15].

From Table 1 we see that the option prices have converged up to basis point precision
with N = 128 and N = 512, respectively, for the NIG and CGMY test cases. Exponential
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Convergence of Geometric Asian option under BS model
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Figure 1. Convergence of geometric Asian options under the BS model with M = 250, So = 100, K = 90.

Table 1
Convergence of geometric Asian options for the NIG and CGMY test cases with So = 100, K = 110.
NIG model

M N =64 N =128 N =192

12 Abs. error  1.42e-04  2.81e-05 1.33e-08
CPU time  4.9e-04 7.7e-04 8.3e-04

50 Abs. error  1.23e-04  3.07e-05 1.24e-08
CPU time 9.3e-04 1.4e-03 2.1e-03

250 Abs. error  1.13e-04  3.13e-05 2.11e-08
CPU time 3.1e-03 5.8e-03 8.2e-03

CGMY model

M N =256 N =512 N =1024

19 Abs. error 2.1e-03 9.87e-06 6.27e-11
CPU time 2.7e-03 4.1e-03 9.9e-03

50 Abs. error  1.20e-02 1.24e-05 6.71e-11
CPU time 1.2e-02 1.7e-02 4.3e-02

250 Abs. error  1.16e-02  3.65e-05 3.84e-11
CPU time 0.050 0.10 0.22

convergence is observed for these exponential Lévy asset price processes, and, as a result,
the geometric Asian options can be priced within milliseconds by the ASCOS method. In a
comparison with the results in [15], ASCOS is approximately 100 times faster in the NIG test
case and 20 times faster in the CGMY case.

Table 2 presents the convergence behavior when we approximate continuously monitored
geometric Asian options (M = oo) by discretely monitored geometric Asian options combined
with the four-point Richardson extrapolation (3.26). Here d is as defined in (3.26); that
is, discretely monitored Asian options with 2¢,2d¢+1 2d+2 9d+3 monitoring dates are used
to approximate the continuously monitored Asian options. The reference values have been
obtained by employing the ASCOS method with N = 4096, M = 512.

The discretely monitored Asian prices with 4, 8, 16, and 32 monitoring dates, i.e., d = 2,
have converged to the reference Asian price in Table 2. Note that one may also develop a
Richardson extrapolation scheme to approximate discrete Asian options with many monitoring
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Table 2
Convergence of geometric Asian options for the NIG and CGMY cases with Sy = 100, K = 110. For the
NIG model we use N = 128 and for the CGMY model N = 512.

NIG CGMY
d | Abs. error | CPU time | Abs. error | CPU time
1 3.78e-04 0.0018 2.06e-04 0.0120
2 5.92e-05 0.0023 1.21e-04 0.0247
3 3.31e-05 0.0052 5.71e-05 0.0499

dates by a Richardson extrapolation based on fewer dates.

We need approximately 2 and 25 milliseconds to get the continuously monitored Asian
option prices within basis point precision for the NIG and CGMY test cases, respectively,
which is competitive with the existing methods in [15, 14, 8].

5.2. Arithmetic Asian options. In all numerical experiments in this subsection, the ref-
erence values are obtained by the ASCOS method with N = 4096, n, = 6400.

Figure 2 presents the logarithm (basis 10) of the absolute error in the value of an arithmetic
Asian option under the BS model with 50 monitoring dates, against the index d with N = 64d
and ng = 100d, where exponential convergence in the option price with respect to N and ng,
increasing simultaneously, is observed. Our method is an efficient alternative for [14], which
has algebraic convergence as the error decays linearly on a log-log scale.

Convergence of Arithmetic Asian options under BS model
-3

—4t
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Iogm(error)
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d, with N=64d, n_=100d
Figure 2. Convergence of arithmetic Asian options for the BS test case with M = 50, So = 100, K = 90.

Table 3 then presents the convergence and the CPU time of an arithmetic Asian option for
the NIG test case with M = 12, M = 50, and M = 250 (monthly, weekly, and daily monitored,
respectively). Exponential convergence is not influenced significantly by an increase in the
number of monitoring dates, M, and neither is the CPU time. This is because the quadrature
rule, which dominates the CPU time, is used only once. This feature is especially beneficial for
pricing Asian options with many monitoring dates and continuously monitored Asian options.
However, with a larger number of monitoring dates, based on our error analysis, a larger
number of Fourier cosine terms may be required to reach the same level of accuracy, thus
resulting in a higher CPU time which grows as nqN2. With N = 256, n, = 400, we find
converged option prices (up to basis point precision) for the NIG case with all monitoring
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Table 3
Convergence of arithmetic Asian options for the NIG test case with So = 100, K = 110.

. N =128 N =256 N =384
M | Time and error Mg =200 ng =400 ny = 600
12 Abs. error 2.0e-3 1.71e-4 5.16e-6
CPU time 2.41 15.13 46.09
50 Abs. error 2.26e-4 6.94e-5 2.17e-6
CPU time 2.43 15.16 46.22
9250 Abs. error 7.8e-3 9.33e-5 8.49e-6
CPU time 2.42 15.23 46.68

dates.

Similar convergence behavior has been observed for other Lévy processes. For instance,
in the case of the CGMY model, when M = 12,50, the option prices converge to basis point
precision with N = 256, n, = 400, and the computation time is within 15 seconds. With
M = 250, the ASCOS method reaches basis point accuracy for the CGMY model when
N = 320, ny = 500 in approximately 27 seconds, which is much less than the approximately
210 seconds it takes with the method in [15] to reach an accuracy of O(1073) for the same
CGMY test case with M = 250. Note that due to the exponential convergence rate of the
Clenshaw—Curtis quadrature and the Fourier cosine expansion, the number of terms needed
to reach a certain accuracy level remains limited, which reduces the computational cost and
the CPU time of our pricing method.

In Table 4 we finally compute continuously monitored arithmetic Asian call options under
the NIG model, with Sg = 100 and different strikes, by the repeated Richardson extrapolation
based on discretely monitored arithmetic Asian call options (3.26). The option prices converge
somewhat slower with respect to parameter d when compared to the geometric Asian case.
However, the CPU time of the ASCOS method does not increase when d increases, so that we
can use a larger value for d, for instance d = 6 (M = 64,128,256,512), and obtain accurate
results.

Table 4
Convergence of arithmetic Asian options under the NIG model with So = 100, N = 256, nq = 400.

d K =90 K =100
Option value | CPU time | Option value | CPU time
4 12.6748 60.05 5.1191 60.01
5 12.6744 60.13 5.1186 59.94
6 12.6743 60.35 5.1185 60.17

6. Conclusions. In this article, we proposed an efficient pricing method for European-style
Asian options, the ASCOS method, based on Fourier cosine expansions and Clenshaw—Curtis
quadrature. The method performs well for different exponential Lévy processes, different
parameter values, and different numbers of Asian option monitoring dates. The method is
accompanied by a detailed error analysis, giving evidence for an exponential convergence rate
for geometric and arithmetic Asian options. Due to the exponential convergence, our pricing
method is highly efficient and significant speedup has been achieved compared to competitor
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pricing methods.

The ASCOS method performs in a robust manner when the number of monitoring dates
increases, and, interestingly, the CPU time does not increase significantly. This makes the
pricing method especially advantageous for weekly and even daily monitored arithmetic Asian
options, as well as for continuously monitored Asian options whose value can be approximated
by discretely monitored Asian options in combination with Richardson extrapolation.

Appendix A. Beta function formulation. After some manipulations with symbolic soft-
ware, we find that integral (3.22) can be written in a form with incomplete Beta functions as

follows:
b - km I
)i - d
/a (e* 4+ 1)"=a cos <(m a)b—a> x

1 _lGatm) [ 2ial 1l ik p il ik
— = B, -1 E SPUR W
5¢ d (ed < ﬁ( e, 7 +d>—|—5< e’, 7 +d>>
27 ) ik p U ik
(Al) +ed <—,8<—€,E,1+E>+,B<—€,E,1+E>>>,

where 1 = /-1, d = I’_T“, and [(z,y, z) is the incomplete Beta function

Blx,y,2) = /O - o,

The computation of the incomplete Beta functions in (A.1) is, however, involved with these
complex-valued arguments.

Appendix B. Exponential Lévy processes and characteristic functions. With exponential
Lévy models, the underlying asset is written as an exponential function of a Lévy process and
the characteristic function of the log-asset price can be found in closed form as

(B.1) ¢(u; xo) = exp(iuzo)p(u, t),

where z¢g = log(Sp) and ¢(u,t), the characteristic function of an increment in the log-asset, is
defined as in (2.5).

The simplest and most widely used exponential Lévy process is the geometric Brownian
motion (GBM) model, where the logarithm of the asset price follows a Brownian motion.
Under the GBM model, the characteristic function of the Lévy increment, ¢p(u,t) in (B.1),
has the following form:

1
waBM(u, t) = exp <z’u,ut - §u20’2t> ,

where p and o are the percentage drift and percentage volatility, respectively, of the underlying
process.

One problem with the GBM model is that it is not able to reproduce the volatility skew
or smile present in most financial markets. Over the past few years it has been shown that
several other exponential Lévy models are, at least to some extent, able to reproduce the skew
or smile.
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One particular model we consider is the CGMY model [6]. The underlying Lévy process
is characterized by four parameters C, G, M, and Y. Parameter Y : Y < 2 controls whether
the CGMY process has finite or infinite activity. Parameter C': C' > 0 controls the kurtosis of
the distribution, and nonnegative parameters G, M give control over the rate of exponential
decay on the right and left tails of the density, respectively.

For a CGMY model, the characteristic function of increment reads as

wcamy (u,t) = exp (z’u,ut)
cexp ((CT(=Y) (M — iw)Y — MY + (G +iu)’ —GY)),

where I'(x) is the gamma function.
The NIG process [2] is a variance-mean mixture of a Gaussian distribution with an inverse
Gaussian. The pure jump characteristic function of increment under the NIG model reads as

1
oniG (u, t) = exp (z’uut — §u2a2t>

- exp <t5 <\/a2 — 62 —/a? - (ﬂ—kz’u)?)),

with a,0 > 0 and € (—a,a—1). The a-parameter controls the steepness of the density; /3 is
a skewness parameter: 8 > 0 implies a density skew to the right, 5 < 0 implies a density skew
to the left, and 8 = 0 implies the density is symmetric around 0. ¢ is a scale parameter in
the sense that the rescaled parameters a — ad and 8 — (4 are invariant under location-scale
changes of x.
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