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Swing options give contract holders the right to modify amounts of future delivery
of certain commodities, such as electricity or gas. We assume that these options
can be exercised at any time before the end of the contract, and more than once.
However, a recovery time between any two consecutive exercise dates is incorpo-
rated as a constraint to avoid continuous exercise. We introduce an efficient way
of pricing these swing options, based on the Fourier cosine expansion method,
which is especially suitable when the underlying is modeled by a Lévy process.

1 INTRODUCTION

A swing option usually consists of two contract parts: a future part and a swing part.
The future contract guarantees that the option seller delivers certain amounts of a
commodity (baseload) to the option buyer at certain times, T0 < T1 6 T2 � � � 6
TN 6 T , with T the maturity time. The swing part gives the option buyer the right
to order extra or deliver back amounts. Usually, the motivation behind the purchase
of a swing option is to hedge the uncertainty in the future demand of a commodity.
The future part of a swing option can be priced as the discounted expected price of
the underlying commodity at the delivery times, whereas the swing part, the focus
of the present paper, can vary in contract complexity and is most interesting from a
numerical point of view.

In the literature the swing option is often modeled as a Bermudan-style option with
swing actions being allowed at the (fixed) delivery times of the baseload, combined
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2 B. Zhang and C. W. Oosterlee

with some constraints. Pflug and Broussev (2008) model the bid and ask prices as
the least acceptable contract price and the maximal expected profit over demand
patterns, respectively, and those prices are determined by stochastic programming.
They present an algorithm to find the equilibrium prices from a game-theoretic point
of view.

Jaillet et al (2003) use a trinomial forest model where a so-called usage level is
discretized. Their model is a multiple layer tree which captures the information of the
number of exercise rights remaining, the total amount exercised and the price scenario.
We move from one tree to another by a swing action.A discrete binomial methodology Changes to sentence OK?

is also applied by Lari-Lavassani et al (2001), where a transition probability matrix
is used to calculate the expected profit, to be maximized over different swing actions
at each time step.

Carmona and Touzi (2008) view swing options asAmerican-style contingent claims
with multiple exercise opportunities and address the problem from the perspective of
multiple optimal stopping problems, dealt with by means of Monte Carlo methods
and Malliavin calculus. They focus on the Black–Scholes dynamics. Zeghal and Mnif
(2006) extend that method to Lévy processes.

Unlike the models in which swing actions are only allowed at discrete times,
Dahlgren (2005) proposed a continuous-time model to price the commodity-based
swing options. Here the option buyer can exercise the swing option any time before
expiry, and more than once, with an upper bound for the maximum amount of addi-
tional commodity that can be ordered or delivered back (specified in the contract).
After a swing action, the option buyer cannot exercise again unless a recovery time,
�R.D/, has elapsed, where D represents the amount of commodity and t is the exer-
cise time. This recovery time can be constant, or dependent on the amount of the last
swing action. Dahlgren (2005) connected the price of the swing option to a system of
discrete variational inequalities of Hamilton–Jacobi–Bellman type, which is solved
by means of finite elements and a projected successive over-relaxation (PSOR) algo-
rithm (Cryer 1971). A combination of dynamic programming and a finite difference
approximation of the resulting partial integro-differential equation (PIDE) under Lévy
jump processes has been presented in Kjaer (2007).

The purpose of the present paper is to develop an efficient alternative solution
method for the continuous time model in Dahlgren (2005), which is at least compet-
itive with PIDE solvers or Monte Carlo methods in terms of efficiency, accuracy and
flexibility.

Our solution method for the swing option is based on dynamic programming,
backward recursion and Fourier cosine expansions, as in Fang and Oosterlee (2008,
2009). For the dynamics of the underlying prices, we employ the Ornstein–Uhlenbeck
(OU) mean reverting process, commonly used in commodity derivatives, and the
CGMY Lévy jump process (Carr et al 2002). The present work can be seen as a
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An efficient pricing algorithm for swing options 3

generalization, in terms of the financial products, of the work in Fang and Oosterlee
(2008, 2009).

The paper is organized as follows. Details of swing options are presented in Sec-
tion 2. In Section 3, our contribution to pricing swing options is described in detail.
We consider both constant and state-dependent recovery times. Numerical results are
presented in Section 4. We focus in this paper on the algorithmic description, which is
somewhat technical in places. An error analysis is not included here, but it is included
in Fang and Oosterlee (2008, 2009) for European and Bermudan options, which are
the building blocks of the present swing option algorithm.

2 DETAILS OF THE SWING OPTION

In our discussion, we ignore the future part of the swing option and concentrate on
the swing part. Whenever we mention the term “swing option”, it indicates the swing “use”?

part of the option.

2.1 Contract details

Our assumptions for the swing option are listed below.

� We adopt the concept of recovery time, denoted by �R.D/, which means that
if the option buyer has already exercised the swing option with an amount D
at time point t , they have to wait �R.D/ time before a next swing action can be
conducted. Two different models of recovery time will be considered.

(1) Constant recovery time: if D ¤ 0, �R.D/ � C , where C is constant.

(2) State-dependent recovery time: here the recovery time is assumed to be
an increasing function of D, independent of time t , ie, �R.D/ D f .D/.

Moreover, �R.D/ D 0 if and only if D D 0, and this holds for both types of
recovery time.

� A swing option can be exercised at any time after a recovery time delay until
the expiry date T . It implies that we deal with an American-style continuous
problem.

� With the constraint of recovery time, a swing option can be exercised more than
once before expiry.

� The amount of commodity at each swing action, D, is assumed to be in the Words added – OK?

range �L; : : : ;�1; 0; 1; : : : ; L, where a negative amount implies back delivery
and a positive amount means ordering. The upper bound, L, is necessary as
otherwise it may be optimal to order or deliver back an infinite amount of
commodity, and thus receive an unrealistic profit.

Research Paper www.risk.net/journal
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� The price the option holder has to pay for ordering extra units of the commodity
is given by What do subscripts ‘a’ and ‘d’

denote please? If they are
labels, I will make them
Roman according to journal
style. (See also the
superscript ‘a’ and ‘d’ that
appear later: are they labels?)

S if S 6 Ka;

Ka if Ka 6 S 6 Smax;

S � .Smax �Ka/ if S > Smax:

Here S is the price of the underlying commodity, based on a stochastic differ-
ential equation for S.t/, and the values of the strikesKa and Smax are specified
in the contract.

� The price the option holder will receive for delivering back units of the com-
modity is

Kd � Smin C S if S 6 Smin;

Kd if Smin 6 S 6 Kd ;

S if S > Kd ;

where the values of the strikes Kd and Smin are also specified in the contract.

Based on the last two assumptions, the payoff function of a swing option is of the
form

g.S; T;D/ D D.max.S �Ka; 0/ � max.S � Smax; 0/

C max.Kd � S; 0/ � max.Smin � S; 0//; (2.1)

with S D S.T /. This implies that there can be no profit unless the price of the under-
lying fluctuates below or above the thresholds Kd or Ka. The two other thresholds,
Smin and Smax, are defined to protect an option writer against extreme fluctuations
(see Dahlgren 2005). Figure 1 on the facing page shows an example of the payoff for
varying S and D.

2.2 Pricing details

Assume that the first possible time at which a swing action is allowed1 is T0: 0 <
T0 < T . Let

ns WD minfn j n 2 NC; n > .T � T0/=�R.1/g; (2.2)

where �R.1/ is the recovery time when D D 1. Then ns represents the maximum
number of swing actions that can be performed in the interval ŒT0; T �.

1 If T0 > T we deal with a futures contract, and with T0 D T the price of the swing option is just
the payoff, g.S; T; 0/, if a swing action is not profitable, and g.S; T;L/ otherwise.

Journal of Computational Finance Volume 16/Number 4, Summer 2013



�

�

“jcf_zhang” — 2013/5/21 — 14:42 — page 5 — #5
�

�

�

�

�

�

An efficient pricing algorithm for swing options 5

FIGURE 1 Example of a payoff of a swing option with Smin D 20, Kd D 35, Ka D 45 and
Smax D 80, and S and D varying.
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We set t�n WD T � n�R.1/, so that t�n is the last point in time for which we can have
nC1 swing actions, n D 1; : : : ; ns �1. Moreover, let In D .t�n ; T � and Ins D ŒT0; T �

be defined as shown in Figure 2 on the next page.2

On I1, there is only one opportunity left for a swing action, which implies that the
recovery time has no further influence for the future. Hence, if it is profitable to exercise
the swing option during .t�1 ; T � we should exercise the maximum possible amount,
L. In this time interval the only issue that needs to be decided is the optimal exercise
time. So, the problem is equivalent to an American-style option pricing problem, and
the swing option value for any t 2 .t�1 ; T � is equal to the value of an American option,
starting from t and expiring at T , with payoff g.S; t 0; L/, t 0 2 .t; T �.

At any time t 2 InC1 n In, where t ¤ t�n , n D 1; : : : ; ns � 1 (see Figure 2 on
the next page), the option holder basically has two options: either exercise the swing
option at any time in Œt; t�n � or do not exercise until tCn , the time point immediately
after t�n .

2 A division of the time interval into portions InC1 n In was first proposed by Dahlgren (2005). Our
analysis is based on the appendix in Dahlgren (2005).

Research Paper www.risk.net/journal
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FIGURE 2 Division of the time axis and the maximum remaining number of swing rights.

T

   

   

Interval

Length

t*k+1 tB t*k tA t*k–1

τR(1) τR(1) (k – 1)τR(1)

Ik–1Ik / Ik–1Ik+1 / Ik

tA: option holder can exercise maximum k times. tB : option holder can exercise maximum k C 1 times.

Note here that the length of interval InC1 n In equals �R.1/, the recovery time for
D D 1. It is therefore not possible to exercise more than once within InC1 n In. In
the case of exercise, the problem reduces to the decision of the optimal exercise time
within InC1 n In. So, for each possible amount, D, the problem is equivalent to an
American-style option problem, starting at t 2 InC1 nIn and ending at t�n , with payoff

Ng.S; t 0;D/ D g.S; t 0;D/C �t 0

D.S; t
0/; t 0 2 Œt; t�n �; t 2 InC1 n In; (2.3)

where
�t 0

D.S; t
0/ D e�r�R.D/

ES;t 0.v.S; t 0 C �R.D///; (2.4)

and ES;t 0 represents the conditional expectation of v.S; t 0 C �R.D// given S.t 0/.
For each possible value ofD, ie,D D �L; : : : ; L, we compute the corresponding

value of the swing option at t , assuming that D commodities are bought/sold within
InC1 n In, by an American-style option pricing method. After taking the maximum
over all values ofD, we obtain the swing option value at t 2 InC1 n In with t ¤ t�n if
exercise takes place before tCn . We denote the corresponding option value by v1.S; t/.

On the other hand, if the option holder decides not to exercise before tC
k

, they have
an option worth the discounted expected value:

v2.S; t/ D e�r.t
C
n �t/

ES;t .v.S; t
C
n //; t 2 InC1 n In; (2.5)

where
v.S; tCn / D v.S; t�n C ı/; 0 < ı � 1:

The value v.S; tCn /with tCn 2 In nIn�1, has already been obtained at the latest step in
the backward recursion. After another, European-type, backward recursion procedure
(2.5), value v2.S; t/ is obtained. From the view of a profit maximizing agent, we find
that

v.S; t/ D max .v1.S; t/; v2.S; t//; t 2 InC1 n In:

Moreover, at each t�n , the last time point to perform nC1 swing actions, which is also
in InC1 n In, the option value is the maximum of the payoff Ng.S; t�n ;D/ from (2.3),
over all values of D, and the value of v.S; tCn /.

Journal of Computational Finance Volume 16/Number 4, Summer 2013
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An efficient pricing algorithm for swing options 7

Finally, for t 2 Œ0; T0/, a time interval in which swing actions are not yet allowed,
we have

v.S; t/ D e�r.T0�t/
ES;t .v.S; T0//;

which is computed by one step of a European option pricing algorithm.
This concludes the global description of the algorithm for the swing option pricing

method.
Summarizing, we can distinguish two major parts in the pricing algorithm. ‘of’?

� For t 2 .t�1 ; T �, we are faced with an American option pricing problem with
payoff g.S; t;D/, given by (2.1), which can take five different forms in five
different regions of the spot price of the underlying (see Figure 1 on page 5). As
mentioned, if it is profitable to exercise the swing option in this time interval,
then Dopt D L. Hence the swing option price is the maximum of g.S; t; L/
and the continuation value.

� For the other time regions, t 2 ŒT0; t
�
1 /, we compute the following two quantities

and compare them within each time region InC1 n In:

– the value of an American option, v1.S; t/, with payoff Ng.S; t;D/ WD
g.S; t;D/C �t

D.S; t/, as in (2.3), and �t
D as in (2.4);

– the discounted value v2.S; t/ D ES;t .v.S; t
C
n //.

For the values v.S; tCn /we only have to calculate the value of v1.S; t
C
n /, due to

the fact that the discounted value of ES;t .v.S; t
C
n�1// equals�t

C
n

DD1.S; t
C
n /which

is less than (or equal to) the payoff with D D 1 (since g is nonnegative), and
thus less than (or equal to) the correspondingAmerican option value, v1.S; t

C
n /.

2.3 Commodity processes

The commodity underlying for the swing option is modeled by a stochastic differential
equation for x.t/ D ln S.t/. State variables x and y are defined as the logarithms of
the asset price, S.t/:

x WD ln.S.tm�1// and y WD ln.S.tm//;

respectively. Consequently, (2.1) can be rewritten (keeping the same notation, g, for
the function based on x.t/) as

g.x; t;D/ WD D.max.ex �Ka; 0/ � max.ex � Smax; 0/

C max.Kd � ex; 0/ � max.Smin � ex; 0//; (2.6)

with x D x.t/. Function Ng from (2.3) can be generalized accordingly, also keeping
the same notation, Ng, for the function based on x.t/.

Research Paper www.risk.net/journal
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8 B. Zhang and C. W. Oosterlee

Two underlying processes are considered in this paper, an exponential OU mean
reverting process and a CGMY Lévy jump process.

For the exponential OU process, the log-asset process x.t/ D log.S.t// is assumed
to be mean reverting:

dx.t/ D �.x.t/ � Nx/ dt C � dW.t/; (2.7)

where � is speed of mean reversion, Nx is long term mean and � is the volatility.
Moreover, under the risk-neutral measure, we should adjust Nx by subtracting a market
price of risk parameter � from Nx, as in Dahlgren (2005).

The characteristic function,'.!I x/, of the conditional probability density function,
f .y j x/, is defined as

'.!I x/ D E.ei!y j x/: (2.8)

The well-known characteristic function for the OU process reads

'OU.!I x/ D exp .xBx.!; �/C A.!; �//; (2.9)

with

Bx.!; �/ D i!e��� ;

A.!; �/ D 1

4�
.e�2�� � e��� /.!2�2 C !e�� .!�2 � 4i� Nx//:

9=
; (2.10)

The CGMY process, as defined in Carr et al (2002), is a Lévy jump process, a
generalization of the variance gamma process, with the characteristic function

'CGMY.!I x/ D exp.i!x/ CGMY.!; t/; (2.11)

where

 CGMY.!; t/ D exp.tC� .�Y /Œ.M � i!/Y �M Y C .G C i!/Y �GY �/: (2.12)

It is governed by four parameters. Parameter Y < 2 controls whether the process has
finite or infinite activity. Parameter C > 0 controls the kurtosis of the distribution,
and the nonnegative parametersG,M give control over the rate of exponential decay
on the right-hand side and the left-hand side of the density, respectively.

Summarizing, we deal here with two characteristic functions of the form

'.!I x/ D exp.ˇi!x/ .!; t/; (2.13)

in which, for the OU process, ˇ D exp .���t/, whereas for general Lévy processes,
we find ˇ D 1.

Journal of Computational Finance Volume 16/Number 4, Summer 2013
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An efficient pricing algorithm for swing options 9

3 FOURIER COSINE ALGORITHM FOR SWING OPTIONS

In Section 2, we argued that the price of a swing option can be obtained by a series
of Bermudan- and American-style option pricing procedures. In Fang and Oosterlee
(2008, 2009) an efficient algorithm, based on the Fourier cosine series expansion
(called the COS algorithm), for European and Bermudan early-exercise options was
developed. The COS algorithm can be applied to processes for which the characteristic
function is available. In this section, we briefly review the COS algorithm, and extend
it to pricing swing options.

3.1 Fourier cosine expansions

We depart from the risk-neutral valuation formula

v.x; t0/ D e�r�t

Z 1

�1
v.y; T /f .y j x/ dy;

where v.x; t/ is the option value, f .y j x/ is the transitional probability density
function, x, y can be any increasing functions of the underlying, S.t/, at t0 and T ,
respectively, and �t D T � t0. We truncate the integration range to Œa; b�, so that

v.x; t0/ � e�r�t

Z b

a

v.y; T /f .y j x/ dy; (3.1)

with Does ‘TOL’ need to be
defined? Please clarify.ˇ̌̌

ˇ
Z

R

f .y j x/ dy �
Z b

a

f .y j x/ dy

ˇ̌̌
ˇ < TOL;

and choose the following integration range, from Fang and Oosterlee (2008):

Œa; b� WD
h
c1 � 10

q
c2 C p

c4; c1 C 10

q
c2 C p

c4

i
; (3.2)

where cn denotes the nth cumulant of logS .
The conditional density function of the underlying is approximated via the charac-

teristic function by a truncated Fourier cosine expansion, as follows:

f .y j x/ � 2

b � a
N �1X0

kD0

Re

�
'

�
k	

b � a I x
�

exp

�
�i
ak	

b � a
��

cos

�
k	
y � a
b � a

�
;

(3.3)
where Ref�g denotes taking the real part of the input argument.

The prime at the sum symbol in (3.3) indicates that the first term in the expansion is
multiplied by one-half. Replacing f .y j x/ in (3.1) by its approximation in (3.3) and

Research Paper www.risk.net/journal
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interchanging integration and summation gives us the COS algorithm to approximate
the value of a European option (Fang and Oosterlee 2008):

v.x; t0/ D e�r�t

N �1X0

kD0

Re

�
'

�
k	

b � a I x
�

exp

�
�ik	

a

b � a
��
Vk; (3.4)

where

Vk D 2

b � a
Z b

a

v.y; T / cos

�
k	
y � a
b � a

�
dy

is the Fourier cosine coefficient of v.y; T /, which is available in closed form for
several European option payoff functions.

Formula (3.4) can be directly applied to calculate the value of a European option,
but it also forms the basis for the pricing of Bermudan options.

For a Bermudan option the COS algorithm was generalized in Fang and Oosterlee
(2009) as follows. Choose tm, m D 1; 2; : : : ;M, as the “early-exercise dates”. The
backward recursion dynamic programming scheme for a Bermudan option with M

exercise dates and T D tM then reads as follows.
For m D M;M � 1; : : : ; 2,

c.x; tm�1/ D e�r�t

Z
R

v.y; tm/f .y j x/ dy;

v.x; tm�1/ D max.payoff; c.x; tm�1//;

9=
; (3.5)

followed by

v.x; t0/ D e�r�t

Z
R

v.y; t1/f .y j x/ dy: (3.6)

Functions v.x; t/, c.x; t/ and “payoff” are the option value, the continuation value
and the payoff at time t , respectively.

The Fourier cosine series expansion coefficients, Vk , are now time-dependent and
their computation requires an efficient algorithm. The algorithm to compute Vk for
swing options is discussed in detail in Sections 3.2 and 3.3.

The value of an American option can be obtained by the backward recursion proce-
dure for discrete Bermudan options, explained above, in combination with a Richard-
son extrapolation procedure. In particular, a four-point repeated Richardson extrapo-
lation scheme using the prices of Bermudan options for four different numbers of
exercise dates, M, 2M, 4M, 8M:

OvAM .M/ D 1
21
.64 Ov.8M/ � 56 Ov.4M/C 14 Ov.2M/ � Ov.M//; (3.7)

has been successfully applied in Chang et al (2007) and Fang and Oosterlee (2009).
Here, Ov.M/ denotes the Bermudan option value, v.x; t0/ from (3.6) with M exer-
cise dates; OvAM .M/ is the approximation for the American option price with the
extrapolation based on M exercise dates.

Journal of Computational Finance Volume 16/Number 4, Summer 2013
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An efficient pricing algorithm for swing options 11

The COS algorithm exhibits an exponential convergence rate for European and
Bermudan options, for asset processes whose conditional density f .y j x/ 2
C1..a; b/ � R/.

In the following subsections we generalize the COS algorithm to pricing swing
options.

Remark 3.1 Subscript n in t�n , as well as in tCn , decreases, from ns � 1 to 1, if we
move forward in time, with t from 0 toT (see Figure 2 on page 6). In contrast, subscript
m, denoting the early-exercise dates, in tm (without �) increases and goes from 1 to M

if we move forward in time. Furthermore, there are NR D �R.1/=�t � �R.1/M=T

early-exercise dates in each time interval InC1 n In, ie, between time points t�nC1

and t�n .

3.2 Algorithm for the final time interval, t 2 I1

We start the detailed description of our pricing algorithm for swing options by con-
sidering the last time interval, defined as I1 (see Figure 2 on page 6).

As mentioned in Section 2.2, in I1, the swing option is equivalent to an American
option. We can thus generalize the algorithm based on the Fourier cosine expansions
for Bermudan options to the swing option payoff and combine it with a four-point
repeated Richardson extrapolation to obtain an approximation of an American option
price.

3.2.1 Fourier cosine coefficients

At tM D T , we have for the Fourier cosine coefficients of the swing option value

Vk.tM/ D Gk.a; ln.Kd /;D/CGk.ln.Ka/; b;D/;

with D D L, and a; b as in (3.1). Here

Gk.x1; x2;D/ D 2

b � a
Z x2

x1

g.x; tM;D/ cos

�
k	
x � a
b � a

�
dx (3.8)

is the Fourier cosine coefficient of the swing option payoff.
In detail, we find, with D D L:

Vk.tM/ D 2L

b � a..Kd � Smin/ k.a; ln.Smin//

CKd k.ln.Smin/; ln.Kd // � 
k.ln.Smin/; ln.Kd //

C 
k.ln.Ka/; ln.Smax// �Ka k.ln.Ka/; ln.Smax//

C .Smax �Ka/ k.ln.Smax/; b//; (3.9)

Research Paper www.risk.net/journal
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with


k.x1; x2/ D 1

1C .k	=.b � a//2
�

cos

�
k	
x2 � a
b � a

�
ex2 � cos

�
k	
x1 � a
b � a

�
ex1

C k	

b � a
�

sin

�
k	
x2 � a
b � a

�
ex2 � sin

�
k	
x1 � a
b � a

�
ex1

��
;

(3.10)

and

 k.x1; x2/ D
�

sin

�
k	
x2 � a
b � a

�
� sin

�
k	
x1 � a
b � a

��
b � a
k	

; k ¤ 0; (3.11)

and for k D 0,  k.x1; x2/ D x2 � x1.
At each time step, tm, m D M � 1; : : : ; 2, as in the case of a regular Bermudan

option, the log-asset values for which the payoff equals the continuation value are
determined by Newton’s method. Based on these values we can determine the maxi-
mum of the two, as in (3.5). In the case of the swing option, there are two early-exercise
points at each time step, as it is profitable to exercise the option when the underlying
is less thanKd or larger thanKa. We denote the lower and upper early-exercise points
for time tm by xd

m and xa
m, respectively. To determine the two early-exercise points

by Newton’s method, we need the values of c.x; tm/; g.x; tm;D/; @c.x; tm/=@x and
@g.x; tm;D/=@x, with the help of the following formulas: Journal style is to remove

centered dots that denote
simple multiplication. Please
mark clearly any that denoted
scalar products and should
reinstated.c.x; tm/ D e�r�t

N �1X0

kD0

Re

�
'

�
k	

b � a I x
�

exp

�
�ik	

a

b � a
��
Vk.tmC1/; (3.12)

@c.x; tm/

@x
D e�r�t

N �1X0

kD0

Re

�
'

�
k	

b � a I x
�

iˇ
k	

b � a

	 exp

�
�ik	

a

b � a
��
Vk.tmC1/; (3.13)

with '.!I x/ in (3.12) and (3.13) defined in (2.8). Function g is defined in (2.6) and
its derivative is given by the following expression:

@g.x; tm;D/

@x
D

8̂̂
<
ˆ̂:

�Dex if ln.Smin/ 6 x 6 ln.Kd /;

Dex if ln.Ka/ 6 x 6 ln.Smax/;

0 otherwise.

(3.14)

Once xd
m and xa

m have been determined, we split the Fourier coefficients Vk into three
parts, for m D M � 1; : : : ; 1:

Vk.tm/ D Gk.a; x
d
m;D/C Ck.x

d
m; x

a
m; tm/CGk.x

a
m; b;D/;

Journal of Computational Finance Volume 16/Number 4, Summer 2013
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An efficient pricing algorithm for swing options 13

with the Fourier cosine coefficient of the continuation value given by

Ck.x1; x2; tm/ D 2

b � a
Z x2

x1

c.x; tm/ cos

�
k	
x � a
b � a

�
dx; (3.15)

and c.x; tm/ defined in (3.12), so that the value of Vk.tm/ is obtained from Vk.tmC1/.
From basic calculus we have that, if xd

m < ln.Smin/,

Gk.a; x
d
m;D/ D D

2

b � a.Kd � Smin/ k.a; x
d
m/; (3.16)

and otherwise

Gk.a; x
d
m;D/ D D

2

b � a..Kd � Smin/ k.a; ln.Smin//

CKd k.ln.Smin/; x
d
m/ � 
k.ln.Smin/; x

d
m//: (3.17)

If xa
m > ln.Smax/, we have

Gk.x
a
m; b;D/ D D

2

b � a.Smax �Ka/ .x
a
m; b/; (3.18)

and otherwise

Gk.x
a
m; b;D/ D D

2

b � a.
k.x
a
m; ln.Smax// �Ka k.x

a
m; ln.Smax//

C .Smax �Ka/ k.ln.Smax/; b//; (3.19)

where 
k and  k are defined by (3.10) and (3.11), respectively.
Next we discuss the computation of Ck.x

d
m; x

a
m; tm/ in (3.15). To determine the

value of Ck.x1; x2; tm/, we have to compute What do superscripts and
subscripts ‘c’ and ‘s’ denote?
If they are labels, they will be
made Roman.

Ck.x1; x2; tm/

D � i

	
e�r�t

N �1X0

lD0

Re

�
�

�
l	

b � a
�
Vl.tmC1/.M

c
k;l.x1; x2/CM s

k;l.x1; x2//

�
:

(3.20)

We can write (3.20) as a matrix–vector product representation, ie,

C .x1; x2; tm/ D e�r�t

	
f.M c

k;l CM s
k;l/ug; (3.21)

where f�g denotes taking the imaginary part of the input argument, and

u WD fulgN �1
lD0 ; ul WD '

�
l	

b � a
�
Vl.tmC1/; u0 D 1

2
'.0/V0.tmC1/: (3.22)

Research Paper www.risk.net/journal
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14 B. Zhang and C. W. Oosterlee

Based on the general characteristic function from (2.13), the matrix elements of
M c

k;l
.x1; x2/ and M s

k;l
.x1; x2/ are given by

M c
k;l.x1; x2/ D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

.x2 � x1/	

b � a ; k D l D 0;

1

.lˇ C k/

�
exp

�
..lˇ C k/x2 � .l C k/a/	i

b � a
�

� exp

�
..lˇ C k/x1 � .l C k/a/	i

b � a
��
; otherwise.

(3.23)
and

M s
k;l.x1; x2/ D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

.x2 � x1/	i

b � a ; k D l D 0;

1

.lˇ � k/
�

exp

�
..lˇ � k/x2 � .l � k/a/	i

b � a
�

� exp

�
..lˇ � k/x1 � .l � k/a/	i

b � a
��
; otherwise.

(3.24)
The matrixes

Ms WD fM s
k;l.x1; x2/gN �1

k;lD0 and Mc WD fM c
k;l.x1; x2/gN �1

k;lD0

have a Toeplitz and a Hankel structure, respectively, if and only if, for all k; l; x1; x2, Word added – OK?

M s
k;l.x1; x2/ D M s

kC1;lC1.x1; x2/

and

M c
k;l.x1; x2/ D M c

kC1;l�1.x1; x2/:

In that case, the fast Fourier transform (FFT) can be applied directly for highly effi-
cient matrix–vector multiplication (Fang and Oosterlee 2009), and the resulting com-
putational complexity3 will be O.N log2N/. However, we obtain terms of the form
lˇ � k; lˇ C k in the matrix elements in (3.23) and (3.24), in particular for the OU
process with ˇ ¤ 1, instead of terms with l � k; l C k as obtained for the Lévy jump
processes, with ˇ D 1 in (2.13). Terms with ˇ … N [ f0g lead to computations with
O.N 2/ complexity.

Since the computation ofGk.x1; x2/ is linear inN , the overall complexity to deter-
mine the Vk-coefficients is dominated by the computation of C.x1; x2; tm/, whose
complexity is O.N log2N/ with the FFT when ˇ D 1. As a result, the overall

3 To be precise, we apply forward FFT (FFT) three times, and the inverse FFT (FFT�1) twice.

Journal of Computational Finance Volume 16/Number 4, Summer 2013
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An efficient pricing algorithm for swing options 15

computational complexity for pricing a Bermudan option with M exercise dates is
O..M � 1/N log2N/ in that case, as the work needed for the final step, from t1 to
t0, is O.N/.

Although the algorithm above is only the first step toward solving the pricing
problem, it can also be viewed as the complete algorithm for swing options if the
option holder is only allowed to conduct a swing action once.

3.3 Algorithm for interval t 2 Ins n I1

Recall that ns represents the upper bound for the number of swing rights that can
be exercised, as defined in (2.2). In the time interval Ins n I1, the option holder has
more than one possibility to exercise the swing option. Therefore, apart from the
exercise time, the optimal number of commodities to be exercised,D, should also be
determined, due to its influence on the recovery time.

Remark 3.2 In our discussion we deal with the following three functions.

� c.x; tm/, the continuation value, which is typically continuous and differen-
tiable. Moreover, its derivative is usually also continuous.

� g.x; tm;D/, the payoff, which is continuous and piecewise differentiable (see
Figure 1 on page 5).

� v.x; tm/, the option value, which is piecewise continuous in time. v.x; t/ jumps
at t�n , where the number of swing rights is decreased by 1.

Note that the equality v.t�n / D v.tCn / may not hold, since the number of possible
exercise times is reduced by 1 from t�n to tCn . The definition of tCn simply implies
that, numerically, we use tCn D t�n . Therefore, numerically t�n � t D tCn � t , and
c.x; t�n / D c.x; tCn /, but v.x; t�n / > v.x; tCn /.

Under these assumptions we have that

e�r.t�
n �t/

Ex;t .v.x; t
�
n // > e�r.t

C
n �t/

Ex;t .v.x; t
C
n //:

3.3.1 Model analysis

ByQ andQn we denote the continuous interval f.x; t/ j x > 0; t 2 ŒT0; t
�
1 �g and the

discrete set

f.x; t/ j x > 0; t 2 ŒT0; t
�
1 �; t � t�n WD T � n�R.1/; n D 1; : : : ; ns � 1g;

respectively.

Research Paper www.risk.net/journal
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16 B. Zhang and C. W. Oosterlee

The swing option value for .x; t/ 2 Q nQn is then given by

v.x; t/ D max
�

max
D

QvAM . Ng.x; t;D//; e�r.t
C
n �t/

Ex;t .v.x; t
C
n //

�
;

.x; t/ 2 Q nQn; (3.25)

where QvAM . Ng.x; t;D// represents the value of an American-style option in any inter-
val InC1 n In with payoff

Ng.x; t;D/ D g.x; t;D/C �t
D.x; t/:

The quantity e�r.t
C
n �t/

Ex;t .v.x; t
C
n // represents the value of a European option,

which cannot be larger than the American option. The term e�r.t
C
n �t/

Ex;t .v.x; t
C
n //

is therefore implicitly already included in the first term in (3.25), so that we find,
for (3.25),

v.x; t/ D max
D

QvAM .g.x; t;D/C �t
D.x; t//

D max
D
.max.g.x; t;D/C �t

D.x; t/; c.x; t///

D max
�

max
D
g.x; t;D/C �t

D.x; t/; c.x; t/
�
; .x; t/ 2 Q nQn; (3.26)

where c.x; t/ is the continuation value. Therefore, the price for .x; t/ 2 Q n Qn is
reduced to the maximum of American option values over D, ie, v1.x; t/ as defined
in Section 2.2.

On the other hand, for .x; t�n / 2 Qn, the value v.x; t�n / is defined by

v.x; t�n / D max
�

max
D

Ng.x; t�n ;D/; v.x; tCn /
�
: (3.27)

After application of (3.26) to the right-hand side of (3.27), we can rewrite (3.27) as

v.x; t�n / D max
�

max
D

Ng.x; t�n ;D/;max
D

Ng.x; tCn ;D/; c.x; tCn /
�
; (3.28)

where we assume c.x; tCn / D c.x; t�n /, and Ng is as in (2.3) and (2.4).
If .x; t�n C �R.D// 2 Q nQn, with the number of exercise possibilities the same

for t�n C �R.D/ and tCn C �R.D/, we have

v.x; t�n C �R.D// D v.x; tCn C �R.D//:

If t�n C �R.D/ 2 Qn, we have

v.x; t�n C �R.D// > v.x; tCn C �R.D//:

Journal of Computational Finance Volume 16/Number 4, Summer 2013



�

�

“jcf_zhang” — 2013/5/21 — 14:42 — page 17 — #17
�

�

�

�

�

�

An efficient pricing algorithm for swing options 17

So, v.x; t�n C �R.D// > v.x; tCn C �R.D// for any x, thus from (2.4) we have

�
t�
n

D .x; t
�
n / > �

t
C
n

D .x; tCn /:

Equation (3.28) is now given by

v.x; t�n / D max
�

max
D
g.x; t�n ;D/C �

t�
n

D .x; t
�
n /; c.x; t

�
n /

�
: (3.29)

As a result, from (3.26) and (3.29), we find that for all t 2 ŒT0; t
�
1 �:

v.x; t/ D max
�

max
D
g.x; t;D/C �t

D.x; t/; c.x; t/
�
: (3.30)

Equation (3.30) tells us that the swing option is anAmerican-style option with recovery
time and multiple exercise opportunities. Its pricing algorithm is therefore different
from a standard American option. Instead of taking the maximum of the payoff and
the continuation value, we take the maximum over the resulting payoff for all pos-
sible values of D, and the continuation value from the previous time step. Another
difference is that for any amount,D, the payoff also includes the term �t

D.x; t/ from
an earlier time step.

It is easy to determine the value of g.x; t;D/ for any x; t;D according to (2.6).
We therefore focus on the values �t

D.x; t/ and c.x; t/, which are both obtained in
the recursion of Fourier cosine coefficients Vk . To calculate c.x; tm/, one only needs
the values of Vk.tmC1/, like in the case of a Bermudan option. However, to compute
the value of �t

D.x; t/ we need the coefficients Vk.t C �R.D//, which depend on the
function for the recovery time.

Remark 3.3 In time interval t 2 Œ0; T0� swing actions are not yet allowed. There-
fore, we have

v.t; x/ D e�r.T0�t/

N �1X0

kD0

Re

�
'

�
k	

b � a I x
�

exp

�
�ik	

a

b � a
��
Vk.T0/;

where Vk.T0/ is obtained by a backward recursion procedure.

3.4 The early-exercise points

In this section we consider the state-dependent recovery time, �R.D/, which is
assumed to be an increasing function of D.

The option value is obtained by means of a backward recursion on Vk.tm/;m D
M � 1; : : : ; 1. At each time step, as shown in Section 3.3.1, the payoff, Ng.x; tm;D/,
for all possible values of D and the continuation value, c.x; tm/, are compared. The
largest value represents the swing option value at tm. We therefore need to identify
the following regions in our pricing domain.

Research Paper www.risk.net/journal
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18 B. Zhang and C. W. Oosterlee

FIGURE 3 Payoff function g C � for two different D.
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� AD;D D 1; : : : ; L: the regions in which exercising the swing option with D
commodity units will result in the highest profit g.x; tm;D/C �

tm
D .x; tm/.

� Ac : the region in which c.x; t/ is the maximum. In other words, with the
commodity price in Ac , it is profitable not to exercise the swing option.

With these regions determined, the Fourier cosine coefficients, Vk.tm/, for the swing
option can be determined with a splitting, as follows:

Vk.tm/ D 2

b � a
� Z

Ac

c.x; tmC1/ cos

�
k	.x � a/
b � a

�
dx

C
LX

DD1

Z
AD

g.x; tm;D/ cos

�
k	.x � a/
b � a

�
dx

�
(3.31)

We now describe the procedure to determine the different regions Ac and AD;D D
1; : : : ; L. As an example, let us first look at the payoff functions for two values
D D D1 and D D D2, where D1 > D2, shown in Figure 3.

Journal of Computational Finance Volume 16/Number 4, Summer 2013
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An efficient pricing algorithm for swing options 19

Points xd .D1;D2/ and xa.D1;D2/ denote the “early-exercise points”, where
the strategy of exercising D1 or D2 units results in the same Ng-values. Between
xd .D1;D2/ andxa.D1;D2/, the value forD2 is largest, in other words, it is profitable
to exercise a smaller amount of commodity. Beyond xd .D1;D2/ and xa.D1;D2/, it
is profitable to exercise the larger amount D1.

Remark 3.4 An explanation of the behavior of the two payoff functions in Figure 3
on the facing page is as follows. The payoff, Ng.x; t;D/, is the sum of g.x; t;D/ and
�t

D.x; t/. For D increasing, the true payoff g.x; t;D/ increases, but the quantity
�t

D.x; t/ decreases because of the time penalty due to the longer recovery.
For all 0 < D2 < D1, we have

Ng.x; t;D1/ � Ng.x; t;D2/ D g.x; t;D1/ � g.x; t;D2/ � .�t
D2
.x; t/ � �t

D1
.x; t//:

(3.32)
With the underlying betweenKd andKa, we have g.x; t;D1/ D 0, g.x; t;D2/ D 0

and �t
D2
.x; t/ > �t

D1
.x; t/. Therefore, Ng.x; t;D1/ < Ng.x; t;D2/ and it is more

profitable to exercise the smaller amount, D2.
From (2.6) we find for the derivative:

@g

@D
D .max.ex �Ka; 0/ � max.ex � Smax; 0/

C max.Kd � ex; 0/ � max.Smin � ex; 0//

� g.x; t; 1/;

which increases as S D ex decreases/increases beyond Kd or Ka, until payoff
g.x; t; 1/ reaches its upper bound (see Figure 1 on page 5). Therefore, if, before
x reaches log .Smin/ or log .Smax/, we have, for some x,

@g.x; t;D/

@D
>
@�t

D.x; t/

@D
;

this implies that the payoff function g.x; t;D/ is more sensitive with respect to
variation inD than function �t

D.x; t/, and it is thus more profitable to exercise at the
larger amount D1.

Based on the insight in Remark 3.4, let us look at a second example withL D 4 and
we will determine A2, ie, the region where it is most profitable to exercise two units.
The example is detailed in Figure 4 on the next page, where the relation between the
payoffs for any two different amounts of commodity is graphically sketched. Figure 4
on the next page is a one-dimensional picture with only the x axis, which consists of
different sections, where purchasing two different amounts of commodity is compared
on each horizontal line in Figure 4.

In Figure 4 on the next page, “0” denotes the continuation value c.x; t/. Point sets Change OK?
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FIGURE 4 An example to illustrate the exercise region A2 with L D 4.

   

   

   

   

  

� � � �� � � �

xd(2,4)

xd(2,3) = P

xd(2,1) = U

xd(2,0)

xa(2,1)

xa(2,0) = W

xa(2,3)

xa(2,4) = Q

2 > 1 1 > 2 2 > 1

2 > 00 > 22 > 0

2 > 3

2 > 4 2 < 42 < 4

2 < 3 2 < 3

A2 A2

x

xd .2;Dj / and xa.2;Dj /, j D 0; 1; 3; 4, are the two sets of points for whichD D Dj

gives the same payoff value as D D 2. In order to determine the region A2, we need
to find the subregions in which D D 2 gives the largest payoff compared with the
other D-values.

The value D D 2 returns a larger value than c.x; t/, if x < xd .2; 0/ or x >

xa.2; 0/; Similarly, D D 2 returns a larger value than D D 1, if x < xd .2; 1/ or
x > xa.2; 1/. So, D D 2 returns larger values than both c.x; t/ and D D 1, if x
is either smaller than both xd .2; 0/ and xd .2; 1/, or larger than both xa.2; 0/ and
xa.2; 1/. To determine these regions we compute the following early-exercise points
(see again Figure 4 for the values of U and W for this example):

� U WD min.xd .2; 0/; xd .2; 1// � xd .2; 1/; and

� W WD max.xa.2; 0/; xa.2; 1// � xa.2; 0/.

D D 2 now returns a larger value for x < U or x > W .
We proceed in the same spirit. To make sure thatD D 2 returns larger values than

D D 3 and D D 4, x should be larger than both xd .2; 3/ and xd .2; 4/, or smaller
than both xa.2; 3/ and xa.2; 4/. This is again related to the global behavior of the
payoff functions with D1 > D2, as in Figure 3 on page 18. Therefore, we calculate

� P WD max.xd .2; 3/; xd .2; 4// � xd .2; 3/ and

� Q WD min.xa.2; 3/; xa.2; 4// � xa.2; 4/.

Now D D 2 returns a larger value than D D 3 and D D 4 for x > P or x < Q.
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So, D D 2 returns the largest value, if P < x < U or W < x < Q. Therefore,

A2 D ŒP; U � [ ŒW;Q�; as shown in Figure 4 on the facing page.

More generally, for each D D 1; : : : ; L, we determine

PD D max
j >D

xd .D; j /; QD D min
j >D

xa.D; j /;

UD D min
j <D

xd .D; j /; WD D max
j <D

xa.D; j /;

and set AD D ŒPD; UD� [ ŒWD;QD�. Here PD , QD represent the early-exercise

interval boundaries, within which exercising D units of commodity returns a larger

payoff than exercising more units.UD ,WD are the left and the right boundary, respec-

tively, beyond which exercisingD units returns a larger value than when fewer or no

units are exercised. Similarly, we have

AL D
h
a;min

j <L
xd .L; j /

i
[

h
max
j <L

xa.L; j /; b
i
;

Ac D
h

max
j >0

xd .0; j /;min
j >0

xa.0; j /
i
:

All early-exercise points, xd .D; j /; xa.D; j /; j D 0; : : : ; L, are computed by New-

ton’s method.

With the regions Ac and AD;D D 1; : : : ; L fixed, (3.31) can be rewritten as

Vk.tm/ D Ck

�
max

j D1;:::;L
xd .0; j /; min

j D1;:::;L
xa.0; j /; tm

�
C

LX
DD1

Gk.PD; UD;D/

C
LX

DD1

Gk.WD;QD;D/CGk

�
a; min

j D0;:::;L�1
xd .L; j /; L

�

CGk

�
max

j D0;:::;L�1
xa.L; j /; b; L

�
: (3.33)

The computation of Ck.x1; x2; tm/ in (3.33) is as in (3.21). The Gk differ from the

expressions (3.16)–(3.19), which will be described in detail in Section 3.4.1.

In the Newton procedure to find the points xd .Di ;Dj / and xa.Di ;Dj / we need

to find the values of c.x; tm/; g.x; tm;D/; @c=@x and @g=@x as in Section 3.2. The
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values of �tm
D .x; tm/ and @�tm

D =@x are found by

�
tm
D .x; tm/ D e�r�R.D/

	
N �1X0

kD0

Re

�
'

�
k	

b � a I x; �R.D/

�
exp

�
�ik	

a

b � a
��

	 Vk.tm C �R.D//;

@�
tm
D

@x
D e�r�R.D/

	
N �1X0

kD0

Re

�
'

�
k	

b � a I x; �R.D/

�
iˇ

k	

b � a exp

�
�ik	

a

b � a
��

	 Vk.tm C �R.D//:

Remark 3.5 (Computation of Vk.tm C �R.D//) To calculateVk.tmC�R.D//, we
determine a time step, �t , so that T � t and �R.D/ are both time points. So, we set
M D T � t=�t;ND D �R.D/=�t ,D D 1; : : : ; L. For tmC�R.D/ D tmCND�t 6
T , the value Vk.tm C �R.D// D Vk.tmCND

/. The values Vk.tm C �R.D// D 0 for
all k if tm C ND�t > T . In that case, �tm

D and @�tm
D =@x are zero, as they are linear

combinations of Vk.tm C �R.D//. In this setting, Vk.tm/ and Vk.tm C �R.D//;D D
1; : : : ; L can be determined in one recursion, in which the intermediate values of Vk

need to be stored for later use.

3.4.1 Calculation of Gk.x1; x2;D/

The terms Gk in (3.31) are split into two parts, ie,

Gk.x1; x2;D/ D Gk;g.x1; x2;D/CGk;c.x1; x2;D/;

with Gk;g from an instantaneous profit g.x; tm;D/, and Gk;c the part generated by
�

tm
D .x; tm/, ie, the continuation value from time point tm C�R.D/, as defined in (2.4).
Equations (3.16) and (3.17) can be used to computeGk;g.a;minj <L x

d .L; j /; L/

and Gk;g.PD; UD;D/;D D 1; : : : ; L, unless PD > ln.Smin/, where we use

Gk;g.PD; UD;D/ D D
2

b � a.Kd k.PD; UD/ � 
k.PD; UD//:

Similarly, the quantities Gk.maxj <L x
a.L; j /; b; L/ and Gk.WD;QD;D/;D D

1; : : : ; L can be computed by (3.18) and (3.19), unless if QD < ln.Smax/ for which
we have

Gk;g.WD;QD;D/ D D
2

b � a.
k.WD;QD/ �Ka k.WD;QD//:
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Finally, the quantity Gk;c.x1; x2;D/ can be obtained by (3.21), replacing �t and
Vl.tmC1/ by �R.D/ and Vl.tm C �R.D//, respectively.

Remark 3.6 (Early-exercise points and convergence) The accurate determination
of the early-exercise points, and the consistent pricing of Bermudan-style swing
options forms the basis for the valuation of the American-style swing options by
means of the Richardson extrapolation scheme. Only with an accurate location of the
early-exercise points we can benefit from extrapolation techniques which rely heavily
on (consistent) asymptotic expansions.

The main components of the swing option pricing algorithm here are those that
have also been used for pricing Bermudan and barrier options with Fourier cosine
expansions in Fang and Oosterlee (2009). The convergence of the swing option algo-
rithm is therefore expected to be the same as that for Bermudan options, which has
been studied in detail in Fang and Oosterlee (2009).

Remark 3.7 (Constant recovery time) If the recovery time does not depend onD,
we call the recovery time constant. This can be viewed as a special case of the pricing
method discussed above. As additional profit is not related to an extra penalty, if it is
profitable to exercise the swing option, we have Dopt � L from a profit maximizing
point of view. Hence, at any point in time, we have either D D 0 or D D L.

Newton’s method is now applied to determine two early-exercise points xd
m and

xa
m, so that

c.xd
m; tm/ D g.xd

m; tm; L/C �
tm
L .xd

m; tm/;

and

c.xa
m; tm/ D g.xa

m; tm; L/C �
tm
L .xa

m; tm/;

with D D L and �R.D/ constant. Then Vk.tm/ is split into three parts,

Vk.tm/ D Gk.a; x
d
m; L/C Ck.x

d
m; x

a
m; tm/CGk.x

a
m; b; L/;

which can be calculated as in the case of state-dependent recovery time.

4 NUMERICAL RESULTS

In this section we demonstrate the performance of our pricing algorithm for swing
options with constant and dynamic recovery times. The CPU used is an Intel Core 2
Duo CPU E6550 at 2.33GHz, Cache size 4MB, and the algorithm is programmed in
Matlab 7.5. The two subsections to follow present results with two different types
of recovery time.
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� Constant recovery time is presented in Section 4.1. IfD ¤ 0, we set �R.D/ D Word added – OK?

1
4

, as in Dahlgren (2005). In other words, the option holder needs to wait three
months between two consecutive swing actions, independent of the time point
of exercise or the size D.

� State-dependent recovery time is presented in Section 4.2. We assume �R.D/ D Word added – OK?

1
12
D, which implies that if the option holder exercises the swing option with

D units, they have to waitD months before the option can be exercised again.

Parameter sets used for numerical examples are (unless stated otherwise):

CGMY W C D 1; G D 5; M D 5; Y D 1:5; r D 0:05; (4.1)

OU W � D 0:301; Nx D 3:150; � D 0:334; r D 0:05; (4.2)

where for the OU process the value of Nx is defined under the Q-measure. The value
set for the OU process is as in Dahlgren (2005). The values for CGMY, in particular
Y > 1 (infinite activity jump process), are known to be particularly difficult for PIDE
solvers. We will see here that these CGMY parameters do not pose any problem for
the swing option COS method.

In the numerical experiments we further choose Smin D 10;Kd D 20;Ka D
25; Smax D 50; T0 D 0. The choice T0 D 0 does not pose any restrictions on the
algorithm, as we can simply change it to any T0 > 0.

4.1 Constant recovery time

First of all, American-style swing option values under the CGMY and OU processes,
withL D 5, are presented in Figure 5 on the facing page, with S and t as independent Changes to sentence OK?

variables; v.S; t/ is the swing option value. Jumps in the swing option values are
observed at t D 0:25, t D 0:5 and t D 0:75. This can be explained by the fact that
at these time points the maximum number of times the holder can exercise, ns, is
reduced by one. For instance, time point t D 0:5 is the last time point at which an
option holder can exercise up to three times. For any t > T � 0:5, the holder cannot
exercise more than twice.

Due to the constant recovery time, we should exercise L D 5 units whenever it
is profitable to exercise. Hence for S > 50, with Ka D 25, the profit would be
L.50 � 25/ D 125. When T � t 2 Œ0:75; 1/, we have at maximum four possibilities
to exercise, which is the reason for option values as high as 500 in Figure 5 on the
facing page.

Next, we discuss the convergence behavior of the option values overN , the number
of terms in the Fourier cosine series. The CGMY and OU processes are used with the
parameters in (4.1) and (4.2). The remaining parameters are �R D 0:25; T D 1;M D
12 and S0 D 8.
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An efficient pricing algorithm for swing options 25

FIGURE 5 American-style swing option values under the OU and CGMY processes with
constant recovery time, �R.D/ D 0.25.
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(a) OU process. (b) CGMY process.
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TABLE 1 Swing option prices and CPU time under the CGMY and OU processes, with
parameter sets (4.1) and (4.2).

N‚ …„ ƒ
64 96 128 160 192

CGMY option value 190.2045 229.0515 229.0515 229.0515 229.0515
CPU time (s) 0.0191 0.0234 0.0266 0.0304 0.0402
OU option value 225.9100 225.9100 225.9100 225.9100 225.9100
CPU time (s) 0.1891 0.3994 0.7147 1.1638 1.7590

TABLE 2 Convergence over M and comparison between two approximation methods for
American-style swing options.

P.N=2/ Richardson‚ …„ ƒ ‚ …„ ƒ
n D log2 N Option value CPU time (s) Option value CPU time (s)

7 137.423 0.27 137.395 0.59
8 137.408 0.53 137.390 0.99
9 137.399 2.00 137.390 1.79

10 137.394 8.39 137.390 3.40
11 137.392 39.55 137.390 6.68
12 137.391 203.27 137.390 13.21

In Table 1 it is shown that the swing option pricing algorithms for the CGMY and
OU processes, with the parameters chosen, take 0.024 and 0.19 seconds, respectively,
to converge to one basis point accuracy. The CPU time is higher for the OU process
as its computational complexity is of higher order than for the Lévy processes. The
convergence behavior for both processes is very similar, as shown in Table 1.

An American option can be viewed as a Bermudan option with M ! 1. In
Table 2 the performance of two methods to approximate an American-style swing
option is compared. One method is the direct approximation by means of Bermudan-
style options by increasing M, whereas the second method is based on the repeated
Richardson four-point extrapolation technique (3.7) on Bermudan-style swing options
with four different numbers of exercise opportunities. In Table 2, the columns labelled Changes to sentence OK?

“P.N=2/” give the computed values of the Bermudan-style options with M D N=2.
For the values obtained with the Richardson extrapolation we use M D 16 in (3.7)
(so, 2M D 32, 4M D 64, 8M D 128).

The CGMY model is used here with the parameters r , C , G, M , Y , from (4.1),
and T D 0:5, S0 D 8, Smin D 10, Smax D 50, Kd D 20, Ka D 25.
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An efficient pricing algorithm for swing options 27

As illustrated in Table 2 on the facing page, to converge to an error ofO.10�4/, we
would require 203 seconds with the direct approximation method, and approximately
one second with the extrapolation technique. The convergence observed here is in
accordance with the behavior observed in Fang and Oosterlee (2009).

4.2 State-dependent recovery time

We now consider the case where the recovery time, �R, depends on the amount D.
We first use the CGMY model with the parameters from (4.1). Part (a) of Figure 6
on the next page compares the swing option prices with three upper bounds for D:
L D 8; 10; 12. A higher upper bound results in higher option values, because a higher
upper bound implies more possibilities for an option holder at each exercise date.

Part (b) of Figure 6 on the next page illustrates the influence of the recovery time on
the swing option value. Here we compare �R.D/ D 1

12
D with �R.D/ D 1

6
D, which

corresponds to one month (solid line) or two months (dashed line) penalty time for
each unit exercised. Part (b) of Figure 6 shows that longer recovery times lead to
lower option prices. In other words, if we can wait after exercising then we can pay Changes to sentence OK?

less for the swing option.4

Table 3 on page 29 shows how the option value and optimal value of D (ie, Dopt)
change over time. Here we take L D 8 and S0 D 8, a case where the option is
deep in-the-money. As expected, jumps in the optimal D-values are observed at
t�n D T � n�R.1/.

Recovery time �R.D/ D 1
12
D implies that if we exercise n or fewer units at t�n , we

can exercise once more before expiry T , whereas if we exercise more than n units,
we cannot exercise again before T . In other words, at t�n , �t

D > 0 for D 6 n and
�t

D D 0 otherwise.
Note that at the time points t D T and t D T � 1

24
, the optimal value equals

Dopt D L D 8. For t D T this is due to the arbitrage-free condition and the profit
maximization principle, whereas for T D t � 1

24
the time left is so small that, in our

present setting, there is only one opportunity left for a swing action (�t
D D 0 for all

D;n). We should then choose the largest D-value allowed for an optimal profit.
Figure 7 on page 29 shows how Dopt changes with respect to the underlying

price, with L D 8; t D 0; �R.D/ D 1
12
D. As S goes beyond Kd and Ka, Dopt

tends to increase, because in this region the payoff g.x; t;D/ dominates in the term
g.x; t;D/C�t

D.x; t/. Between S D 20 and S D 25,Dopt D 0, since g.x; t;D/ D 0

for all D > 0 in this interval.
In another experiment, the convergence of the swing option value with respect to Change OK?

parameterN , with the corresponding CPU time, for the CGMY and the OU processes
with S0 D 8, T D 1, M D 12 and different upper bounds L, are presented in

4 Similarly, smaller recovery times result in higher option prices with constant recovery time.
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FIGURE 6 CGMY process, T � t D 1.
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(a) Varying amount L, and fixed �R.D; t/ D 1
12 D. (b) Varying recovery time, and fixed L D 5.

Table 4 on page 30 and Table 5 on page 30, respectively. With N D 256 the swing
option prices are accurate up to a basis point for both stochastic processes.

Table 4 on page 30 and Table 5 on page 30 also indicate that the algorithm is
flexible with respect to the variation in parameter L. Large L-values result in higher
CPU times, because a larger number of early-exercise points needs to be determined,
and many Ck and Gk terms have to be computed.

In the final experiment we compare, for American-style swing options with state- Changes to sentence OK?

dependent recovery time, the approximation obtained by the four-point Richardson
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TABLE 3 Dopt over time L D 8, S0 D 8, �R.D/ D 1
12D.

Option Option
T � t value Dopt T � t value Dopt

0 80 8 8=24 110.587 4
1=24 80 8 9=24 111.556 4
2=24 85.489 1 10=24 120.572 5
3=24 85.794 1 11=24 121.806 5
4=24 92.441 2 12=24 130.769 6
5=24 93.116 2 13=24 132.224 6
6=24 101.058 3 14=24 141.051 7
7=24 102.371 3 15=24 142.690 7

FIGURE 7 Dopt over underlying price, L D 8, t D 0, �R.D/ D 1
12D.
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extrapolation with direct approximation, obtained with Bermudan option values with
increasing M-values. We use the CGMY model with Y D 0:5 (other parameters
as in (4.1)). Table 6 on page 31 shows that the four-point Richardson extrapolation
is much more efficient than the direct approximation method, and that both meth-
ods converge to the same swing option values. Larger values of M give the same
extrapolation result.
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TABLE 4 Swing option values for CGMY process, dynamic recovery time, S0 D 8, T D 1,
t D 0.

N‚ …„ ƒ
128 256 512

L D 5 Option price 153.6884 150.0041 150.0041
CPU time (s) 0.3293 0.4569 0.7731

L D 8 Option price 177.2750 179.5152 179.5152
CPU time (s) 0.6914 1.1369 1.9020

L D 10 Option price 199.4206 199.6870 199.6870
CPU time (s) 1.0625 1.6609 2.9439

TABLE 5 Swing option values for OU process, dynamic recovery time, S0 D 8, T D 1,
t D 0.

N‚ …„ ƒ
96 128 160

L D 5 Option price 145.5943 153.1150 153.1150
CPU time (s) 0.5256 0.7854 1.0180

L D 8 Option price 172.0567 172.0567 172.0567
CPU time (s) 0.9182 1.2263 1.5297

L D 10 Option price 196.9790 196.9790 196.9790
CPU time (s) 1.3039 1.6746 2.0252

5 CONCLUSIONS

We have presented an efficient, flexible and robust pricing algorithm for swing options
with early-exercise features based on Fourier cosine series expansions and backward
recursion. The algorithm performs nicely for different types of swing contract with
flexibility in the upper bounds for the amount that can be exercised and recovery
times. The pricing technique is valid under different stochastic commodity processes,
such as the CGMY process, other Lévy processes, and the OU process. Change OK?

For the Lévy processes, the FFT can be applied in the backward recursion procedure.
This gives Bermudan-style swing option prices that are accurate up to a basis point
in milliseconds for constant recovery times, and in a fraction of a second (L D 5) to
1.7 seconds (L D 10) for the dynamic recovery time.

For OU processes, despite the higher computational complexity (compared with
Lévy processes), swing option prices can be obtained with basis point precision in
less than 0.2 seconds for constant recovery times and within 2 seconds for dynamic
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TABLE 6 Comparison between two approximation methods for American-style swing
options, CGMY model, S0 D 10, L D 5, Y D 0.5.

(a) Bermudan approximation, M D N=2

N Option value CPU time (s)

128 93.9501 5.7391
256 93.9710 20.1821
512 93.9707 77.0859

(b) Richardson approximation, M D 6 in Equation (3.7)

N Option value CPU time (s)

64 93.9710 1.6077
128 93.9707 2.3621
256 93.9707 3.9196

recovery times. This is due to the exponential convergence rate of Fourier cosine
series expansions.

The Richardson four-point extrapolation technique has been used for pricing the
American-style swing options in an efficient way.
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