
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301640368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/authorsrights

Author's personal copy

Applied Numerical Mathematics 78 (2014) 14–30

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Pricing of early-exercise Asian options under Lévy processes
based on Fourier cosine expansions

B. Zhang a,∗, C.W. Oosterlee a,b

a Delft University of Technology, Mekelweg 4, 2628CD, Delft, The Netherlands
b CWI – Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 April 2013
Received in revised form 28 August 2013
Accepted 11 November 2013
Available online 6 December 2013

Keywords:
Early-exercise Asian option
Arithmetic average
Fourier cosine expansion
Clenshaw–Curtis quadrature
Exponential convergence
Graphics Processing Unit (GPU) computation

In this article, we propose a pricing method for Asian options with early-exercise
features. It is based on a two-dimensional integration and a backward recursion of the
Fourier coefficients, in which several numerical techniques, like Fourier cosine expansions,
Clenshaw–Curtis quadrature and the Fast Fourier Transform (FFT) are employed. Rapid
convergence of the pricing method is illustrated by an error analysis. Its performance is
further demonstrated by various numerical examples, where we also show the power of
an implementation on Graphics Processing Units (GPUs).

© 2013 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

An Asian option is a special type of exotic option, introduced in Japan, in 1987. Because the contract description (i.e. the
pay-off function) is based on geometric or arithmetic averages of the underlying stock price at monitoring dates during the
lifetime of the contract, rather than just on the present asset price, this exotic option is called path-dependent. The number
of monitoring dates can be finite (so-called discretely-monitored Asian options) or infinite (continuously-monitored Asian
options). Asian options are popular, because averages typically move in a more stable way than individual asset prices, and
the volatility, inherent in asset prices, is reduced due to the averaging feature, so that Asian option holders may pay lower
prices for these contracts, compared to plain European option equivalents.

There is not much information on early-exercise Asian option products in the present markets. We may encounter them
in the commodity market. In the academic literature, important contributions [8,4] have been presented when pricing these
Asian options by partial differential and partial integro-differential equations (PDEs and PIDEs, respectively). In [8], for
example, a semi-Lagrangian time-stepping method was used to solve the P(I)DE in a time-stepping procedure. The method
worked particularly well for American-style Asian options under a jump-diffusion model. As an alternative to these PIDE
methods, the algorithm proposed in [1] calculates the early-exercise Asian option prices via dynamic programming, with the
approximation of the option value at each time step as a piecewise-polynomial function of the underlying asset price and
the average of the underlying asset prices after an appropriate change of variable. Their numerical solution and error analysis
are restricted to the GBM model. However, given that we focus on the same type of Asian options (i.e. discretely-monitored,
early-exercise arithmetic Asian options), we can use their results as a benchmark. Furthermore, a lattice algorithm for
American Asian option pricing based on the binomial tree is presented in [7].

* Corresponding author.
E-mail addresses: Bowen.Zhang@tudelft.nl (B. Zhang), C.W.Oosterlee@cwi.nl (C.W. Oosterlee).

0168-9274/$36.00 © 2013 IMACS. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.apnum.2013.11.004

Author's personal copy

B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30 15

In [16], European-style Asian options were priced by means of Fourier cosine expansions (as in the COS method [9])
and Clenshaw–Curtis quadrature. The method was named the “Asian cosine method” (in short, the ASCOS method). This new
pricing method can be seen as an alternative to Fast Fourier Transform (FFT) and convolution methods, as in [6,11,3,12], for
pricing European-style Asian options under Lévy processes.

In this paper, which is the follow-up paper of the European Asian option paper [16], we propose a robust and efficient
version of the ASCOS pricing method for early-exercise Asian options, again based on Fourier expansions, Fast Fourier Trans-
form (FFT) and Clenshaw–Curtis quadrature. The option price is calculated based on two dimensions of uncertainty, i.e. the
uncertainty in the asset process, as well as in the averaged asset process over time. The risk-neutral formula then becomes
a two-dimensional integration, based on which the continuation value is approximated at each time step. By application of
the chain rule from probability theory, the joint conditional density function in the risk-neutral formula can be factorized
into two marginal conditional density functions that are approximated by Fourier cosine expansions. To calculate the option
price, we need to recursively recover the Fourier coefficients with the help of Fourier cosine expansions and Clenshaw–Curtis
quadrature. The FFT is used to accelerate the algorithm.

Exponential convergence in the option price is obtained for most Lévy processes, for which we give an error analysis,
combined with numerical examples. The 2D method is presented in Section 2, followed by an error analysis in Section 3.
Numerical results are given in Section 4, where the efficiency and accuracy of the pricing methods are presented. Implemen-
tation has taken place on the Graphics Processing Unit (GPU). It may be interesting to see that this computer architecture
improves the pricing speed drastically when pricing arithmetic Asian options with early-exercise features.

2. Early-exercise Asian options under Lévy processes

In this article the underlying asset is assumed to be an exponential function of a Lévy process, i.e. at each time t:
t > 0, St = S0 exp(Lt). The Lévy process, with initial condition L0 = 0, has independent and stationary increments and is
stochastically continuous. For any s < t , and ∀ε > 0, we have

lim
s→t

P
(|Lt − Ls| > ε

) = 0.

The (conditional) probability density function is not known for many relevant Lévy asset processes. However, its Fourier
transform, the (conditional) characteristic function is often available, for example, by the Lévy–Khinchine theorem for Lévy
processes. The ASCOS pricing algorithm is based on the Fourier transform.

An early-exercise Asian option is an early-exercise option in which the contract payoff function at each exercise date is
a function of the averaged underlying asset prices, up to that date. Based on the different types of averages, Asian options
can be classified into geometric and arithmetic Asian options. Early-exercise implies that the option may be exercised prior
to the expiration date. We denote by t0 the initial time and T = {t1, . . . , tM} be the collection of all exercise dates with
�t := (tm − tm−1), t0 < t1 < · · · < tM = T . We assume that the early-exercise dates and the monitoring dates of the Asian
options are the same.

In this paper, we assume that �t is constant, but our method can be adapted straightforwardly to the case where �t
is not constant, and thus tm − tm−1, which may be different at different time steps, should be used in the pricing formula
instead of a constant �t .

Here, emphasis is placed on early-exercise arithmetic Asian options, as these are mathematically more challenging than
the geometric Asian options due to the fact that the characteristic function of the arithmetic averaging process is not known,
and on fixed-strike Asian options, with payoff functions defined by

g(S, tm) =
{

max(1
m+1

∑m
j=0 S j − K ,0), for a call,

max(K − 1
m+1

∑m
j=0 S j,0), for a put.

These payoff functions change from time step to time step, due to the averaging feature.

2.1. ASCOS method for early-exercise Asian options

In this section we present a 2D pricing algorithm for early-exercise Asian options, which can be used for all Lévy pro-
cesses with any number of early-exercise dates. Calculations of the continuation value and the Fourier coefficients at each
time step are discussed, respectively, in Sections 2.1.1 and 2.2.

The pricing formula for an early-exercise Asian option with M exercise dates reads, for m =M,M− 1, . . . ,2:⎧⎪⎪⎨
⎪⎪⎩

c(ym−1, tm−1) = e−r�t
∫
R

v(ym, tm) f (ym|ym−1)dym,

v(ym−1, tm−1) = max
(

g(ym−1, tm−1), c(ym−1, tm−1)
)
,

(1)

followed by

Author's personal copy

16 B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30

v(y0, t0) = e−r�t
∫
R

v(y1, t1) f (y1|y0)dy1. (2)

Here, ym is the state variable at time step tm , and v(x, t), c(x, t) and g(x, t) are the option value, the continuation value and
the payoff at time t , respectively. v(S, tM) = g(S, tM) is the payoff function at final time, tM = T . Function f (ym|ym−1) is
the conditional density of ym given ym−1. Interest rate r is assumed to be constant here. In the risk-neutral formula (1) the
continuation value is computed at each time step as the discounted expected value of the option price at a next time step.
Moreover, to avoid arbitrage opportunities, the option value at each time step cannot be less than the payoff of the option,
which is the second equation in (1).

In [9,10] the COS method was developed for the computation of continuation value c(ym−1, tm−1) and option price
v(y0, t0), for Bermudan options, based on the insight that the characteristic function of the underlying Lévy asset price
process is known.

2.1.1. Continuation value
At each time step, m =M, . . . ,1, we define

Ym := S1

S0
+ · · · + Sm

S0
, Xm := log

(
Sm

S0

)
,

and we have

Ym = Ym−1 + e Xm . (3)

From the risk-neutral evaluation formula, where the continuation value is derived as the discounted expected option price
at the next time step, we have, for m =M, . . . ,1, a two-dimensional valuation formula, as follows

c(ym−1, xm−1, tm−1) = e−r�tE
(

v(ym, xm, tm)|ym−1, xm−1
)

= e−r�t
∫
R

+∞∫
exp(xm)

v(ym, xm, tm) f (ym, xm|ym−1, xm−1)dym dxm, (4)

where the integration range of ym (i.e. ym � exp(xm)) is based on (3) and ym−1 � 0.
Truncating the integration range, gives us approximation ĉ as,

ĉ(ym−1, xm−1, tm−1) = e−r�t

b1∫
a1

b2∫
exp(xm)

v(ym, xm, tm) f (ym, xm|ym−1, xm−1)dym dxm, (5)

where [a1,b1] and [exp(xm),b2] are the integration ranges for xm and ym , respectively. Integration range [a1,b1] is calcu-
lated according to a standard formula in [10], and the calculation of b2 will be explained in Section 2.4. By applying the
chain rule to the joint conditional density function in (5), we find

f (ym, xm|ym−1, xm−1) = f (ym|xm, ym−1, xm−1) · f (xm|ym−1, xm−1)

= f (ym|xm, ym−1) · f (xm|xm−1). (6)

By inserting (6) into (5), the risk-neutral formula can be written as

ĉ(ym−1, xm−1, tm−1) = e−r�t

b1∫
a1

b2∫
exp(xm)

v(ym, xm, tm) f (ym|xm, ym−1) · f (xm|xm−1)dym dxm. (7)

Whereas the conditional density function is not known analytically for many Lévy processes, the corresponding characteristic
function is. Based on this, we approximate the conditional density functions by truncated Fourier cosine expansions, based
on the characteristic functions, as follows,

f̂ (xm|xm−1) = 2

b1 − a1

N1−1∑′

k=0

Re

(
φxm−xm−1

(
kπ

b1 − a1
;�t

)
· exp

(
ikπ

xm−1 − a1

b1 − a1

))
cos

(
kπ

xm − a1

b1 − a1

)
, (8)

and

Author's personal copy

B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30 17

f̂ (ym|xm, ym−1) =
N2−1∑′

j=0

2

b2 − exp(xm)
Re

(
exp

(
i

jπ

b2 − exp(xm)
ym−1

))
cos

(
jπ

ym − exp(xm)

b2 − exp(xm)

)
, (9)

where f̂ represents an approximate density function, and (9) is based on Eq. (3). For Lévy processes, defined by inde-
pendent and identical increments, the (unconditional) characteristic functions of all increments of consecutive time steps,
i.e. φxm−xm−1 (u;�t), are identical, for all time steps, and known analytically. Therefore, we use the notation φ(u;�t) :=
φxm−xm−1 (u;�t) for all time steps.

By replacing the two density functions in (7) by their approximations in (8) and (9), and interchanging the order of
summation and integration, we obtain,

ĉ(ym−1, xm−1, tm−1) = e−r�t 2

b1 − a1

N1−1∑′

k=0

N2−1∑′

j=0

b1∫
a1

b2∫
exp(δn)

v̂(ym, xm, tm)

· Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

xm−1 − a1

b1 − a1

))
cos

(
kπ

xm − a1

b1 − a1

)

· 2

b2 − exp(xm)
Re

(
exp

(
i

jπ

b2 − exp(δn)
ym−1

))
cos

(
jπ

ym − exp(xm)

b2 − exp(xm)

)
dym dxm

= e−r�t 2

b1 − a1

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

xm−1 − a1

b1 − a1

))

· Re

(b1∫
a1

2

b2 − exp(xm)
exp

(
i

jπ

b2 − exp(xm)
ym−1

)
cos

(
kπ

xm − a1

b1 − a1

)

·
b2∫

exp(δn)

v̂(ym, xm, tm) cos

(
jπ

ym − exp(xm)

b2 − exp(xm)

)
dym dxm

)
. (10)

For the integration over xm in (10) numerical approximation is required, and Clenshaw–Curtis quadrature is employed
here. The term

2

b2 − exp(xm)
exp

(
i

jπ

b2 − exp(xm)
ym−1

)
cos

(
kπ

xm − a1

b1 − a1

)
cos

(
jπ

ym − exp(xm)

b2 − exp(xm)

)

is smoothly varying1 in xm and the same is true for the option value, v̂(ym, xm, tm), for all m < M. At tM = T ,
v(yM, xM, tM) is a function of only yM , i.e. v(yM, xM, tM) ≡ g(yM, tM). As the integrand in (10) is a smooth function
of xm at each time point, we expect an exponential convergence from the quadrature. More detailed information about
Clenshaw–Curtis quadrature can be found in [5].

The Clenshaw–Curtis as well as the Gaussian quadrature rules exhibit exponential convergence for the integral under
consideration (see [14]). However, Clenshaw–Curtis quadrature appears to be computationally somewhat cheaper. The in-
tegration weights for all nodes (i.e. wn , n = 1, . . . ,nq + 2) can be pre-computed as the Discrete Cosine Transform (DCT) of
a vector of real numbers, in O (nq log nq) computational cost by an FFT-based algorithm for the DCT. We refer the reader
to [15] for more details regarding the fast calculation of Clenshaw–Curtis quadrature rules.

Furthermore, Clenshaw–Curtis quadrature leads to nested quadrature rules, where different accuracy orders share nodes.
Therefore, when studying the convergence behavior of the method, it is not necessary to re-compute certain nodes and
weights with an increasing number of terms in the quadrature.

In detail, for the approximation by Clenshaw–Curtis quadrature, we have

b1∫
a1

2

b2 − exp(xm)
exp

(
i

jπ

b2 − exp(xm)
ym−1

)
cos

(
kπ

xm − a1

b1 − a1

)

·
b2∫

exp(δn)

v̂(ym, xm, tm) cos

(
jπ

ym − exp(xm)

b2 − exp(xm)

)
dym dxm

1 The function is continuous in xm and so are its derivatives with respect to xm .

Author's personal copy

18 B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30

≈ b1 − a1

2

nq+2∑
n=1

wn
2

b2 − exp(δn)
exp

(
i

jπ

b2 − exp(δn)
ym−1

)
cos

(
kπ

δn − a1

b1 − a1

)

·
b2∫

exp(δn)

v̂(ym, δn, tm) cos

(
jπ

ym − exp(δn)

b2 − exp(δn)

)
dym, (11)

where

δn =
⎧⎨
⎩

b1−a1
2 cos(nπ

nq
) + b1+a1

2 , n = {0, . . . ,nq/2},
a1−b1

2 cos((n−(nq/2+1))π
nq

) + b1+a1
2 , n = {nq/2 + 1, . . . ,nq + 1}

(12)

and w is an (nq + 2)-vector, defined as w := {wn}nq+2
n=1 = (DT d, DT d)T , with D an (

nq
2 + 1) × (

nq
2 + 1)-matrix, with elements

D(n1,n2) = 2

nq
cos

(
(n1 − 1)(n2 − 1)π

nq/2

)
·
{

1/2, n2 = {1,nq/2 + 1},
1, otherwise,

with n1,n2 = 1, . . . ,nq/2 + 1, and vector d reads

d =
(

1,
2

1 − 4
,

2

1 − 16
, . . . ,

2

1 − (nq − 2)2
,

1

1 − n2
q

)T

.

Note that the values of δn, wn do not depend on k, j,m. In other words, these values only need to be calculated once and
can be re-used for all k, j and for all time steps.

Inserting (11) in (10) gives us the formula for the continuation value at each time step. With the notation,

V̂n, j(tm) :=
b2∫

δn

v̂(ym, δn, tm) cos

(
jπ

ym − exp(δn)

b2 − exp(δn)

)
dym, (13)

and δn as in (12), we obtain

ĉ(ym−1, xm−1, tm−1) = e−r�t
N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

xm−1 − a1

b1 − a1

))

· Re

(nq+2∑
n=1

2

b2 − exp(δn)
wn exp

(
i

jπ

b2 − exp(δn)
ym−1

)
cos

(
kπ

δn − a1

b1 − a1

)
V̂n, j(tm)

)
. (14)

Lemma 2.1. The computational cost to calculate the continuation value at each time step is O (N1N2nq).

Proof. This can be directly seen from (14) which includes summations over N1, N2 and nq . �
The 2D pricing algorithm is based on backward recursion of the Fourier coefficients V̂n, j(tm), defined in (13). The early-

exercise Asian option price, v̂(x0, t0) = ĉ(y0, x0, t0) is obtained by taking m = 1 and inserting V̂n, j(t1) in (14). In the next
subsection we will see that the Vn, j(tM) are known analytically. For m =M− 1, . . . ,1, coefficients V̂n, j(tm) can be recov-
ered from V̂n, j(tm+1).

2.2. Fourier coefficients

At maturity time, tM = T , the option value equals the payoff, so that, ∀n, j,

Vn, j(tM) :=
b2∫

exp(δn)

g(yM, tM) cos

(
jπ

yM − exp(δn)

b2 − exp(δn)

)
dyM,

where, ∀m = 1, . . . ,M,

g(ym, tm) =
{

(
S0(1+ym)

m+1 − K)+, for a call,

(K − S0(1+ym)
m+1)+, for a put.

(15)

Author's personal copy

B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30 19

Thus, the Fourier coefficients at maturity read

Vn, j(tM) =
{ S0
M+1ς j(y∗

M,n,b2) + (
S0
M+1 − K)ψ j(y∗

M,n,b2), for a call,

(K − S0
M+1)ψ j(exp(δn), y∗

M,n) − S0
M+1ς j(exp(δn), y∗

M,n), for a put,
(16)

where y∗
M,n ≡ K (M+1)

S0
− 1, ψ j(yl, yu) is given by

ψ j(yl, yu) :=
yu∫

yl

cos

(
jπ

y − δn

b2 − δn

)
dy, (17)

and

ς j(yl, yu) =
yu∫

yl

y cos

(
jπ

y − exp(δn)

b2 − exp(δn)

)
dy. (18)

Both ψ j(yl, yu) and ς j(yl, yu) are known analytically, and so is Vn, j(tM). The recursive step is presented in the following
result.

Result 2.1. For time steps tm, m =M− 1, . . . ,1, the continuation value, ĉ(ym, xm, tm), and the Fourier cosine coefficients, V̂n, j(tm),

can be obtained from V̂n, j(tm+1). In other words, the Fourier coefficients V̂n, j(t1) can be recovered recursively.

Proof. For m =M− 1, . . . ,1, first of all, the early-exercise points, y∗
m,n , for which c(y∗

m,n, δn, tm) = g(y∗
m,n, tm), with δn as

in (12), need to be determined by Newton’s method. The payoff function is as in (15), and the continuation value is derived
via

ĉ(ym, δn, tm) = e−r�t
N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

δn − a1

b1 − a1

))

· Re

(nq+2∑
p=1

2

b2 − exp(δp)
w p exp

(
i

jπ

b2 − exp(δp)
ym

)
cos

(
kπ

δp − a1

b1 − a1

)
V̂ p, j(tm+1)

)
, (19)

which is directly obtained from (14). Furthermore, the derivative of the continuation value as well as of the payoff function,
with respect to ym , can be easily computed by (19) and (15). By prescribing the initial values for the Newton iterations as
y0

m,n := y∗
m+1,n , with y0

M−1,n := KM
S0

− 1 (i.e. the at-the-money at tM−1), after approximately five Newton iterations, the

error in y∗
m,n is O (10−10). The computational cost of a Newton iteration is O (N1N2nq), which is of lower order than the

calculation of Fourier cosine coefficients.
As a next step, the coefficients V̂n, j(tm) are split by means of these early-exercise points, as follows

V̂n, j(tm) =
{

Ĉn, j(exp(δn), y∗
m,n, tm) + Gn, j(y∗

m,n,b2, tm), for a call,

Gn, j(exp(δn), y∗
m,n, tm) + Ĉn, j(y∗

m,n,b2, tm), for a put,
(20)

where Ĉn, j , Gn, j are Fourier cosine coefficients of the continuation value and payoff at tm , respectively. Coefficient Gn, j is
found analytically,

Gn, j(tm) =
{ S0

m+1ς j(y∗
m,n,b2) + (

S0
m+1 − K)ψ j(y∗

m,n,b2), for a call,

(K − S0
m+1)ψ j(exp(δn), y∗

m,n) − S0
m+1ς j(exp(δn), y∗

m,n), for a put,
(21)

and coefficient Ĉk , defined by

Ĉn, j(yl, yu, tm) =
yu∫

yl

ĉ(ym, δn, tm) cos

(
jπ

ym − exp(δn)

b2 − exp(δn)

)
dym, (22)

where integration range [yl, yu] ∈ [δn,b2] is computed numerically.

Author's personal copy

20 B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30

By substituting for ĉ(ym, δn, tm) in (22) its expression in (19) and interchanging integration and summation, we obtain

Ĉn, j(yl, yu, tm) = e−r�t
N1−1∑′

k=0

N2−1∑′

l=0

Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

δn − a1

b1 − a1

))

· Re

(nq+2∑
p=1

Λ(k, l, p)

yu∫
yl

exp

(
i

lπ

b2 − exp(δp)
ym

)
cos

(
jπ

ym − exp(δp)

b2 − exp(δp)

)
dym

)
, (23)

where

Λ(k, l, p) := 2

b2 − exp(δp)
w p cos

(
kπ

δp − a1

b1 − a1

)
V̂ p,l(tm+1). (24)

The integral in (23) is known analytically. We have, ∀yl, yu, l, j, j, l = 0, . . . , N2 − 1, j
= l,

yu∫
yl

exp

(
i

lπ

b2 − exp(δp)
ym

)
cos

(
jπ

ym − exp(δp)

b2 − exp(δp)

)
dym

= 1

j2 − l2
d − c

π

(
exp

(
ilπ

b2 − exp(δp)
yu

)
sin

(
jπ

yu − exp(δp)

b2 − exp(δp)

)

− exp

(
ilπ

b2 − exp(δp)
yl

)
sin

(
jπ

yl − exp(δp)

b2 − exp(δp)

)

+ il

(
exp

(
ilπ

b2 − exp(δp)
yu

)
cos

(
jπ

yu − exp(δp)

b2 − exp(δp)

)
− exp

(
ilπ

b2 − exp(δp)
yl

)
· cos

(
jπ

yl − exp(δp)

b2 − exp(δp)

)))
,

and, if j = l, j
= 0, l
= 0,

yu∫
yl

exp

(
i

lπ

b2 − exp(δp)
ym

)
cos

(
jπ

ym − exp(δp)

b2 − exp(δp)

)
dym

=
exp(ilπ

exp(δp)

b2−exp(δp)
)

2
(yu − yl) +

(
− i

π

)
b2 − exp(δp)

2
exp

(
ilπ

exp(δp)

b2 − exp(δp)

)

·
exp(i(j + l)

yu−exp(δp)

b2−exp(δp)
π) − exp(i(j + l) yl−exp(δn)

b2−exp(δp)
π)

j + l
,

and, finally, for l = j = 0,

yu∫
yl

exp

(
i

lπ

b2 − exp(δp)
ym

)
cos

(
jπ

ym − exp(δp)

b2 − exp(δp)

)
dym = yu − yl.

Fourier coefficients Ĉn, j(yl, yu, tm) can thus be calculated directly from (23) without additional numerical techniques.
From (19) and (23) we see that the continuation value as well as the Fourier coefficients at tm, m =M− 1, . . . ,1, can

be recovered from the Fourier coefficients at tm+1. Coefficients Vn, j(t1), ∀n, j, are recovered at the end of the backward
recursion. �

The value of the Asian option with early-exercise features is then obtained by inserting Vn, j(t1) into (14).

2.3. Computational cost and Fast Fourier Transform

Lemma 2.2. With the use of the Fast Fourier Transform (FFT) the computational cost of the 2D ASCOS method for pricing early-exercise
Asian options with M early-exercise dates is O ((M− 1)N1N2 log2 N2nq).

Proof. Newton’s method is applied to determine the y∗
m,n-values with n = 1, . . . ,nq + 2, for which the continuation value

ĉ(ym, δn, tm) must be computed by (19). Term

Re

(nq+2∑
p=1

2

b2 − exp(δp)
w p exp

(
i

jπ

b2 − exp(δp)
ym

)
cos

(
kπ

δp − a1

b1 − a1

)
V̂ p, j(tm+1)

)

Author's personal copy

B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30 21

in (19) is calculated once and can be reused in all iteration steps and for all δn-values. Therefore, we perform O (N1N2nq)

computations to determine y∗
m,1, and to compute y∗

m,n , n = 2, . . . ,nq + 2, only O (N1N2) computations are needed. We end
up with O (N1N2nq) computations to determine all early-exercise points.

To compute Ĉn, j(yl, yu, tm) at each time step we perform O (N1N2nq) computations, as the integration in (23) has an
analytically known solution. We need to calculate Ĉn, j(yl, yu, tm) for each value of n and j. Term

Re

(nq+2∑
p=1

Λ(k, l, p)

yu∫
yl

exp

(
i

lπ

b2 − exp(δp)
ym

)
cos

(
jπ

ym − exp(δp)

b2 − exp(δp)

)
dym

)
(25)

in (23) need not be re-computed for different n, and we have O (N1N2nq) computations in total for all n, with n = 1, . . . ,nq +
2. To determine the Fourier coefficients, Ĉn, j(yl, yu, tm), with j = 0, . . . , N2 −1, we require O (N1N2

2nq) computations, at each
time step.

We need to repeat all computations for time steps tm , m =M− 1, . . . ,1, so that the overall computational cost for the
pricing technique is O ((M− 1)N1N2

2nq).
The Fast Fourier Transform (FFT) can however be employed to reduce this computational cost. Eq. (23) can be rewritten,

∀k, p, as

Ĉk,p
n, j = e−r�t

N2−1∑′

l=0

Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

δn − a1

b1 − a1

))

· Re

(
Λ(k, l, p)

yu∫
yl

exp

(
i

lπ

b2 − exp(δp)
ym

)
cos

(
jπ

ym − exp(δp)

b2 − exp(δp)

)
dym

)
. (26)

If we use the vector notation Ĉk,p
n := {Ĉk,p

n, j }N2−1
j=0 , we can write

Ĉk,p
n = e−r�t

π
Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

exp(δn) − a1

b1 − a1

))
· Im

((
Hc(yl, yu, p) + Hs(yl, yu, p)

)
u(k, p)

)
, (27)

where Im(·) denotes taking the imaginary part of the input argument, and u is a vector with elements

ul(k, p) := Λ(k, l, p)exp

(
ilπ exp(δp)

b2 − exp(δp)

)
.

Moreover, Hc and Hs have a Hankel and Toeplitz structure, respectively, with elements as follows,

Hc
j,l(x1, x2, p) =

⎧⎨
⎩

(x2−x1)π i
b2−exp(δp)

, if j = l = 0,

1
(l+ j) [exp(

((l+ j)x2−(l+ j) exp(δp))π i
b2−exp(δp)

) − exp(
((l+ j)x1−(l+ j) exp(δp))π i

b2−exp(δp)
)], otherwise,

(28)

and

Hs
j,l(x1, x2, p) =

⎧⎨
⎩

(x2−x1)π i
b2−exp(δp)

, if j = l = 0,

1
(l− j) [exp(

((l− j)x2−(l− j) exp(δp))π i
b2−exp(δp)

) − exp(
((l− j)x1−(l− j) exp(δp))π i

b2−exp(δp)
)], otherwise.

(29)

As pointed out in [10] the FFT can be used to calculate matrix-vector multiplications in (27) due to the Hankel and Toeplitz
structure.

To compute vector Ĉk,p
n for each pair of (k, p), with k = 0, . . . , N1 − 1, p = 1, . . . ,nq + 2, O (N2 log2 N2) computations are

performed, so that we require O (N1N2 log2 N2nq) computations to compute Ĉk,p
n for all k, p. Term Im((Hc + Hs)u) can be

reused for all n = 1, . . . ,nq + 2, and O (N2 log2 N2) computations are needed for all Fourier coefficients.
At the final stage of the algorithm, we need to add up all k · p elements, i.e.

Ĉn, j(yl, yu, tm) =
N1−1∑′

k=0

nq+2∑
p=1

Ĉk,q
n, j(yl, yu, tm), (30)

with Ĉk,q
n, j(yl, yu, tm) defined in (26) and computed by (27).

Author's personal copy

22 B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30

Denoting, based on (27), that

A1(k,n) := e−r�t

π
Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

exp(δn) − a1

b1 − a1

))
,

A2(k, p) := Im
((

Hc(yl, yu, p) + Hs(yl, yu, p)
)
u(k, p)

)
,

Eq. (30) can be computed efficiently, as summarized in the algorithm below.

Algorithm. Efficient computation of (30)

• Step 1: For k = 0, . . . , N1 − 1, compute

A2(k) :=
nq+2∑
p=1

A2(k, p).

• Step 2: For n = 1, . . . ,nq + 2, compute

Ĉn := {Ĉn, j}N2−1
j=0 =

N1−1∑′

k=0

A1(k,n) · A2(k).

For each vector A2(k, p), we perform O (N2 log2 N2) computations, resulting in O (N1N2 log2 N2nq) computations for
Step 1. In Step 2, the computational cost is O (N1N2nq). In total, O (N1N2 log2 N2nq) computations are needed at each
time step to compute all Fourier coefficients defined in (30). Therefore, by the use of the FFT, the computational cost of the
complete algorithm is reduced to O ((M− 1)N1 N2 log2 N2nq). �

The overall 2D ASCOS pricing algorithm is summarized below.

ASCOS Algorithm. Pricing early-exercise arithmetic Asian options.

Initialization

• For n = 1, . . . ,nq + 2, j = 0, . . . , N2 − 1, compute Vn, j(tM) from (16).

Main Loop to Recover V̂n, j(tm): For m =M− 1 to 1,

• Determine the early-exercise points, y∗
m,n , for n = 1, . . . ,nq + 2, with ĉ(y∗

m,n, δn, tm) =
g(y∗

m,n, tm), by Newton’s method. Continuation value and payoff function are given
by (19) and (15), respectively.

• Compute the Fourier coefficients V̂n, j(tm).

– For k = 0, . . . , N1 − 1, compute each column of matrix Ĉk
n := {Ĉk

n, j}N2
j=0 by (27) with

the help of the Fast Fourier Transform.
– Compute Ĉn, j(tm), ∀n, j, from (30).
– Compute Gn, j(tm), ∀n, j, from (21).
– Calculate the Fourier coefficients V̂n, j(tm) by inserting Ĉn, j(tm) and Gn, j(tm)

into (20).

Final step:

• Compute the early-exercise Asian option value, v̂(x0, t0), by inserting V̂n, j(t1) in (14).

2.4. Integration range of Ym

Here, we explain how to determine the upper bound b2 in (5), so that the truncation error in Ym (defined as
∑m

j=1
S j
S0

),
with integration range [exp(xm),b2] can be controlled. In [9,10], a suitable integration range for a random variable X was
given by means of the cumulants, as follows

[
,υ] := [
ξ1(X) − L

√
ξ2(X) + √

ξ4(X), ξ1(X) + L
√

ξ2(X) + √
ξ4(X)

]
. (31)

Author's personal copy

B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30 23

By ξn(X), we denote the nth cumulant of X , computed via

ξn(X) := 1

in

∂n(tΦ(u))

∂un

∣∣∣∣u = 0,

where tΦ(u) is the exponent of the characteristic function, φ(u; t), i.e.

φ(u; t) = etΦ(u).

For arithmetic Asian options, it is however expensive to calculate these cumulants for Ym , and therefore we propose other
integration range boundaries, that are very similar to those in (31). For Ym , ∀m = 1, . . . ,M, we have

ξ1

(
m

S1

S0

)
� ξ1(Ym) � ξ1

(
m

Sm

S0

)
,

0 � ξ2(Ym) � ξ2

(
m

Sm

S0

)
, 0 � ξ4(Ym) � ξ4

(
m

Sm

S0

)
.

The upper bound of Ym can thus be defined as

b2 := ξ1

(
m

Sm

S0

)
+ L

√√√√
ξ2

(
m

Sm

S0

)
+

√
ξ4

(
m

Sm

S0

)
. (32)

For general exponential Lévy processes, we will however use exp(ξn(log(m Sm
S0

))) instead of ξn(m Sm
S0

), which gives us a

slightly different range of integration, because log(ξn(m Sm
S0

))
= ξn(log(m Sm
S0

)). However, the cumulants for log(m Sm
S0

) are

known in closed form because of the properties of Lévy processes. For n = 1, ξ1(log(m Sm
S0

)) = log(m) + mξ1(R), and, for

n � 2, ξn(log(m Sm
S0

)) = mξn(R), where R denotes the logarithm of the increment between any two consecutive time steps of
a Lévy process.

Setting L = 10 results in highly accurate option prices for most Lévy processes [9,10]. With a wider integration range,
the truncation error will be smaller, but an increasing number of Fourier cosine terms need to be used (which makes
computations more costly). A larger value for L is recommended when the time to maturity is small (T < 0.1), or when the
underlying Lévy process has a fat tailed distribution.

3. Error analysis

Here, we give a detailed error analysis of the 2D ASCOS method for the early-exercise arithmetic Asian options from
Section 2. We identify three different types of errors, for which we first introduce some notation.

The truncation error, εT , for any random variable, Z , with integration range [a,b], is defined as

εT
(

Z; [a,b]) :=
∫

R\[a,b]
f Z (z)dz, (33)

and it decreases as the integration range [a,b] increases. In other words, for a sufficiently large integration range, this error
will not dominate the total error in the arithmetic Asian option price.

For Ym we truncate the integration range at one side, so that the truncation error is here defined as

εT (Ym;b2) :=
+∞∫
b2

fYm (y)dy. (34)

The error due to the number of terms used in the Fourier cosine expansion is denoted by εF . We know, from [5,9], that for
f Z (z) ∈ C∞[a,b], this error can be bounded by

∣∣εF (Z; N)
∣∣ � P∗(N)exp

(−(N − 1)νF
)
, (35)

with νF > 0 a constant and a term P∗(N), which varies less than exponentially with respect to N . Note that, although the
upper bound of εF is not an explicit function of the underlying state variable Z , the state variable is connected to the
smoothness of the density function which influences the convergence behavior.

Author's personal copy

24 B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30

When the probability density function has a discontinuous derivative, the error can be bounded by

∣∣εF (Z; N)
∣∣ � P̄∗(N)

(N − 1)β−1
,

where P̄∗(N) is a constant and β � 1.
Error εF thus decays either exponentially with respect to N , if the density function f (z) ∈ C∞[a,b], or otherwise alge-

braically.
We denote the error from the Clenshaw–Curtis quadrature (11) by εq . For integrands belonging to C∞[a,b], which is the

case here, the Clenshaw–Curtis related error εq decays exponentially, i.e.,

∣∣εq(nq)
∣∣ � P (nq)exp

(−(nq − 1)νq
)
, (36)

with νq > 0 constant and a term P (nq), which varies less than exponentially with respect to nq .

It can be proved recursively, that if f (x j), j = 1, . . . ,M, is smooth then f (y j), j = 1, . . . ,M, with y j = ∑ j
i=1 exp(xi) is

also smooth, so that averaging does not influence the convergence speed negatively.
We denote by ε(ĉ(ym, xm, tm)), ε(Vn, j(tm)) and ε∗

m,n , the errors in the continuation value, in the Fourier coefficients and
in the early-exercise points, y∗

m,n , at time step tm , respectively.
We use the notation εcos(Z), ∀Z to denote the error of one step of the COS method [9], in which the integration range

of Z is truncated and the conditional density function of Z is approximated by the characteristic function via Fourier cosine
expansions. Therefore we have that, ∀m,

εcos(Xm) :=
∫
R

v(ym, xm, tm) f (xm|xm−1)dxm −
b1∫

a1

v(ym, xm, tm) f̂ (xm|xm−1)dxm, (37)

and

εcos(Ym) :=
+∞∫

exp(xm)

v(ym, xm, tm) f (ym|xm, ym−1)dym −
b2∫

exp(xm)

v(ym, xm, tm) f̂ (ym|xm, ym−1)dym. (38)

In [9] an error analysis for the COS method was given where the truncation error and the error due to Fourier cosine
expansions were analyzed, and it is concluded that ∀Z ,a,b, N ,

εcos(Z) = O
(
εT

(
Z; [a,b])) + εF (Z; N), (39)

with εT and εF defined in (33) and (35), respectively. In the common notation ε(x) = O (ς), ∀x ∈ R, which means that there
exists Q > 0, so that |ε(x)| � Q |ς |.

Our error analysis is based on backward recursion, i.e. first of all we analyze the error in the continuation value,
ĉ(yM−1, xM−1, tM−1), in Section 3.1, after which the error propagation in the time steps tm,m = M− 2, . . . ,1, are dis-
cussed in Section 3.2.

3.1. Initial error

In this subsection, the errors arising in Eqs. (4) to (14) are discussed. We denote by ε1 the error from Eqs. (4) to (10),
and by ε2 the error from Eqs. (10) to (14). Therefore ε(ĉ(yM−1, xM−1, tM−1)) = ε1 + ε2.

For ε1 we have

ε1 = e−r�t
∫
R

+∞∫
exp(xM)

v(yM, xM, tM) f (yM|xM, yM−1) f (xM|xM−1)dyM dxM

− e−r�t

b1∫
a1

b2∫
exp(xM)

v(yM, xM, tM) f̂ (yM|xM, yM−1) · f̂ (xM|xM−1)dyM dxM,

where f̂ (xM|xM−1) and f̂ (yM|xM, yM−1) are defined in (8) and (9), respectively.

Author's personal copy

B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30 25

Error ε1 can be written as

ε1 = e−r�t
∫
R

+∞∫
exp(xM)

v(yM, xM, tM) f (yM|xM, yM−1)dyM f (xM|xM−1)dxM

− e−r�t
∫
R

b2∫
exp(xM)

v(yM, xM, tM) f̂ (yM|xM, yM−1)dyM f (xM|xM−1)dxM

+ e−r�t

b2∫
exp(xM)

∫
R

v(yM, xM, tM) f̂ (yM|xM, yM−1) f (xM|xM−1)dxM dyM

− e−r�t

b2∫
exp(xM)

b1∫
a1

v(yM, xM, tM) f̂ (yM|xM, yM−1) f̂ (xM|xM−1)dxM dyM

= e−r�tεcos(YM)

+ e−r�t

b2∫
exp(xM)

∫
R

v(yM, xM, tM) f̂ (yM|xM, yM−1) f (xM|xM−1)dxM dyM

− e−r�t

b2∫
exp(xM)

b1∫
a1

v(yM, xM, tM) f̂ (yM|xM, yM−1) f̂ (xM|xM−1)dxM dyM, (40)

where εcos(YM) is defined in (38).
Furthermore, with f̂ (yM|xM, yM−1) defined in (9), we have that, ∀yM ∈ [exp(xM),b2],∣∣ f̂ (yM|xM, yM−1)

∣∣ � 2

b2 − exp(xM)
N2 � 2

b2 − exp(a1)
N2.

Then

|ε1| � e−r�t
∣∣εcos(YM)

∣∣ + e−r�t 2N2

b2 − exp(a1)

∣∣∣∣∣
b2∫

exp(xM)

(∫
R

v(yM, xM, tM) f (xM|xM−1)dxM

−
b1∫

a1

v(yM, xM, tM) f̂ (xM|xM−1)dxM

)
dyM

∣∣∣∣∣
� e−r�t

∣∣εcos(YM)
∣∣ + e−r�t 2N2

∣∣εcos(XM)
∣∣ (41)

where εcos(XM) is defined in (37).
From (39) we find

ε1 = O
(
N2

(
εT

(
XM; [a1,b1]

) + εF (XM; N1)
) + εT (YM;b2) + εF (YM; N2)

)
, (42)

which is the error made in the steps up to Eq. (10).
At tM−1, the Fourier coefficients of the option value, Vn, j(tM) are known analytically. Therefore, the error from Eq. (10)

to Eq. (14) is only due to approximation (11), where the Clenshaw–Curtis quadrature was used. For each j,k the error in
the numerical quadrature is O (εq(nq)), with εq defined in (36). Thus, ε2 = O (N1N2εq(nq)).

Summarizing, the error in ĉ(yM−1, xM−1, tM−1), which is the sum of ε1 (42) and ε2, is found to be

ε
(
ĉ(yM−1, xM−1, tM−1)

)
= O

(
N2

(
εT

(
XM; [a1,b1]

) + εF (XM; N1)
) + εT (YM;b2) + εF (YM; N2) + N1N2εq(nq)

)
. (43)

With integration ranges [a1,b1] and b2 carefully chosen, truncation errors εT (XM; [a1,b1]) and εT (YM;b2) will not be
the dominant parts of error (43). If the increments of the underlying Lévy process are governed by smooth density functions,
then, ∀m, the density function of Xm = log(Sm/S0) is smooth, and so is the density function of Ym,m = 1, . . . ,M, which
can be proved using (3). Then, the error in the continuation value decays to zero exponentially, with respect to N1, N2,nq .

Author's personal copy

26 B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30

Inserting (35) and (36) into (43), gives us∣∣ε(
ĉ(yM−1, xM−1, tM−1)

)∣∣
� P∗(N1, N2,nq)

(
exp

(−(N1 − 1)ν1
) + exp

(−(N2 − 1)ν2
) + exp

(−(nq − 1)νq
))

, (44)

where P∗(N1, N2,nq) is a term which varies less than exponentially with respect to N1, N2, nq , so that the error in (44)
decays exponentially with respect to N1, N2, nq .

If the density function of Lévy increments is not smooth, then the error in the Fourier cosine expansion decays alge-
braically with respect to N1 and N2, but the error due to the use of Clenshaw–Curtis quadrature still decays exponentially
with respect to nq .

3.2. Error propagation

Regarding the propagation of the error through time, we state the following lemma:

Lemma 3.1 (Error propagation). For m =M− 2, . . . ,0, assuming that at time step tm+1 , ∀ym+1, xm+1 , ∃P (N1, N2,nq), so that,∣∣ε(
ĉ(ym+1, xm+1, tm+1)

)∣∣
� P (N1, N2,nq)

(
exp

(−(N1 − 1)ν1
) + exp

(−(N2 − 1)ν2
) + exp

(−(nq − 1)νq
))

, (45)

where P (N1, N2,nq) is a term which varies less than exponentially with respect to N1 , N2 , nq, then, at time step tm, we can show
∀ym, xm, ∃ P̄ (N1, N2,nq), that∣∣ε(

ĉ(ym, xm, tm)
)∣∣

� P̄ (N1, N2,nq)
(
exp

(−(N1 − 1)ν1
) + exp

(−(N2 − 1)ν2
) + exp

(−(nq − 1)νq
))

, (46)

where P̄ (N1, N2,nq) is a term which varies less than exponentially with respect to N1 , N2 , nq.

Proof. This is a proof based on mathematical induction.
First, we compute the error in the Fourier coefficients, V̂n, j(tm+1), after which we analyze the error in ĉ(ym, xm, tm).
Error ε(V̂n, j(tm+1)) consists of two parts, the error in the Fourier cosine coefficients of the continuation value, and the

error due to an incorrect value of the early-exercise point. We take as example a call option with a positive-valued error
in the early-exercise points. The analysis of the error propagation for other cases (negatively-valued error, put option) goes
similarly. For a call option, with ε∗

m+1,n > 0, we have

ε
(

V̂n, j(tm+1)
) = (

Cn, j
(
exp(δn), y∗

m+1,n, tm+1
) − Ĉn, j

(
exp(δn), y∗

m+1,n, tm+1
))

+ (
Gn, j

(
y∗

m+1,n, y∗
m+1,n + ε∗

m+1,n, tm+1
) − Ĉn, j

(
y∗

m+1,n, y∗
m+1,n + ε∗

m+1,n, tm+1
))

=
y∗

m+1,n∫
exp(δn)

ε
(
ĉ(ym+1, δn, tm+1)

)
cos

(
jπ

ym+1 − exp(δn)

b2 − exp(δn)

)
dym+1

+
y∗

m+1,n+ε∗
m+1,n∫

y∗
m+1,n

(
g(ym+1, tm+1) − ĉ(ym+1, δn, tm+1)

)
cos

(
jπ

ym+1 − exp(δn)

b2 − exp(δn)

)
dym+1, (47)

with g(ym+1, tm+1) defined in (15).
The error in the continuation value ĉ(ym, xm, tm) is composed of two parts. The first part is the error in which

ε(V̂n, j(tm+1)) has not yet been considered and the error comes solely from the same numerical methods used to compute
the continuation value in the first recursion step. The second part of the error is the additional error with ε(V̂n, j(tm+1))

taken into consideration.
Based on the arguments in Section 3.1, we find

ε
(
ĉ(ym, xm, tm)

) = O
(
N2

(
εT

(
Xm+1; [a1,b1]

) + εF (Xm+1; N1)
)

+ εT (Ym+1;b2) + εF (Ym+1; N2) + N1N2εq(nq)
)

+ e−r�t
N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

xm − a1

b1 − a1

))

· Re

(nq+2∑
n=1

2

b2 − exp(δn)
wn exp

(
i

jπ

b2 − exp(δn)
ym

)
cos

(
kπ

δn − a1

b1 − a1

)
ε
(

V̂n, j(tm+1)
))

. (48)

Author's personal copy

B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30 27

To analyze these errors, we define a European option, vα , from tm to tm+1, with payoff function

vα(ym+1, xm+1, tm+1, L1, L2) :=
{

1, if ym+1 ∈ [L1, L2],
0, otherwise.

Then, the option value at tm , ∀L1, L2 ∈ [exp(xm+1),+∞], can be written as

vα(ym, xm, tm, L1, L2) = e−r�t
∫
R

+∞∫
exp(xm+1)

vα(ym+1, xm+1, tm+1, L1, L2)

· f (ym+1, xm+1, tm+1|ym, xm)dym+1 dxm+1

� e−r�t

and its approximation, by using (14), reads

v̂α(ym, xm, tm, L1, L2)

= e−r�t
N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ

(
kπ

b1 − a1
;�t

)
exp

(
ikπ

xm − a1

b1 − a1

))

· Re

(nq+2∑
n=1

2

b2 − exp(δn)
wn exp

(
i

jπ

b2 − exp(δn)
ym

)
cos

(
kπ

δn − a1

b1 − a1

) L2∫
L1

cos

(
jπ

ym+1 − exp(δn)

b2 − exp(δn)

))
. (49)

Inserting (47) into (48), then using (45) and (49), gives us∣∣ε(
ĉ(ym, xm, tm)

)∣∣ � O
(
N2

(
εT

(
Xm+1; [a1,b1]

) + εF (Xm+1; N1)
)

+ εT (Ym+1;b2) + εF (Ym+1; N2) + N1N2εq(nq)
)

+ P (N1, N2,nq)
(
exp

(−(N1 − 1)ν1
) + exp

(−(N2 − 1)ν2
)

+ exp
(−(nq − 1)νq

))
v̂α

(
ym, xm, tm,exp(δn), y∗

m+1,n

)
+ max

n

∣∣g(ζn, tm+1) − ĉ(ζn, δn, tm+1)
∣∣ · v̂α

(
ym, xm, tm, y∗

m+1,n, y∗
m+1,n + ε∗

m+1,n

)
, (50)

with ζn ∈ (y∗
m+1,n, y∗

m+1,n + ε∗
m+1,n).

For a call option, we have, ∀n,∣∣g(ζn, tm+1) − ĉ(ζn, δn, tm+1)
∣∣ = ĉ(ζn, δn, tm+1) − g(ζn, tm+1)

� ĉ
(

y∗
m+1,n, δn, tm+1

) − g
(

y∗
m+1,n, tm+1

)
= ĉ

(
y∗

m+1,n, δn, tm+1
) − c

(
y∗

m+1,n, δn, tm+1
)

= ε
(
ĉ
(

y∗
m+1,n, δn, tm+1

))
. (51)

Moreover, the value of v̂α can bounded, as

v̂α(ym, xm, tm, L1, L2) � vα(ym, xm, tm, L1, L2) + ∣∣ε(
vα(ym, xm, tm, L1, L2)

)∣∣
= e−r�t + O

(
N2

(
εT

(
Xm+1; [a1,b1]

) + εF (Xm+1; N1)
)

+ εT (Ym+1;b2) + εF (Ym+1; N2) + N1N2εq(nq)
)
, (52)

where the last step is based on the fact that ε(vα(ym, xm, tm, L1, L2)) is the error from approximation (14).
Finally, by using (51) and (52) in (50), and inserting (45), (35) and (36), we reach the conclusion that if [a1,b1] and

b2 are carefully chosen, then the truncation errors εT (Xm+1; [a1,b1]) and εT (Ym+1;b2) will not be the dominant parts of
error (48), and we obtain∣∣ε(

ĉ(ym, xm, tm)
)∣∣ � P̄ (N1, N2,nq)

(
exp

(−(N1 − 1)ν1
)

+ exp
(−(N2 − 1)ν2

) + exp
(−(nq − 1)νq

))
, (53)

where P̄ (N1, N2,nq) is a term which varies less than exponentially with respect to N1, N2,nq . This concludes the proof. �
In the case of put options or negative-valued errors in the early-exercise points, the same error expression as in (53) can

be derived, by a very similar analysis.

Author's personal copy

28 B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30

4. Numerical results

In this section we perform experiments with two different exponential Lévy processes, the Black–Scholes (BS) and the
Normal Inverse Gaussian (NIG) processes. In the BS model, the log-asset follows a Brownian motion, and the NIG process [2]
is a variance-mean mixture of a Gaussian distribution with an inverse Gaussian. The characteristic function of increment
under the NIG model reads:

ϕNIG(u, t) = exp

(
iuμt − 1

2
u2σ 2t

)
· exp

(
tδ

(√
α2 − β2 −

√
α2 − (β + iu)2

))
,

with α, δ > 0 and β ∈ (−α,α − 1). The α-parameter controls the steepness of the density, β is a skewness parameter, and
δ is a scale parameter in the sense that the re-scaled parameters α → αδ and β → βδ are invariant under location-scale
changes of the underlying asset.

The model parameters, used in [11] and [16] for pricing European-style Asian options, are used in Sections 4.1 and 4.2:

• BS: r = 0.0367, σ = 0.178;
• NIG: r = 0.0367, σ = 0.178, α = 6.188, β = −3.894, δ = 0.1622.

Furthermore the model parameter sets used in [1] are used in Section 4.3.
Reference values used in Sections 4.1 and 4.2 are derived by the ASCOS method on the GPU, with N1 = N2 = (nq/2)+ 1 =

4096, and results from [1] are used as reference values in Section 4.3.
Two types of processors, a CPU (Central Processing Unit), and a GPU (Graphics Processing Unit) with double precision are

used and compared to obtain the numerical ASCOS results. On the CPU, an Intel(R) Core(TM)2 Duo CPU E6550 (@ 2.33 GHz
Cache size 4 MB), the algorithm is implemented in MATLAB 7.7.0. On the GPU, a Tesla C2070 GPU with 6 GB memory, we
coded in Compute Unified Device Architecture (CUDA) [13]. Computing time is recorded in seconds.

4.1. Exponential convergence

Error convergence of early-exercise arithmetic Asian options under the BS model, with 10 and 50 early-exercise dates,
using the 2D ASCOS method, are presented in Fig. 1. The horizontal axis presents index d, where in Fig. 1(a), N1 = N2 = 32d,
(nq/2) + 1 = 256, and in Fig. 1(b), we use N1 = N2 = 64d, (nq/2) + 1 = 512. The vertical axis shows the logarithm of the
absolute error. For M= 10 as well as M= 50 an exponential convergence is observed: When N1 and N2 increase linearly,
the logarithm of the error in the option price decreases accordingly.

When comparing the two plots in Fig. 1, we see that with an increasing number of early-exercise dates we require
larger values for N1, N2 and nq to reach the same level of accuracy. With smaller time steps, �t , the conditional density
function between consecutive time steps tends to be peaked, and an accurate approximation by means of cosine expansions
then requires an increasing number of terms. The need for a larger value of nq comes from the fact that the error of the
Clenshaw–Curtis quadrature is observed in each term of (14) and there are N1N2-terms in total. Therefore, larger values for
N1 and N2 give rise to a larger nq-value to ensure the accuracy.

4.2. Computational time and acceleration on the GPU

In this section we present the computational time for our pricing method to reach different accuracy levels on the CPU
and GPU. We use the NIG model for the underlying process, while the ASCOS method behaves in a similar way for other
exponential Lévy process.

A GPU is an SIMT (Single Instruction, Multiple Threads) machine. In other words, the same command can be executed
simultaneously for each data element on each thread of the GPU. Therefore, GPU processing is advantageous for problems
that can be expressed in the form of data-parallel computations.

In the early-exercise ASCOS algorithm we process from time step to time step sequentially, however, there are parts
of the algorithms for which parallelization is possible. For instance, each early-exercise point, y∗

m,n , can be independently
calculated. The Fourier coefficients, that are represented by a matrix in our pricing method, are computed simultaneously
on the GPU at each time step.

We need to perform matrix-vector multiplications, where the summation in each row must be done sequentially. This
can be accelerated by the use of shared-memory within each block, which significantly reduces the data-communication
time on the GPU.

Data transfer between the GPU and the CPU is the bottleneck for most GPU implementations. However, we implemented
it in such a way that, independent of the size of the problem, only one number needs to be transferred between the CPU
and the GPU, which is the option price which we transfer to the CPU at the end of the computation. When the size of the
problem increases, there will be no extra costs due to data transfer.

Tables 1 and 2 present the convergence behavior and computing times for the NIG model with M = 10,50, on the
CPU and GPU, respectively. The error of the option price computed by our method can become arbitrarily small. With

Author's personal copy

B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30 29

Fig. 1. 2D ASCOS error convergence for early-exercise arithmetic Asian options with different numbers of early-exercise dates, BS model, S0 = 100, K = 110.

Table 1
Convergence and computation time of early-exercise arithmetic Asian put options, under the NIG model, with M = 10, S0 = 100
(time in seconds).

2D method

N1 = N2 = (nq/2) + 1 256 384 512
abs. error 1.42e−04 3.14e−07 2.21e−09
CPU time 3560 13 200 32 300
GPU time 4.8 9.1 31.3
Ratio CPU/GPU 740 1450 1030

Table 2
Convergence and computation time of early-exercise arithmetic Asian put options, under the NIG model with M = 50, S0 = 100
(time in seconds).

2D method N1, N2 = 256 N1, N2 = 512 N1, N2 = 768

abs. error 3.88e−03 1.08e−04 4.90e−07
CPU time 20 300 179 000 395 000
GPU time 20.0 160.7 399.5
Ratio CPU/GPU 1020 1110 990

N1 = N2 = (nq/2) + 1 = 256, the method reaches basis point accuracy for M � 10 and when N1 = N2 = (nq/2) + 1 = 512,
the method reaches basis point accuracy for M � 50.

If a pricing method converges exponentially then the ratio

log(error(2d+1))

log(error(2d))

Author's personal copy

30 B. Zhang and C.W. Oosterlee / Applied Numerical Mathematics 78 (2014) 14–30

Table 3
Comparison between the reference value and convergence speed of our method and method from [1].

T = 0.5, σ = 0.25 [1] T = 0.25, σ = 0.15

Option value (both methods) 5.33200 2.32084
Grid point [1] 2400 2400
CPU time [1] 2917 2917
Grid point ASCOS N1 = N2 = nq/2 + 1 = 256 N1 = N2 = nq/2 + 1 = 256
CPU time ASCOS 3539 3652

should be around 2. When comparing the error with N1 = N2 = (nq/2) + 1 = 256 and N1 = N2 = (nq/2) + 1 = 512 we
find the ratios to be 2.25 for M= 10 and 1.65 for M= 50, which further confirms exponential error convergence. As M
increases the convergence becomes a bit slower. This is due to the fact that the density function of consecutive increments
for a Lévy process tend to be peaked.

The GPU computation (on Tesla C2070) is on average 1070 times faster than the CPU computation (in MATLAB) in Table 1
(with M= 10) and on average 1040 times faster in Table 2 (with M= 50).

4.3. Comparison of option values

In this subsection, we compare the early-exercise Asian option prices under the BS model by our ASCOS method with
the results in [1]. Results with M= 13 are compared for different parameter sets. Results are shown in Table 3, where we
record the number of grid points needed to reach basis point precision and the CPU time involved. Model parameters used
in this comparison are S0 = 100, K = 100, r = 0.05.

Comparing Table 3 with Table 2 we see that the option price for BS model converges slightly faster than for the NIG
model. The CPU times are not comparable since they refer to different computers. However, the CPU time recorded in [1]
for American option is less than the CPU time for the European counterpart with the same number of grid points which is
counterintuitive.

5. Conclusions

In this article, we have developed a robust and efficient pricing method for Asian options with early-exercise features for
arithmetic averages, based on a two-dimensional risk-neutral formula. The method is based on Fourier cosine expansions
and Clenshaw–Curtis quadrature, and, depending on the smoothness of the density function, may give rise to exponential
error convergence. The convergence behavior of the 2D ASCOS method is supported by a detailed error analysis, as well as
by various numerical experiments. The flexibility and robustness of the 2D pricing method for different Lévy models and
different numbers of early-exercise dates are shown in the numerical experiments. In particular, the Graphics Processing
Unit, which supports parallel computing, turns out to be very efficient for the computation of arithmetic Asian option
values. The speedup on the GPU is high (just above 1000) as there are many “parallel” computations and almost no data
transfer is required.

References

[1] H.B. Ameur, M. Breton, P. L’Ecuyer, A dynamic programming procedure for pricing American-style Asian options, Manag. Sci. 48 (5) (2002) 625–643.
[2] O.E. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modeling, Scand. J. Stat. 24 (1) (1997) 1–13.
[3] E. Benhamou, Fast Fourier Transform for discrete Asian options, J. Comput. Finance 6 (2002) 49–61.
[4] A. Bermúdez, M.R. Nogueiras, C. Vázquez, Numerical solution of variational inequalities for pricing Asian options by high order Lagrange–Galerkin

methods, Appl. Numer. Math. 56 (2006) 1256–1270.
[5] J.P. Boyd, Chebychev and Fourier Spectral Methods, 2nd ed., Dover, New York, 2001.
[6] A. Carverhill, L. Clewlow, Flexible convolution, in: From Black Scholes to Black Holes, 1992, pp. 165–171.
[7] T. Dai, Y. Lyuu, Accurate and efficient lattice algorithms for American-style Asian options with range bounds, Appl. Math. Comput. 209 (2) (2009)

238–253.
[8] Y. D’Halluin, P.A. Forsyth, G. Labahn, A semi-Lagrangian approach for American Asian options under jump diffusion, SIAM J. Sci. Comput. 27 (2005)

315–345.
[9] F. Fang, C.W. Oosterlee, A novel option pricing method based on Fourier cosine series expansions, SIAM J. Sci. Comput. 31 (2) (2008) 826–848.

[10] F. Fang, C.W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier cosine series expansions, Numer. Math. 114 (2009) 27–62.
[11] G. Fusai, A. Meucci, Pricing discretely monitored Asian options under Lévy processes, J. Bank. Finance 32 (2008) 2076–2088.
[12] D. Lemmens, L.Z.J. Liang, J. Tempere, A. De Schepper, Pricing bounds for discrete arithmetic Asian options under Lévy models, Physica A: Stat. Mech.

Appl. 389 (22) (2010) 5193–5207.
[13] NVIDIA CUDA, Programming guide, version 4.0, 2011.
[14] L.N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis, SIAM Rev. 50 (1) (2008) 67–87.
[15] J. Waldvogel, Fast construction of the Fejér and Clenshaw–Curtis quadrature rules, BIT Numer. Math. 46 (2006) 195–202.
[16] B. Zhang, C.W. Oosterlee, Efficient pricing of European-style Asian options under exponential Lévy processes based on Fourier cosine expansions, SIAM

J. Financ. Math. 4 (1) (2013) 399–426.

