
Heuristics in Permutation GOMEA
for Solving the Permutation Flowshop

Scheduling Problem

G. H. Aalvanger1, N. H. Luong2, P. A. N. Bosman2, and D. Thierens1(B)

1 Institute of Information and Computing Sciences,
Universiteit Utrecht, Utrecht, The Netherlands

d.thierens@uu.nl
2 Centre for Mathematics and Computer Science (CWI),

Amsterdam, The Netherlands

Abstract. The recently introduced permutation Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA) has shown to be an effective
Model Based Evolutionary Algorithm (MBEA) for permutation prob-
lems. So far, permutation GOMEA has only been used in the context of
Black-Box Optimization (BBO). This paper first shows that permuta-
tion GOMEA can be improved by incorporating a constructive heuristic
to seed the initial population. Secondly, the paper shows that hybridiz-
ing with job swapping neighborhood search does not lead to consis-
tent improvement. The seeded permutation GOMEA is compared to
a state-of-the-art algorithm (VNS4) for solving the Permutation Flow-
shop Scheduling Problem (PFSP). Both unstructured and structured
instances are used in the benchmarks. The results show that permuta-
tion GOMEA often outperforms the VNS4 algorithm for the PFSP with
the total flowtime criterion.

1 Introduction

Recently, Bosman et al. [2] introduced the permutation Gene-pool Optimal Mix-
ing Evolutionary Algorithm (GOMEA), a model-based evolutionary algorithm
which is able to solve permutation problems from a Black-Box Optimization
(BBO) perspective. Permutation GOMEA has been tested on the Permutation
Flowshop Scheduling Problem (PFSP) with the total flowtime (TFT) criterion.
In these tests, permutation GOMEA outperformed GM-EDA [3] another per-
mutation model-based evolutionary algorithm. In order to improve permutation
GOMEA further, we should shift from a BBO perspective to a White-Box per-
spective. In this paper we study the effect of seeding the initial population with
solutions from a constructive heuristic, and we look at hybridizing permutation
GOMEA with neighborhood search heuristics.

Section 2 briefly introduces permutation GOMEA. After this we explain the
PFSP and benchmark instances and performance measures in Sect. 3. Construc-
tive heuristics for the PFSP are given in Sect. 4.1, along with some experiments
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 146–157, 2018.
https://doi.org/10.1007/978-3-319-99253-2_12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301640348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_12&domain=pdf

Heuristics in Permutation GOMEA for Solving the PFSP 147

on the effectiveness of these heuristics. In Sect. 4.3 we do the same for improve-
ment heuristics for the PFSP. Finally, we compare the permutation GOMEA -
seeded with a constructive heuristic - with VNS4, a state-of-the-art algorithm
for solving the PFSP in Sect. 5. Section 6 concludes this paper.

2 Permutation GOMEA

2.1 Solution and Model Encoding

Permutation GOMEA encodes solutions using a random-key encoding [2]. A
permutation of n variables is encoded as r = (r1, · · · rn), where each random key
ri ∈ [0, 1]. The position of variable i in the permutation is equal to the position
of ri when r is sorted in ascending order. Multiple random key encodings can
encode the same permutation. For example, r1 = (0.34, 0.56, 0.21) and r2 =
(0.72, 0.93, 0.12) both encode x = (3, 1, 2).

2.2 Model Building

The model used in permutation GOMEA is a linkage tree that models depen-
dencies between problem variables in a hierarchical manner [9]. The root of the
linkage tree is a set with all variables. Each node is recursively split up, ending in
leaves containing only a single variable. Variables grouped in a node are assumed
to be dependent, so optimal mixing can improve solutions effectively.

In permutation GOMEA, the linkage tree is built in each generation anew,
by merging nodes starting at the bottom of the tree. The two sets i and j are
merged which have the strongest dependency δ(I, J). For two variables i and j,
the dependency is composed of two factors: δ(i, j) = δ1(i, j) · δ2(i, j). The first
dependency factor is based on relative-ordering information in the population
and is calculated using the entropy of the probability that variable i is before
variable j in the population:

δ1(i, j) = 1 − Entropy(pi,j). (1)

The second dependency factor uses the average squared distance in random
key values of variable i and j:

δ2(i, j) = 1 − 1
n

n−1∑

k=0

(rki − rkj)2. (2)

This results in a symmetric dependency measure between two variables,
where high values indicate a high dependency. We can extend the dependency
measure to calculate the dependency between two sets, by taking the average
pairwise dependency of the variables in the sets:

δ(I, J) =
1

|I| · |J |
∑

i∈I

∑

j∈J

δ(i, j). (3)

148 G. H. Aalvanger et al.

2.3 Optimal Mixing

To generate new solutions, permutation GOMEA uses Gene-pool Optimal Mix-
ing (GOM) [9]. For each solution, permutation GOMEA takes every set in the
linkage tree as a crossover mask. The values of the masked variables are then
substituted by values from a random donor solution. For example, solution
r1 = (0.2, 0.3, 0.6, 0.5) is changed using crossover mask (x1, x2, x4) and donor
r2 = (0.9, 0.5, 0.1, 0.7) to r′

1 = (0.9,0.5, 0.6,0.7). If such a change is not strictly
improving a solution, the substitution is reverted. Thanks to the random keys
encoding, optimal mixing always results in a feasible permutation.

If a solution is not improved using any crossover mask, permutation GOMEA
will ‘force’ improvements using the best known solution so far. In this Forced
Improvement (FI) phase, permutation GOMEA repeats optimal mixing but the
best known solution is used as donor, instead of a random one. In order to
improve convergence changes are accepted when they do not decrease the quality
of the solution. FI is also entered if the best overall solution has not changed for
10 + 10 · log n generations (denoted with variable NIS = true in Algorithm 1).

With a probability of 0.1, permutation GOMEA will ‘scale’ the random keys
before substitution. Here, the values to substitute are scaled to a new interval.
For example, scaling random keys (0.9, 0.5, 0.7) to the interval [0.3, 0.5] results in
(0.5, 0.3, 0.4). Scaling allows permutation GOMEA to move a group of variables
closer together in the permutation. Also, the random key diversity is improved
in the population. Random key diversity is also ensured by re-encoding. After
the GOM phase of permutation GOMEA, each random key gets a new value,
while retaining the order of the random keys.

2.4 Population Sizing Scheme

When implemented, permutation GOMEA would look like the pseudocode in
Algorithm 1. However, one needs to specify the population size before running the
algorithm. Therefore, permutation GOMEA incorporates an exponential popu-
lation sizing scheme [2]. In this scheme, a population is started with size nbase.
Every four times this population is evaluated, a population with size 2 · nbase

is evaluated once. This pattern recurses, so population i is evaluated four times
as often as population i + 1. Using such a scheme, no population size has to
be estimated. When a population is converged, no evaluations are performed
anymore for that population, allowing permutation GOMEA to evaluate more
in the other populations.

3 Permutation Flowshop Scheduling Benchmark

The PFSP is concerned with finding the optimal solution for scheduling J jobs
on M machines. Each job requires M operations, which should be performed
sequentially, starting on machine 1 and finishing on machine M (the Flowshop
property). Operations cannot be interrupted, but a job can be delayed when its

Heuristics in Permutation GOMEA for Solving the PFSP 149

Result: A good/optimal solution with respect to fitness function f
Pop ← rand Pop(n) ;
while ¬termination criterion do

LT ← build LT (Pop) ; // Model-building

foreach receiver ∈ Pop do
receiver∗ ← receiver;
improved ← False;
foreach set ∈ LinkageTree do // Gene-pool Optimal Mixing

donor ← Random(Pop);
child ← Donaterescale(receiver∗, set, donor, Rand(0, 1) < 0.1);
if f(child) ≥ f(receiver∗) then

receiver∗ ← child;
if f(child) > f(receiver∗) then

improved ← True;

if ¬improved ∨ NIS then // Forced Improvement

foreach set ∈ LinkageTree do
child ←
Donaterescale(receiver∗, set, best solution, Rand(0, 1) < 0.1);
if f(child) ≥ f(receiver∗) then

receiver∗ ← child;
break

receiver = Reencode(receiver∗) // Re-encoding

return best solution from Pop

Algorithm 1. GOMEA outline

operations are not performed immediately after each other. Any solution can
be seen as a permutation of jobs, since each machine has to process the jobs in
the same order (the Permutation property). In three field notation, the PFSP is
denoted by F |prmu|γ, where γ refers to the objective function that is used for
optimizing the schedule. Here, we consider the total flowtime (TFT) criterion,
which is defined as the sum of completion times of all jobs:

TFT (π) =
J∑

i=1

c(πi,M). (4)

The completion times of all jobs can be calculated using the equations in (5) in
O(J · M) time. For the TFT criterion, the PFSP is NP-hard when M > 1.

c(π1, 1) = p(π1, 1)
c(π1, j) = c(π1, j − 1) + p(π1, j) for j = 2 · · · M
c(πi, 1) = c(πi−1, 1) + p(πi, 1) for i = 2 · · · J
c(π1, 1) = max{c(πi−1, j), c(πi, j − 1)} + p(π,j),

for i = 2 · · · J ; for j = 2 · · · M.

(5)

Here, p(πi, j) is the processing time of job πi on machine j. The completion time
of job πi on machine j (i.e., c(πi, j)) is the duration from when job πi is started
on the first machine until job πi is finished on machine j.

150 G. H. Aalvanger et al.

3.1 Problem Instances

Taillard Instances
For the PFSP, the most often used benchmark set is developed by Taillard

[7]. This benchmark set can be divided in 12 (J ×M) sets with 10 instances each
(See Table 1). The instances are a selection of the hardest randomly generated
instances. Here, instances for which simple metaheuristics do not often find the
same solution or where the solution is far from a lower bound are considered to
be hard.
Structured Instances

Aalvanger [1] introduced a new set of benchmarks for testing algorithms
on structured instances. The benchmark set contains the three types of struc-
tured instances as described by Watson [10]: Job-correlated (JC), Machine-
correlated (MC) and Mixed-correlated (MXC) instances (see Fig. 1). In job-
correlated instances, processing times are dependent on the job and not on the
machines. Therefore the processing times of operations in one job are related.
In machine-correlated instances the structure goes the other way around. Here,
processing times on one machine are related, while processing times within one
job are unrelated. Mixed-correlated instances are equal to Machine-correlated
instances, but here the relative ranks of processing times within each machine
are job-dependent.

Fig. 1. Job processing time for three types of structured PFSP instances.

For each of the three correlation types, four (J × 20) sets are generated
(See underlined in Table 1). For each instance size, 1100 instances are generated,
with varying values for correlation: α ∈ {0.0, 0.1 · · · 1.0}. For α = 0.0, instances
reflect the way Taillard instances are generated, higher values introduce more
correlation. For α = 1.0, every task in a job/machine has the same processing
time.

3.2 Comparing Results

To compare algorithms for PFSP, the Relative Percentage Deviation (RPD) is
often used. The RPD describes the relative distance to the best known upper

Heuristics in Permutation GOMEA for Solving the PFSP 151

Table 1. Sizes of the Taillard PFSP instances, for underlined sizes structured instances
are available.

J = 20 J = 50 J = 100 J = 200 J = 500

M = 5 20 × 5 50 × 5 100 × 5

M = 10 20 × 10 50 × 10 100 × 10 200 × 10

M = 20 20 × 20 50 × 20 100 × 20 200 × 20 500 × 20

bound (UB) of an instance and the result of the algorithm RES. The RPD is
calculated by

RPD(RES) =
100 · (RES − UB)

UB
. (6)

RPD values are best used when the upper bound is very close to the opti-
mal solution. An RPD value of 0.0 then means that the optimal solution has
been found. Over a set of runs, the average or median RPD is often reported
(ARPD/MRPD). In our results, we also report the average over the MRPDs of
multiple instances (AMRPD).

We use the Mann-Whitney-U test to check for a significant difference between
two algorithms. Unless reported otherwise, we use sample sizes of 20 per instance
to find MRPD values. AMRPD values are found over 10 instances with the same
size. For significance tests we use a significance level of p < 0.05.

4 Heuristics for the PFSP

4.1 Constructive Heuristics

For the TFT criterion, Liu and Reeves have introduced the LR(x) heuristic [6],
which can generate up to J schedules, depending on the parameter x. LR(x)
builds a schedule from the front to the back, using the following three steps:

1. Sort all jobs according to the index function.
2. Create x partial schedules with the top-x jobs scheduled first. Extend the par-

tial schedules by iteratively adding the best job according to the re-evaluated
index function.

3. Select the best schedule generated in step 2).

The index function for adding job i after the last job k in the partial schedule
consists of two components:

1. A weighted total machine idle time, penalizing the time the machines wait
between job k and job i. Idle time on the first machines is punished more
than idle time on the last machines.

2. The artificial total flow time, is the sum of the completion time of job i plus
the completion time of an artificial job representing the unscheduled jobs.

152 G. H. Aalvanger et al.

Fig. 2. Seeding with the LR heuristics: amount of seeds vs. solution quality after
50,000,000 fitness evaluations.

4.2 Constructive Heuristics Seeding: Results

For the LR heuristic we have tested the effect of seeding solutions in the initial
populations of permutation GOMEA. Figure 2 shows that for most instances -
especially the larger ones - more seeds result in better solutions. This holds for
both structured and unstructured instances. An interesting observation is the
effect of single-solution seeding. Here, the dominant new solution can misguide
optimal mixing, leading to worse solutions.

Heuristics in Permutation GOMEA for Solving the PFSP 153

Fig. 3. Hybrid GOMEA performance with respect to the probability of local search
for Taillard (T) and structured (S) instances (α = 0.3)

4.3 Improvement Heuristics

For the PFSP with the TFT criterion, various improvement heuristics exist.
Each of these improvement heuristics are based on two fundamental permu-
tation neighborhoods: job insertion and job swap. The swap heuristic takes
two jobs and swaps them in a permutation. The insertion heuristic takes one
job and puts it in another place in the permutation. Both heuristics have a
neighbor-space that is quadratic in the amount of jobs and take O(J · M) time
to compute the fitness of a neighbor. In permutation GOMEA an improvement
heuristic is most effectively applied when a solution has changed in the GOM
phase. For permutation GOMEA solving the PFSP with the TFT criterion, the
swap heuristic was shown to have the most potential, especially on instances
with a few machines (for more details see [1]). Figure 3 shows for structured
(mixed-correlation) and unstructured instances how permutation GOMEA per-
forms when this improvement heuristic is applied with some probability Prls.
Clearly, the use of the neighborhood search does not improve the effectiveness of
permutation GOMEA within the given computational time budget. Apparently
the extensive search already executed by the Gene-pool Optimal Mixing process
does not benefit anymore from the classical swap neighborhood exploration.

5 Permutation GOMEA vs. VNS4 Iterated Local Search

The previous section showed that permutation GOMEA can best be enhanced by
seeding the initial population with solutions constructed with the LR heuristic.
Adding local search to improve each solution after the gene-pool mixing process
does not result in consistent improvements on all instances, and is therefore

154 G. H. Aalvanger et al.

Table 2. Quality of pGOMEA and VNS4 on Taillard instances.

not applied in this section. To see how well permutation GOMEA performs in
comparison with a well tested Iterated Local Search heuristic for the PFSP,
we compare it with VNS4, a Variable Neighborhood Search algorithm which
uses an optimal form of combining the insertion heuristic and swap heuristic
in order to solve the PFSP with the TFT criterion [4]. VNS4 was the most
successful algorithm in a study of six different ways to combine the two most used
neighborhoods in the literature used for the permutation flowshop scheduling
problem with total flowtime criterion, namely job interchange and job insertion.
VNS4 turned out to be the most effective of the six variable neighborhood search
algorithms. VNS4 was also compared to a state-of-the-art evolutionary approach
which it outperformed on most of the benchmark instances.

VNS4 is started from a solution generated by the LR constructive heuristic.
First, VNS4 fully explores the job interchange neighborhood until no further
improvement is possible. Then, a single iteration of the job insertion neigh-
borhood search is executed. If this iteration improves the current solution, the
algorithm resumes the interchange neighborhood search. When a local optimum
common to both neighborhoods has been reached within the computational time
limit, VNS4 executes a random walk to escape from the region of attraction of
this local optimum. The random walk consists of k random job insertion moves.
Iterated Local Search is sensitive to the length of the perturbation size. Exper-
imental results show that VNS4’s performance degrades when the perturbation

Heuristics in Permutation GOMEA for Solving the PFSP 155

Table 3. Quality of pGOMEA and VNS4 on structured instances.

size is less than 14 or greater than 18 random job insertion moves [4]. The results
with 14 ≤ k ≤ 18 produce very similar results, but k = 14 has the lowest RPD
median, so this value is shown here in the Tables with experimental results.

Table 2 shows the MRPD values on Taillard problem instances for VNS4 and
permutation GOMEA when both algorithms are run for 400 ·J ·M milliseconds.
This stopping criterion is the same as used in recent works of [5,8,11] which
were all included in the comparison in [4].

The best solution in the Table is marked bold and if the other solution
performs significantly worse, its cell is marked grey. The results show that in
most cases permutation GOMEA outperforms VNS4 significantly, in a number
of cases there is no statistically significant difference, and in only a few instances
VNS4 outperforms permutation GOMEA.

156 G. H. Aalvanger et al.

Secondly, we have tested permutation GOMEA and VNS4 on multiple struc-
tured instances with size 100 × 20. For these problems we have run the algorithms
for 400 · (1 − α) · J · M seconds, as structure makes the problems easier. Table 3
shows the results for three types of structured instances and three α values.

The results show for job-correlated instances that permutation GOMEA
always outperforms the VNS4 algorithm. The type of structure apparently suits
permutation GOMEA best, while VNS4 cannot benefit from an easier fitness
landscape. The machine-correlated instances with a high amount of structure
(α ≥ 0.4) are however easier for VNS4. When machine and job correlation
are mixed, the PFSP is best solved using permutation GOMEA. Permutation
GOMEA finds solutions with MRPD values lower than 0.5, showing that struc-
tured instances are easier than the standard Taillard instances.

An interesting question is why permutation GOMEA does not outperform
VNS4 for the machine-correlated instances with a high amount of structure?
Apparently, permutation GOMEA does not fully capture the structure in the
machine-related instances. The most likely explanation is that this structure is
not represented well enough in the distance measure used to build the linkage
tree. Further research into the relation between the structure in specific problem
instances and the type of structure searched for by GOMEA using different
distance measures is needed to answer this question.

6 Conclusions

Previous work has shown how the Gene-pool Optimal Mixing Evolutionary Algo-
rithm can be applied to permutation problems like the PFSP by representing
solutions with the random-key encoding. Each generation GOMEA builds a link-
age tree in order to capture structure in the set of solutions. This linkage tree can
also be looked upon as an adaptive neighborhood learned by GOMEA to explore
new solutions. In this paper we have investigated how the use of constructive
heuristics and neighborhood search might improve on the Black-Box approach
of permutation GOMEA. Results showed that adding neighborhood search does
not consistently improve the performance. However, seeding the initial popula-
tion of GOMEA by solutions generated by the constructive LR heuristic was
shown to be an effective technique. We have experimentally compared permu-
tation GOMEA - seeded with the constructive heuristic LR - with the highly
successful VNS4 algorithm for unstructured and structured Permutation Flow-
shop Scheduling problems. VNS4 is an Iterated Local Search algorithm using a
variable neighborhood that combines the job insertion neighborhood with the
job swap neighborhood.

For the unstructured Taillard instances, GOMEA almost always outper-
forms VNS4. Also for the job correlated structured instances and for the mixed
job/machine correlated instances GOMEA outperforms VNS4. Only for machine
correlated structured instances with a high amount of structure (α ≥ 0.4), VNS4
outperforms permutation GOMEA.

As a general conclusion, this paper has shown that the use of a multi-solution
constructive heuristic to seed the initial population of permutation GOMEA

Heuristics in Permutation GOMEA for Solving the PFSP 157

leads to an effective model-based evolutionary algorithm. It has also been shown
that adding neighborhood search algorithms does not always result in more
efficient results given a fixed computational time budget.

References

1. Aalvanger, G.: Incorporating domain knowledge in permutation gene-pool optimal
mixing evolutionary algorithms. Master’s thesis. Utrecht University, The Nether-
lands (2017). https://dspace.library.uu.nl/handle/1874/353005

2. Bosman, P.A., Luong, N.H., Thierens, D.: Expanding from discrete Cartesian to
permutation gene-pool optimal mixing evolutionary algorithms. In: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 637–644. ACM (2016)

3. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: Extending distance-based
ranking models in estimation of distribution algorithms. In: 2014 IEEE Congress
on Evolutionary Computation, CEC, pp. 2459–2466, July 2014

4. Costa, W.E., Goldbarg, M.C., Goldbarg, E.G.: New VNS heuristic for total flow-
time flowshop scheduling problem. Expert Syst. Appl. 39(9), 8149–8161 (2012)

5. Jarboui, B., Eddaly, M., Siarry, P.: An estimation of distribution algorithm for min-
imizing the total flowtime in permutation flowshop scheduling problems. Comput.
Oper. Res. 36, 2638–2646 (2009)

6. Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the p||∑Ci

scheduling problem. EJOR 132(2), 439–452 (2001)
7. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),

278–285 (1993)
8. Tasgetiren, M.F., Pan, Q.-K., Suganthan, P.N., Chen, A.H.-L.: A discrete artificial

bee colony algorithm for the permutation flow shop scheduling problem with total
flowtime criterion. In: Proceedings of the IEEE World Congress on Computational
Intelligence, WCCI-2010, pp. 137–144. IEEE (2010)

9. Thierens, D., Bosman, P.A.: Optimal mixing evolutionary algorithms. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, pp. 617–624 (2011)

10. Watson, J.-P., Barbulescu, L., Whitley, L.D., Howe, A.E.: Contrasting structured
and random permutation flow-shop scheduling problems. INFORMS J. Comput.
14(2), 98–123 (2002)

11. Xu, X., Xu, Z., Gu, X.: An asynchronous genetic local search algorithm for the per-
mutation flowshop scheduling problem with total flowtime minimization. Expert
Syst. Appl. 38, 7970–7979 (2011)

https://dspace.library.uu.nl/handle/1874/353005

	Heuristics in Permutation GOMEA for Solving the Permutation Flowshop Scheduling Problem
	1 Introduction
	2 Permutation GOMEA
	2.1 Solution and Model Encoding
	2.2 Model Building
	2.3 Optimal Mixing
	2.4 Population Sizing Scheme

	3 Permutation Flowshop Scheduling Benchmark
	3.1 Problem Instances
	3.2 Comparing Results

	4 Heuristics for the PFSP
	4.1 Constructive Heuristics
	4.2 Constructive Heuristics Seeding: Results
	4.3 Improvement Heuristics

	5 Permutation GOMEA vs. VNS4 Iterated Local Search
	6 Conclusions
	References

