
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Learning from induced changes in opponent (re)actions
in multi-agent games

P.J. 't Hoen, S.M. Bohte, J.A. La Poutré

REPORT SEN-E0513 NOVEMBER 2005

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301640345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Learning from induced changes in opponent
(re)actions in multi-agent games

ABSTRACT
Multi-agent learning is a growing area of research. An important topic is to formulate how an
agent can learn a good policy in the face of adaptive, competitive opponents. Most research has
focused on extensions of single agent learning techniques originally designed for agents in
more static environments. These techniques however fail to incorporate a notion of the effect of
own previous actions on the development of the policy of the other agents in the system. We
argue that incorporation of this property is beneficial in competitive settings. In this paper, we
present a novel algorithm to capture this notion, and present experimental results to validate our
claims.

2000 Mathematics Subject Classification: 91A20, 91A26
Keywords and Phrases: Multi-Agent Learning

Learning from Induced Changes in Opponent

(Re)Actions in Multi-Agent Games

P.J. ’t Hoen, S.M. Bohte, and J.A. La Poutré

hoen@cwi.nl,sbohte@cwi.nl,hlp@cwi.nl

CWI, The Netherlands Centre for Mathematics and Computer Science

Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands

Abstract

Multi-agent learning is a growing area of research. An important topic

is to formulate how an agent can learn a good policy in the face of adap-

tive, competitive opponents. Most research has focused on extensions of

single agent learning techniques originally designed for agents in more

static environments. These techniques however fail to incorporate a no-

tion of the effect of own previous actions on the development of the policy

of the other agents in the system. We argue that incorporation of this

property is beneficial in competitive settings. In this paper, we present a

novel algorithm to capture this notion, and present experimental results

to validate our claims.

1 Introduction

Acting intelligently in a dynamic environment shared with other competing
agents is a hard task, as daily life as well as a host of work on learning in multi-
agent settings demonstrates. Without the presence of a teacher, and with only
the observed actions and rewards to learn from, the framework of Reinforcement
Learning (RL) (Sutton & Barto, 1998) is an obvious choice. Conceptually, the
focus moves from the realm of Markov Decision Problems to that of Game
Theory (GT) and stochastic games (Shoham, Powers, & Grenager, 2004).

Recent work has proposed a number of extensions from the single agent
setting to the multi-agent domain. State-of-the-art Multi-Agent Reinforcement
Learning (MARL) algorithms improve on single-agent RL approaches by in-
corporating models of the current opponent agent’s behavior. This allows an
agent to model the current “environment” including opponents, against which
it has to optimize its own behavior by playing a best-response. In a multi-agent
setting, the policy that maximizes payoff will depend on the changing actions
of adversaries. Importantly, the adaptations of adversaries are likely to be re-
actions to ones own actions. This point is largely ignored in current (MARL)

1

algorithms. Such strategic reasoning can be paramount when an agent is re-
peatedly interacting with the same opponents, and earlier actions influence the
future behavior of these learning adversaries.

The Prisoner’s Dilemma (PD) is illustrative in that in repeated play the
optimal policy differs from blindly playing the myopic best response, and that
it can be profitable to have a good estimation of the opponents reactions to
ones own play. In one single game, two competing agents can each choose from
actions cooperate or defect ({C, D}), and the maximum joint payoff is achieved
when both agents choose to Cooperate. However, when the other agents plays
Cooperate, an agent obtains an even larger payoff from playing Defect. From
a game theoretical perspective then, for the single shot game {D, D} is the
dominant strategy and a Nash-Equilibrium (see Section 2).

In iterated play of the PD (iPD) game, there is no longer a clear domi-
nant strategy, as both agents can achieve a higher aggregated and individual
reward by cooperating and playing the joint action {C, C}, provided there is
some strategic incentive to rarely unilaterally defect. That is: defecting as a
strategy is discouraged by the likely negative future reaction of the opponent
(see also the famous Folk Theorem discussed in Section 2).

It is important to notice that just modeling the current behavior of the
opponent in iPD can lead to {D, D} outcome in repeated play when the reaction
of the opponent to ones own play of defection is not taken into account. An
agent that does not take into account the changing behavior of the opponent
may estimate that a cooperating opponent may be exploited, and ignores the
fact that defection will result in an opponent that also defects. When repeatedly
playing a game against an adversary, the question is which moves one should
play to maximize the individual reward given the dependent adaptive behavior
of the adversary.

We argue that current state-of-the-art MARL algorithms (M. H. Bowling
& Veloso, 2002; M. Bowling, 2004; Tesauro, 2003; Conitzer & Sandholm, 2003;
Greenwald & Hall, 2003; Banerjee & Peng, 2004; Weinberg & Rosenschein, 2004)
(see also Shoham et al. (2004) for a more in depth discussion) do not incorporate
a sufficient notion of the longer term impact of their actions on the dynamics of
the environment. This environment includes other adaptive agents that react
to moves of their opponents as well. For example, current MARL algorithms
that play the iPD will universally converge to the worst possible outcome of
{D, D} in self-play1(Crandall & Goodrich, 2005). The one exception to the full
defection outcome in repeated play of the iPD we are aware of is a recent paper
by Crandall and Goodrich (2005), which we will discuss further below.

In this paper, we present a novel MARL framework called Strategic Op-
ponent Policy Modeling (StrOPM) that goes beyond current Myopic Opponent
Policy Modeling (MOPM) MARL approaches. StrOPM, as most other MARL’s,
takes into account the current (estimated) policy of the opponents and the re-
wards for actions. Importantly, our algorithm also estimates how the policies of
the opponents change over time due to actions played by StrOPM. The policy

1An agent playing against an identical opponent.

2

of the agent using the StrOPM algorithm is adjusted to increase the expected
future reward by taking into consideration 1) the immediate and future rewards
of actions 2) the estimated policy of the opponent, and 3), most importantly,
the impact of the chosen actions on the future policy of the opponent. The last
point is the novel contribution of our work.

Our algorithm is a policy-gradient like method with roots in Q-learning.
Q-like values for states are calculated based on estimated values of actions and
estimated opponent policies. Policies are updated along the gradient of expected
increased rewards. To more accurately model the (future) changes in the en-
vironment due to an agent’s own actions, the agent computes a continuously
updated estimate of the change in the choice of opponents actions due to its own
actions. StrOPM then adjusts the reward gradient by this estimate to account
for the opponent’s likely reaction.

We present our results for the well studied domain of iterated-play two-player
two-action matrix games. We show that our algorithm quickly arrives at the
desired
Nash-Equilibrium for games that are unproblematic. These games are relatively
straightforward in the sense that optimal play in a single-shot play of the game
is also a good solution to iterated play of the game.

Importantly, we show that the proposed StrOPM algorithm achieves coop-
eration ({C, C}) in repeated play of the PD. After an initial exploration period,
StrOPM learns that defection leads to reciprocal defection, and an overall lower
value of future play than a high level of cooperation. The agents learn to op-
timize their own interest as a function of the played game and the reciprocal
behavior of the evolving opponent. The (possible) cooperation strategy is not
a precoded option in the algorithm, but is achieved by optimizing beyond the
immediate best response to the current opponent play. The StrOPM agents in
self-play exhibit a learned Tit-For-Tat strategy (Axelrod, 1984). The Tit-For-
Tat algorithm plays C until the opponent defects upon which a D is played
followed by again C until the next defection to encourage cooperation. The
StrOPM agents learn this strategy and cooperates to reach a good equilibrium,
and yet also evolves a threat state where defection is returned in order to guard
against exploitation by the opponent.

We also compare our approach to the recent algorithm M-Qubed of Crandall
and Goodrich (2005) for the studied matrix games. M-Qubed achieves the
(C, C) equilibrium in the iPD by a meta step. The M-Qubed algorithm is
designed to balance play of a best-response strategy with the precoded strategy
of playing one action consistently. In particular, the algorithm during play
continuously considers the value of switching to the pure, precoded strategy
of playing C. Using a precoded strategy may lead to being exploited, or be
unsuitable for more complex settings, as we will show.

We present results for StrOPM versus M-Qubed and show that the two
type of agents playing against each other can together achieve cooperation,
but from entirely different principles. The StrOPM algorithm in self-play finds
good strategies significantly faster than M-Qubed for the iPD game. When
playing against each other, this high speed of learning leads to an initial period

3

where StrOPM exploits M-Qubed. Furthermore, StrOPM is shown to exploit
the M-Qubed algorithm in a simple matrix game where the pre-coded strategy
of playing one action predictably can result in inferior strategies in repeated
play. Using precoded strategies has limited application. For example, precoded
strategies cannot be used when the number of possible precoded strategies must
be large, the precoded strategies cannot be determined, or do not generalize
to novel, or more complex settings. Fundamentally, a MARL should remain
flexible in novel settings.

In summary, we have presented three important contributions. First of all,
we have signaled the need for Multi-Agent learning algorithms to take into ac-
count the impact of their actions on the learned policy of the opponents. This
concept is as yet lacking in the MARL community. Secondly, we presented a
novel framework that allows agents to apply the above observation to achieve de-
sired outcomes for representative iterated matrix games, and, more importantly,
also for the iPD. The latter is known to be difficult for MARL approaches; the
presented StrOPM framework solves the iPD game by learning and recognizing
“threat states”, where it will punish an opponent’s uncooperative behavior with
a Tit-for-Tat type strategy (and also learns the reciprocal reaction). Lastly, we
demonstrate the danger of incorporating pre-coded fixed strategies in learning
algorithms as these are vulnerable to exploitation or may not be suited to novel
or more complex settings.

Structure The remainder of this document is structured as follows. In Section
2, we present iterated matrix games, and the iterated Prisoners Dilemma. In
Section 3, we present our general framework. We present a Multi-Agent RL
framework, StrOPM, that in the limit plays best-response against stationary
opponents. Importantly, StrOPM can reason strategically in games where it is
relevant in how an opponent will react to the history of play. In Section 4, we
present experimental results. In Section 5, we discuss and conclude.

2 Model and problem setting

In this section, we give some introductory definitions and notation from Game
Theory, Reinforcement Learning, and the iterated matrix games we study as
problem domain. We discuss the iterated Prisoners Dilemma as a game of
special interest.

2.1 Agents and Matrix games

We consider multi-agent Reinforcement Learning for iterated play of games,
more specifically matrix games, and introduce some well-known concepts from
Game Theory (GT).

In general, let S denote the set of states in the game and let Ai denote
the set of actions that agent/player i may select in each state s ∈ S. Let
a = (a1, a2, . . . , an), where ai ∈ Ai be a joint action for n agents, and let

4

A = A1 × · · · × An be the set of possible joint actions. Zero-sum games
are games where the rewards of the agents for each joint action sum to zero.
General sum games allow for any sum of values for the reward of a joint
action.

A strategy (or policy) for agent i is a probability distribution π(·) over its
actions set Ai. Let π(S) denote a strategy over all states s ∈ S and let π(s) (or
πi) denote a strategy in a single state s. A strategy may be a pure strategy
(an agent selects an action deterministically) or according to a mixed strategy
(a strategy that plays a random action, according a probability distribution).
A joint strategy played by n agents is denoted by π = (πi, . . . , πn). Let a−i

and π−i refer to the joint action and strategy of all agents except agent i.
We focus on the more restricted matrix game, defined by a set of matrices

R = {R1, . . . , Rn}. Let R(π) = (R1(π), . . . , R(πn)) be a vector of expected
payoffs when the joint strategy π is played. Also, let Ri(πi, π−i) be the expected
payoff to agent i when it plays strategy πi and the other agents play π−i. A
strategy is dominant if, regardless of what any other players do, the strategy

earns a player a larger payoff than any other strategy. Also, let Ri(

[

ai

a−i

]

) be

the payoff for agent i playing action ai while the other agents play action a−i.
A stage game is a single iteration of a matrix game, and a repeated game

is the indefinite repetition of the stage game between the same agents. While
matrix games do not have state, agents can encode the previous w joint actions
taken by the agents as state information, as for example illustrated by Sandholm
and Crites (1995).

Each individual matrix game has certain classic game theoretic values. The
minimax value for player i is mi = maxπi

mina
−i

Ri(πi, a−i), i.e. the least
reward that can be achieved if the game is known and the game is only played
once. A Best-Response (BR) to the opponents strategy π−i is defined by
BR = π∗ = maxπ Ri(π, π−i). This corresponds to the (expected) most reward
that can be gained from playing, under the assumption that the game is known;
the game is only played once; and the opponent strategy is known.

A Nash Equilibrium (NE) is a joint strategy such that no agent may
unilaterally change its strategy without lowering its expected payoff in the one
shot play of the game. Nash (1951) showed that every n-player matrix game has
at least one such NE. A Pareto optimal solution of the game is a joint strategy
such that no agent may unilaterally increase its expected payoff without making
another agent worse off. A (joint) strategy π1 is said to Pareto dominate a
strategy π2 if the expected payoff for π1 is at least as high as for π2 and higher
for at least one of the agents. A joint strategy is Pareto deficient if it is not
Pareto optimal.

In the studied matrix games, we assume that an agent can observe its own
payoffs as well as the actions taken by all agents in each stage game, but only
after the fact. All agents concurrently choose their actions. A possible adapta-
tion of the agents’ policy, i.e. learning as a result of observed opponent behavior,
only takes effect in the next stage game. Repeated games are modeled as a series
of stage games with the same opponent(s). Each agent then aims to maximize

5

R=0.35
R=0.35

T=0.5
S=0

S= 0
T=0.5

P=0.1
P=0.1

Table 1: Example payoffs for the (symmetrical) PD

its reward from iterated play of the same matrix game.
We restrict our investigation to two-player, two-action games as these are

well classified (Rapoport, Guyer, & Gordon, 1976). The arguments and formal-
ism presented in the rest of the paper are however applicable to more general
settings. The next section discusses the Prisoners Dilemma (PD), a special
two-player two-action game.

2.2 The iterated Prisoner’s Dilemma

We present the iterated Prisoners Dilemma (iPD) as a special matrix game.
In this game, each player has a choice of two operations: either cooperate
(C) with the other player or defect (D). The payoff matrix for joint actions is
shown in Table 1. If both players cooperate, they both receive a given payoff
R. However, if one player plays Cooperate, and the other plays Defect, the
defector receives a payoff T > R, and the cooperator receives a much lower
payoff S < R. If both players play Defect, they receive the low payoff P . For
each individual, the incentive is thus present to defect, hoping that the other
player plays “cooperate”. Myopic play by even one of the players already quickly
leads both players to arrive at the suboptimal outcome of both players receiving
a low reward P .

The PD game is of particular interest as it has specific properties that make
it unique among the matrix games. The PD is the only game of the taxonomy
of two-player, two-action games listed by Rapoport et al. (1976) for which the
natural outcome is stable (a NE), but Pareto-deficient: there are outcomes that
Pareto-dominate the NE. This unique property also makes it non-trivial for
competitive learning algorithms in repeated play; how can learners consider the
possible future gains that are non-existent in the single shot game?

Most multi-agent learning algorithms to date have focused on an individual
agent learning a (myopic) Best Response to the current strategies of the other
agents. Play between such agents using this approach often converge, and have
as goal to converge, to a one-shot NE. However, a famous result from game
theory (the folk theorem) suggests that the goal of reaching a one-shot NE
may be inappropriate in repeated games.

The folk theorem implies that, in many games, there exists NEs for repeated
games, repeated Nash-Equilibria (rNEs), that yield higher individual payoffs to
all agents than do one-shot NEs, i.e. the rNE Pareto dominates the NE. Hence,
in repeated games, a successful set of agents should learn to play profitable rNEs.

6

However, since many repeated games have an infinite number of rNEs, the folk
theorem does little to indicate which one the agents should play. Littman and
Stone (2003) present an algorithm for computing rNEs that satisfies a set of
desiderata, but how to learn these strategy online is unknown. Additionally,
an agent may have preferences between rNEs and play one above the other, if
allowed by its opponents.

It is however not given that the mainstream, or state of the art RL algo-
rithms, will (approximately) learn these rNE equilibriums in self play or against
various classes of opponents. As discussed in Section 1, and by Crandall and
Goodrich (2005), the claim is that current MARL algorithms will not converge
to good rNE for iPD-like games.

3 The StrOPM Framework

We give a formal definition of the StrOPM framework. We first introduce the
concepts from the single state perspective for inital exposition. With this in
place, we then present the multi state formalism framework. Lastly, we show
(very successful) experimental results with an instantiation of the framework
for matrix games in Section 4.

We can formulate the goal of an agent i as wanting to maximize the total
reward it obtains from playing T times against an adversary:

Rtot
i =

t=T
∑

t=0

vali(πi,t, π−i,t). (1)

where πt is the policy at time t and vali the expected reward for a agent i using
policy πi,t and opponent policies π−i,t. Thus, we want to specify or learn the
time-varying policy πi,t that maximizes the reward obtained.

We make several observations: first, we have to start playing from some
policy πi,t=0, and we may not know the payoff of (joint) actions yet. We may
also not know the policy of the adversary yet, nor to what extent it is adaptive.

We assume that we can define a state representation for an agent i that
includes sufficient history to make the evolution of both its own policy and the
opponent’s policy Markovian: πi,t+1 = f(s(t), πi,t), where f(s(t), πi,t) is the
state dependent function that adapts the agent’s policy based on the agent’s
current policy πi,t and the current state s(t) . Likewise, the agent assumes
that the opponent behaves similarly Markovian: π−i,t+1 = g(s(t), π−i,t), where
g(s(t), π−i,t) is an unknown function that adapts the adversarie’s policy. We
assume that part of the state information in the g(s(t)) term depends on the
actions taken by the agent i.

At its core, the StrOPM algorithm attempts to estimate this unknown adap-
tive function g(s(t), π−i,t), and then computes forward all possible future action
sequences resulting from the thus evolving policies πi,t and π−i,t. It then up-
dates the policy πi,(t+1) in the direction of those future action sequences that
promise the most reward.

7

3.1 StrOPM: Single State

The StrOPM algorithm learns the reward of joint actions, estimates the policy
of the opponents, and updates its own policy to increase its expected reward.
The policy is updated along the gradient of increased reward. StrOPM however
moderates its changes in policy by taking into account how the opponent will
react to its own chosen actions.

Learning the values of joint actions We introduce Vi : Ai × A−i → <
that estimates the value of a single joint action to agent i. Through Vi, agent
i learns its part of the rewards of the game, dependent upon the actions of the
opponent. The function Vi is updated using the exponential moving average
(EMA):

Vi,t+1 = (1− αEMA1)Vi,t + αEMA1 × rt, (2)

where rt is the reward received by agent i in epoch t, and 0 < αEMA1 ≤ 1 is
the learning rate for the update.

Estimation of the opponent policy We define π−i : as the estimate of
the policy of agent −i by agent i. The opponent policy is estimated online again
using Exponential Moving Average (EMA). The estimate of π−i after observing
action a−i is adjusted according:

π−i,t+1(a−i) = (1− αEMA2)π−i,t(a−i) + αEMA2. (3)

After this update, the policy π−i,t+1 is normalised to retain π−i as a probability
distribution.

The (estimated) value of two policy pairs πi of agent i and estimated policy
π−i of agent(s) −i is defined as

val(πi, π−i) =
∑

ai

∑

a
−i

Vi

[

ai

a−i

]

× πi(ai)× π−i(a−i). (4)

Based on this Equation 4, an agent can deliberate upon the value of joint policies
from its own perspective, i.e. what is the value of any policy πi given an estimate
of the opponent policies π−i. An agent i can play best response as defined in
Section 2, or can deliberate upon more advanced strategies.

Estimation of impact actions We introduce ξ(π−i(s), ai) to estimate the
impact of playing of an action ai on the development of the policy of the oppo-
nent. This function2 predicts the change in policy of the opponent upon playing
action ai; i.e. π−i,t+1 = ξ(π−i,t, ai). We postpone the definition of ξ to Section
3.2, as we then have a better perspective to introduce this aspect.

2More complex functions like ξ(πi, π−i, a) can be considered if required for good rNE.

8

Updating of the policy We introduce policy update actions. A policy
update action puai dictates whether the likelihood of an action ai should be
increased. Additionally, we introduce the null policy update action puanull to
indicate that the policy should not be changed. Let π

puai

i be the policy achieved
by applying the policy update action puai to πi. The policy πi of agent i for a
policy update action puai not equal to the null action is updated according to:

π
puai

i = (1− αLEARN)πi,t(ai) + αLEARN , (5)

where αLEARN is the learning rate. The probabilities πi(·) for actions aj 6= ai

are normalized to retain πi as a probability distribution.
Let G(puai) be the estimated value of the game for agent i after applying

policy update action puai and playing action ai. The estimated value G of the
game becomes:

G(puai) =
∑

aj∈Ai

(

π
puai

i (aj)× val(πpuai

i , ξ(π−i, aj))
)

. (6)

The change in value of the game is the difference between the value of the
original policy pair (π, π−i) and the value of the newly updated policy π

puai

i

with respect to the policy of the opponent influenced by playing actions aj , i.e.
ξ(π−i, aj)).

The value of the null policy update action is calculated using the weighted
reaction to the current policy πi of agent i; just because agent i does not adapt
its policy does not signify that its actions will not have impact.

G(puanull) =
∑

ai∈Ai

(

πi(ai)× val(πi, ξ(π−i, ai))
)

. (7)

In each epoch, the highest3 valued policy update action pua∗ is calculated
according to

pua∗ = max
puaj

G(puaj). (8)

Note however that we keep the learning rate for policy updating constant
over time, in contrast to most existing approaches. A decreasing learning rate
over time is a classic assumption (Watkins & Dayan, 1992) for convergence
of single agent learning algorithms and many multi-agent learning algorithms.
A decreasing learning rate however trivially opens an agent to exploitation by
continuously adaptive agents: an opponent can easily exploit a converged com-
petitor after the opponent becomes near stationary due to its minimal learning
rate. The StrOPM algorithm converges by choosing puanull as its policy update
action to maintain a stationary policy if this is deemed best. Should the envi-
ronment however change, the StrOPM player is able to react due to non-zero
learning rates.

3One is picked at random in case of tie.

9

One Epoch The learning algorithm for an agent i in each epoch sequentially:

1. Updates policy πi using the highest valued policy update pua∗ action as
defined in Equation 8.

2. Plays action ai ∈ Ai based on the choosen policy update action pua∗.
StrOPM plays action ai for choosen policy update action puai = pua∗ if
pua∗ is not the null policy update action. Otherwise choose the action
according to πi.

3. Receives reward Ri(

[

ai

a−i

]

) for the joint action determined by agents −i.

4. Updates the estimate of the reward for the joint action V (

[

ai

a−i

]

) using

Equation 2 and the opponent policy π−i using Equation 3.

The StrOPM algorithm updates its policy along the gradient of expected
reward. Actions are chosen to maximise reward based on the estimation of the
opponent policy. Importantly, StrOPM does not pursue a pure Best-Response
in the sense that the chosen actions are also based on changes expected in the
opponent behavior due to choice of StrOPM’s own actions.

3.2 StrOPM: Multi-State

Above, we introduced the StrOPM algorithm from the single state perspective.
We now extend the StrOPM framework for multiple states now that the basic
concepts have been introduced. In this Section, we now define the ξ function as
we introduce state representations that encode recent history of play.

States Let S denote the set of states of agent i. We introduce a transition
function T : S×Ai×A−i → S to return the next state of agent i upon playing
a (joint) action from the current state. We stretch the previously used notations
to include state where relevant; i.e. πi(s, a) is the probability of agent i playing
action a in state s.

Estimating the impact of actions We postponed the definition of ξ in
the single state StrOPM framework to the definition of StrOPM in a multi-
state setting. There are various possibilities to build ξ, and we present a first
implementation below; more sophisticated versions of ξ are possible, for example
by taking into account the history of last played joint actions over multiple steps.
Here, we restrict ourselves to a simple linear extrapolation that we show in works
very well already (see also Section 4). It also allows for intuitive interpretations
within the domain of matrix games.

We estimate the impact of an action ai by agent i on the policy π−i(s) of the
opponent. As a first implementation of this function, we take the approach that
the changes in the opponent policy are, at least in part, caused by an agents
own actions. We have as state representation an encoding of the last played

10

joint action; the current state is determined in the transition function by the
last played joint action. Furthermore, we have a state-differentiated policy for
the agent itself, and a state-differentiated estimation of the opponent policy.
With the above information, StrOPM can track the chances in estimated policy
π−i(s) over time and estimate the impact of its actions for each state.

More generally, as states (also) encode the estimated policy for the opponent
as a function of the last played joint action, this information can be applied to
estimate the shift in opponent policy as a function of ones own play. StrOPM
estimates the change in policy as a continuation of the change in policy from
estimation of the opponent policy N epochs in the past, i.e. how was the oppo-
nent policy at time t−N?. For state s′ reached after playing action joint action
[

ai

a−i

]

from state s, i.e. s′ = T (s,

[

ai

a−i

]

), the change in policy for this new state,

as a consequence of the action played, is estimated as a linear extrapolation of
past reaction to ones own actions:

ξi,t(s
′ = T (s,

[

ai

a−i

]

)) =
π−i,t(s

′)− π−i,t−N (s′)

N
+ πi,t(s

′), (9)

where we limit ξ to [0, 1].

Calculating the best policy update action In Section 3.1, we define the
value of a policy update action in Equations 6 and 7 for an agent with single
state. We generalize for agents with multiple states games by considering how
the value of the game will change due to an adaption in the agents own policy
for the current state.

To approximate the above change in the value G of the game, we calculate for
the presented results of Section 4 the value of the extensive form tree representa-
tion of the next n epochs of the game being played. The estimated value of the
possible future moves of “depth” n is calculated by using Equation 4 to estimate
the value of the current state. To this value, the expected reward in the reach-
able states in the following n− 1 epochs is added. G(s, 1) = val(πi(s), π−i(s)),
and

G(s, n + 1) = val(πi(s), π−i(s))+
∑

ai

∑

a
−i

πi(s)(ai)π−i(s)(a−i)G(T (s,

[

ai

a−i

]

), n) (10)

The StrOPM algorithm reasons about the impact of its actions by replacing
π−i(s) by ξ(s) in the above equations for G(s, n). Call this new recursive equa-
tion G′. The marginal value of a policy update action puai that increases the
probability of playing ai from state s is then

∆G(puai) = G′(s, n)[πi(s)← π
puai

i]−G(s, n), (11)

where [πi(s) ← π
puai

i] indicates that π
puai

i , the changed policy, should be used
instead of πi(s) in calculation G′.

11

The above approximation of the games was sufficient for the StrOPM algo-
rithm to estimate the impact of changes in its policy for n = 4. For large state
spaces or novel settings, G will have to be estimated in other ways, using for
example discounting of future states in the leaves of the extensive form game
tree. An extensive form of the future game cannot be constructed indefinitly for
increasing n. Methods like Monte Carlo sampling may be a possible direction
to take; this however is ouside the scope of this paper.

3.3 Multi-State Matrix Games

For the experiments in Section 4, we use use one separate state to encode the
last joint play of action from Ai × A−i. For the two player matrix games, the
StrOPM agents hence have four states. In particular, for the iPD, the current

state encodes whether the last joint action played was either

[

C

C

]

,

[

C

D

]

,

[

D

C

]

, or
[

D

D

]

for the iPD.

Figure 1: a) payoff matrix for “Matching Pennies”, reward representation as in
Table 1. b)two StrOPM players playing Matching Pennies. c,d) payoff matrix
and two StrOPM players playing a Coordination Game. e,f) payoff matrix and
two StrOPM players playing a game of Chicken.

4 Experiments

We first investigate the StrOPM algorithm for various well-known two-player,
two-action games.

In Figures 1b,d,f, we show the results for StrOPM in a variety of games.
Figure 1b shows the results for self-play for the game of “matching pennies”,
Figure 1d for a variant of a coordination game4, and Figure 1f for the game of
Chicken (see also Rapoport et al. (1976)). The corresponding payoff matrices

4In the simple coordination game, the two agents must learn to either play

»

C

D

–

or

»

D

C

–

to

achieve the highest reward.

12

are plotted above the respective graphs in Figures 1a,c,e. Experiments are av-
eraged over 50 runs. A learning rate of 0.01 was used for all the EMA equations
of Section 3. The StrOPM algorithm looks back N = 10 epochs in Equation 9.
Additionally, we added an ε = 0.01 probability of the StrOPM agent taking an
exploration move in each epoch to ensure all states are sufficiently sampled in
play. Note that we reuse the payoff labels C and D for ease of exposition.

In the games shown in Figure 1, the StrOPM algorithm finds the optimal
Nash-Equilibria rapidly, as was to be expected since these games are unproblem-
atic in the sense that the Nash-Equilibria of the games is also a good solution
for iterated play of the game. The results show that the StrOPM algorithm
finds good solutions for these diverse games quickly, as it should since it is not
designed with a bias for any particular matrix game.

StrOPM in the iPD Of greater interest than the previous games is the
iterated Prisoner’s Dilemma, as it is a much harder, open problem for MARLs
and is also the motivating example for the work of Crandall and Goodrich
(2005).

In Figure 2a, we present results of the StrOPM algorithm for self-play in
the iPD game of Figure 2a (using the payoff matrix of Table 1). To highlight
the difference between a forward-thinking algorithm like StrOPM, and more re-
active MOPM algorithms, we compare in Figure 1 the results for the StrOPM
algorithm in self-play with that of self-play for an MOPM player in the form of
a reduced variant of StrOPM that does not anticipate reactions to its actions.
With the latter, we mean that the used ξ functions do not predict a change in
policy of the opponent, i.e ξ(π−i, ai) = π−i. As such, the StrOPM implemen-
tation reverts to an opponent modeler type player that simply moves its policy
to a best-response to the recently observed play of the opponent.

The StrOPM learner in self-play (Figure 2a, solid line) converges to playing
the (optimal) Cooperate-Cooperate ({C, C}) strategy with reward 0.35. The
full cooperation equilibrium is reached as the StrOPM learner estimates that
leaving the full cooperation state leads to states where more and more defection
is expected. Additionally, the full cooperation state is expected to lead to more
cooperation. In contrast, the MOPM variant quickly learns cooperation is risky
and moves to full defection(Figure 2a, dashed line).

Furthermore, a closer study of the state-based policy of the StrOPM players
reveals that the agents in self-play exhibit a learned Tit-For-Tat strategy (Axel-
rod, 1984). The Tit-For-Tat algorithm plays C until the opponent defects upon
which a D is played followed by again C until the next defection to encourage
cooperation. For a four state agent, with each state encoding the last joint

action of play, the policy is to play C in state

[

C

C

]

, play D from state

[

C

D

]

, and

C from

[

D

D

]

. The StrOPM agents learn this strategy and play C to cooperate

and reach a good equilibrium, except for occasional exploratory moves. At the
same time the StrOPM players also evolve a “threat” state where defection is

13

retaliated in order to guard against exploitation by the opponent. The need for
learning a threat state as in the Tit-For-Tat play of the iPD is an interesting
venue of research for iterated play of games.

StrOPM versus M-Qubed: In Figure 2b we show results for an agent using
the StrOPM algorithm (using the same settings as above) playing against an
agent using the M-Qubed algorithm by Crandall and Goodrich (2005). We
choose M-Qubed an a state-of-the-art MARL algorithm to compare StrOPM
to, as Crandall & Goodrich claim it performs on par with other state-of-the-
art MARLs on simple matrix games, and is additonally capable of successfully
solving the iPD game.

Figure 2: a) StrOPM players playing the iPD (solid line) and the MOPM-variant
(dashed line). b) A StrOPM player playing vs M-Qubed for the iPD. c) iPD
payoff matrix

M-Qubed as introduced in Crandall and Goodrich (2005) operates as a mix of
a Q-learning type algorithm and a pure strategy player. The algorithm learns
Q-like values that encode the received reward and the discounted future re-
ward. The algorithm investigates the policy of playing according to the Q-like
values various exploration strategies. At the same time, the algorithm consid-
ers whether to play any of its actions consistently to promote possibly good
interactions with the opponent. A parameter β ∈ [0, 1] is used in M-Qubed and
adapted in play to learn the best overall strategy; M-Qubed plays a game using
the Q-values with probability (1− β) or it plays the highest valued action as a
pure strategy with probability β. We used for M-Qubed the same settings as
Crandall & Goodrich note in their work5.

When a StrOPM player plays against a player using M-Qubed, the full
average reward of 0.35 is not reached as alternating Cooperate/Defect followed
by Defect/Cooperate patterns often emerged, giving an average reward of 0.25
per epoch. This is not the optimal C, C outcome, but still much better than
the typical D, D outcome other MARLs arrive at. This result suggests that the
switching policy in M-Qubed is repeately “tripped”. The non-linear switching
policy threshold is hard to approximate in StrOPM’s linear opponent change

5These settings allowed us to successfully replicate the results in Crandall and Goodrich
(2005).

14

model. Including more history of non-linear update terms in future extensions
may solve this issue.

The trouble with precoded strategies The M-Qubed algorithm has a clear
potential weakness since it has to decide between the pure (or at least precoded)
strategy of playing full cooperation, and a myopic Q-Learning type strategy.
We would expect it to perform badly when the optimal strategy involves a more
complex strategy that is not precoded. Our StrOPM algorithm on the other
hand is not biased to playing precoded strategies.

We tested this hypothesis in the game with the payoff matrix of Figure 3a,
dubbed “Switching Bait”, which we specifically designed so that the highest
(average) joint reward is achieved when agents alternate Cooperate/Defect and
Defect/Cooperate (or at least play these two joint actions equally often). Play-
ing the Cooperate/Defect, Defect/Cooperate mixed strategy yields an average
reward of 0.45 per epoch for both agents.

In experiments playing the Switching Bait game, M-Qubed was frequently
not able to find the optimal mixed strategy in selfplay, as it predominantly
converged to playing C or D and achieves a reward of only 0.4 per epoch.
Higher rewards of 0.8+0.1

2 where achived by one of the M-Qubed learners by
playing C and D alternatingly, while the other M-Qubed player plays C or D

continouously for an average reward of 0.1+0.4
2 . For the Switching Bait new

game, M-Qubed often decides to play the safer strategy of full cooperation or
defection.

The StrOPM algorithm, unlike M-Qubed, is not biased to playing pure
strategies. For the Switching Bait game, it often finds the alternating Cooper-
ate/Defect pattern and matches it to the opponent’s Defect/Cooperate pattern
in self play. Importantly, a StrOPM player playing againts an M-Qubed player
was found to either achieve this mutually beneficial equilibrium or was repeat-
edly able to exploit M-Qubed if the opponent decided to play a (precoded)
pure strategy. An example of this latter behavior is shown in Figure 3b, where
the cumulative payoff achieved during play is plotted. The StrOPM algorithm
achieves a higher payoff as M-Quebed opts for the safer, pure strategy. This
clearly demonstrates the weakness of using precoded fixed strategies (as in M-
Qubed).

5 Discussion and Conclusions

We have presented a number of important contributions in this paper. First, we
argued the need for Multi-Agent learning algorithms to take into account the im-
pact of their actions on the adaptive policy of the opponents. We then presented
a novel framework that allows agents to apply the above observation to achieve
desired outcomes for representative iterated matrix games, and, importantly,
also for the iterated Prisoner’s Dilemma. The latter is notoriously difficult to
solve for current state-or-the-art MARL approaches. Our MARL framework
allows an agent to learn profitable strategies for long term behavior. Finally, we

15

Figure 3: a) payoff matrix for “Switching Bait” game b) respective cumulative
reward obtained by a StrOPM player playing against an M-Qubed player.

demonstrated that incorporating fixed precoded strategies in MARL algorithms
makes agents vulnerable to exploitation, especially when mixed strategies can be
optimal (of which there is a continuous spectrum). Additionally, fixed precoded
strategies may not be suited to novel settings.

The important novel component of this work is the concept of learning the
changes in opponents policy due ones own action. This is an idea that can in
fact be incorporated into the quickly growing literature on MARL. One can
foresee more and more complex nested opponent models (Hu & Wellman, 1998)
to extract every bit of reward from complex games like iPD. Although perfectly
learning about an opponent while at the same time perfectly learning to adjust
oneself is problematic (Nachbar & Zame, 1996), there is still much scope to be
“smarter” than your opponents.

Our future challenge is to apply our new concept to large, complex state
spaces. One interesting direction may be to integrate our framework with new
ideas about state space representations like Predictive State Representations
(Wolfe, James, & Singh, 2005).

References

Axelrod, R. (1984). The evolution of cooperation. Basic Books, New York, NY.
Banerjee, B., & Peng, J. (2004). The role of reactivity in multiagent learning.

In Proc. 3rd AAMAS (p. 538-545).
Bowling, M. (2004). Convergence and no-regret in multiagent learning. In Proc.

NIPS-17 (pp. 209–216).
Bowling, M. H., & Veloso, M. M. (2002). Multiagent learning using a variable

learning rate. Artificial Intelligence, 136 (2), 215-250.
Conitzer, V., & Sandholm, T. (2003). AWESOME: A General Multiagent

16

Learning Algorithm that Converges in Self-Play and Learns a Best Re-
sponse Against Stationary Opponents. In Proc. 20th ICML (p. 83-90).

Crandall, J. W., & Goodrich, M. A. (2005). Learning to compete, compromise,
and cooperate in repeated general-sum games. In Proc. 22nd ICML.

Greenwald, A. R., & Hall, K. (2003). Correlated Q-learning. In Proc. 20th

ICML (p. 242-249).
Hu, J., & Wellman, M. (1998). Online learning about other agents in a dynamic

multiagent system. In Proc ACM Conf. on Autonomous Agents (p. 239-
246).

Littman, M. L., & Stone, P. (2003). A polynomial-time nash equilibrium algo-
rithm for repeated games. In Proc. 4th ACM Conf. on Electronic Com-

merce (p. 48-54).
Nachbar, J. H., & Zame, W. R. (1996). Non-computable strategies and dis-

counted repeated games. Economic Theory, 8, 103– 122.
Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54, 286–295.
Rapoport, A., Guyer, M., & Gordon, D. (1976). The 2x2 game. MI: University

of Michigan Press.
Sandholm, T., & Crites, R. (1995). Multiagent reinforcement learning in the

iterated prisoner’s dilemma. Biosystems, 37, 147-166.
Shoham, Y., Powers, R., & Grenager, T. (2004). Multi-agent reinforcement

learning: a critical survey. In AAAI Fall Symposium on Artificial Multi-

Agent Learning.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction.

Cambridge, MA: MIT Press.
Tesauro, G. (2003). Extending Q-learning to general adaptive multi-agent

systems. In Nips-16 (pp. 871–878).
Watkins, C. J. C. H., & Dayan, P. (1992). Technical note Q-learning. Machine

Learning, 8, 279-292.
Weinberg, M., & Rosenschein, J. S. (2004). Best-response multiagent learning

in non-stationary environments. In Proc. 3rd AAMAS (p. 506-513). New
York.

Wolfe, B., James, M. R., & Singh, S. (2005). Learning predictive state repre-
sentations in dynamical systems without reset. In Proc. 22nd ICML.

17

