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ABSTRACT
Reputation mechanisms allow agents to establish trust in other agents' intentions and
capabilities in the absence of direct interactions. In this paper, we are concerned with
establishing trust on the basis of reputation information in open, decentralized systems of
interdependent autonomous agents. We present a completely decentralized reputation
mechanism to increase the accuracy of agents' assessments of other agents' capabilities and
allow them to develop appropriate levels of trust in each other as providers of reliable
information. Computer simulations show the reputation system's ability to track an agent's actual
capabilities.
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Abstract. Reputation mechanisms allow agents to establish trust in
other agents’ intentions and capabilities in the absence of direct inter-
actions. In this paper, we are concerned with establishing trust on the
basis of reputation information in open, decentralized systems of inter-
dependent autonomous agents. We present a completely decentralized
reputation mechanism to increase the accuracy of agents’ assessments of
other agents’ capabilities and allow them to develop appropriate levels of
trust in each other as providers of reliable information. Computer sim-
ulations show the reputation system’s ability to track an agent’s actual
capabilities.

1 Introduction

Reputation mechanisms allow agents to establish trust in other agents’ inten-
tions and capabilities in the absence of direct interactions. In the context of
e-commerce, for example, after a transaction is concluded, the parties involved
in mutual interactions are allowed to publicly rate their trading partner in terms
of his compliance to the terms of trade (e.g. on eBay or Yahoo! Auctions). This
benefits other, new agents considering interacting with those partners, who would
otherwise have no idea about their trustworthiness. Many different reputation
mechanisms have been designed and analyzed in this context, not just for interac-
tions on auction sites [1] and on consumer-to-consumer markets more generally
[2, 3], but also for supporting businesses in finding and maintaining relations
with partners [4].

The use of these ideas has also been proposed and is a popular area of re-
search in systems of interacting autonomous agents, especially as more and more

? The work described in this paper was performed in the context of the cim project
on Cybernetic Incident Management, sponsored by the Dutch government (senter)
as project number TSIT2021. See http://www.almende.com/cim/ for more informa-
tion. We are grateful to Floortje Alkemade, Pınar Yolum and Pieter Jan ’t Hoen for
stimulating discussions, and to two anonymous referees for helpful comments.



trade will be automated with the possibilities offered by webservices on the se-
mantic web. Such autonomous agents need to be able to establish reliability
of webservice-providers [5–7] in order to be able to select among alternatives
and for composition of webservices as a value added service [8]. In a more neg-
ative phrasing, trust and reputation are used as the basis for mechanisms for
ostracizing unreliable and untrustworthy agents [9, 10].

The specific context that generated our concern for this subject is Crisis
Management, where many different parties are involved in non-hierarchical net-
work topologies, in a highly dynamic environment where accurate and up-to-
date knowledge is vital but scarce, perception is limited and decisions have to
be made on the basis of incomplete information and with only aggregate and of-
ten time-delayed feedback [11, 12]. Other agents involved may have better access
to the information required by a particular agent, and agents are differentially
suited for performing certain tasks and providing particular services. The rele-
vant questions then are: who to trust, and how to update trust on the basis of
different agents’ proven reputations as reliable providers of information or ser-
vices? How to set up the system so that it is able to cope with dynamics and
to track changing reliability? Although our system is inspired by the subject of
incident management, it caters for a much wider range of applications within
and between organizations.

In order to answer such questions, we focus on using reputation-based trust
in a decentralized system of autonomous but interdependent, cooperative agents.
The system has a non-trivial communication network structure, and, as ex-
plained more fully in Section 3.1, its distributed nature does not allow for cen-
tralized reputation storage.

Our work is most closely related to the work on the Beta reputation system
[2, 13], while we deal with similar situations as discussed in [14, 9, 15–18, 5, 6].
Specifically, we extend the Beta reputation system to a decentralized setting
and also to situations of trust based on combined reputation feedback from
multiple agents, rather than just one (centralized) source. Finally, we introduce
aggregate feedback, which makes it harder for agents to distinguish between
different agents’ contributions to performance, and show that the system is able
to handle that, as well as dynamically changing task environments.

In the following, we will first describe the situation the agents are involved
in (Sec. 2). Then, Sec. 3 will outline our system for enabling the agents to trust
certain others as providers of reliable information (both on the basis of their own
direct experiences with others and on the basis of reputation) and to act accord-
ingly; in addition, our system is compared with other approaches to reputation
management. The performance of our system was tested in a series of computer
simulation experiments, described in Sec. 4. Conclusions and discussion follow
in Sec. 5.



2 Task Environment

In this section, we set up a very general task environment in which we can
study the effect of trust and reputation mechanisms in a controlled manner.
This environment should be imagined to exist separately from the multi-agent
system that has to operate in it and in which we implemented and experiment
with our reputation-based trust mechanism. In this manner, the sensitivity of
our results to changes in the parameters controlling the task environment can be
assessed, and different task environments can be plugged in to investigate which
changes are necessary to the trust mechanism to make the multi-agent system
effective in the changed environment.

The system’s ultimate task is essentially one of environmental classification:
the environment has ‘features,’ each of which has one of several possible val-
ues, in the current paper 0 or 1, and the multi-agent system has to determine
the values of those features.3 Agents and features are spatially distributed (see
Figure 1), so features are located at a certain distance from the agents—only

Agents

Features (0 or 1)

Fig. 1. Agents and features are spatially distributed.

horizontal distance is taken into account: imagine each cell on a 1-dimensional
lattice to contain both an agent and a feature. It is each agent’s task to deter-
mine and report the values of an individual subset of features, the agent’s task,
t, indicated by the shaded features in Fig. 1 for the shaded agent. An agent’s
task always consists of an odd number of features centered around the agent. In
order to execute her task, the agent (1) makes observations of features and (2)
communicates with other agents about the values of features.

Each agent observes the environmental features in a certain neighborhood
around her, defined by her radius of vision g (in Figure 1, g = 1, indicating
that the agent can perceive the feature in the cell she occupies herself, plus 1
cell on each side—vision is indicated by arrows), and records the values of those
features. The vision of the agent need not equal the radius of her task: it may be
larger or smaller, this is a parameter. In any case, the agent’s observations are

3 Typically, this classification task would precede agents’ decision making based on
the perceived environmental features, but here, we will take a shortcut and provide
the agents with immediate feedback about the correctness of their classification.
Although time-delayed feedback is also an important challenge in designing adaptive
agents, we focus on aggregate feedback in this paper.



imperfect: the probability of making a mistake and observing the wrong value
increases with the agent’s distance to the feature as:

pe = 1 − exp(−α(d + 1)), (1)

where pe is the probability of an error, d is the horizontal distance between
the agent and the observed feature (measured as the number of cells from the
agent to the feature), and α is a characteristic of the cell the agent occupies (see
Sec. 4.1). Notice that, since we’re using (d + 1), there is always a positive error
probability, no matter how close the agent is to a feature. Also notice that the
agents are not aware of the value for α that affects their observation, so they
are unable to calculate the probability that their observation is incorrect, and
to discount their observation using this information.

The agent not only observes environmental features, but since different agents’
vision neighborhoods may overlap, she can also communicate with other agents
about the values they perceived for the features in her task. To this end, all the
agents are part of a communication network (see Figure 2): they have connec-

Information network

Agents

Features (0 or 1)

Fig. 2. Agents are connected through a communication network.

tions to certain other agents, with whom they can communicate about the values
of features. In Figure 2, for example, the shaded agent, whose 5 task-features
are also shaded, may benefit from communicating with the agent located 2 cells
to the right, who has also observed (and may have done so more accurately)
the shaded agent’s 2 rightmost task-features—as well as the rightmost feature,
but about that feature they will not have an incentive to communicate. When
reporting feature values to others, the agents are truthful, but, as noted, they
may unwittingly be communicating false feature values if they have misperceived
them.

As detailed in Sec. 3.3, the agent decides on values to report for each of
the features in her task, based on the values she herself observed, and on her
communication with other agents. Then, each time the agent has reported the
values of the features in her task, she receives—in terms of ‘payoff’—the fraction

of features in her task whose values she reported correctly. Notice that the agent
is not told which features she reported correctly, only how many she reported
correctly. This aggregate feedback (about the task in total, not the individual
features), makes the learning problem harder. The question we are addressing in



this paper is what a reputation-based trust mechanism should look like to cope
with this problem.

In this way, contributing to each other’s payoff by supplying (correct or in-
correct) feature values, an agent i may, for example, build up trust in another
agent j as a provider of reliable information about feature 2, and in agent k as a
provider of reliable information about feature 1. Furthermore, agent j may build
up a more general reputation for being a provider of reliable information about
feature 2 when agent i shares her opinion about and experiences with j with
agents k or l.

Although the agents receive their aggregate feedback directly after reporting
the values of the features in their task, note that it is not the agents’ objective
to learn the values of those features per se: they have to learn to whom they

should turn for supplying each feature value most reliably.

3 Trust and Reputation in Multi-Agent Systems

3.1 Trust and Reputation

When deciding about interacting with another person (T for target), an agent
i relies on her trust in T . Trust may be derived from i’s own personal prior
experiences with T , or from other people’s experiences, at least to the extent that
communication with those other people has given i access to those experiences.
In the latter case, we speak of a reputation mechanism: reputation is one of a
number of possible sources of trust, but the relevant information for i is her own
private trust in T—irrespective of whether that trust is based on her own private
experiences with T or on information obtained about experiences of others, and
irrespective of whether or not her own trust assessment is in turn shared with
others. Also, of course, a given person may have different reputations for different
characteristics.

Trust As mentioned above, an agent i’s trust in another agent j is—in the
absence of other sources like reputation—just based on i’s own past experiences
in interactions with j. As j provides more evidence of being able to fulfill a
certain task, i will come to expect—or trust—j to perform well on that task
in the future also. For modeling trust, we will use the beta distribution, which
captures the aforementioned idea nicely [13, 2]. The beta probability density
function can be used to represent probability distributions of binary events,
such as the probability that a particular agent will be correct in providing a
value for a particular feature (based on whether she was correct or incorrect in
the past). The beta distribution is a continuous probability distribution with the
probability density function of p defined on the interval [0, 1]:

f(p|a, b) =
Γ (a + b)

Γ (a)Γ (b)
pa−1(1 − p)b−1, (2)



where a and b are parameters and Γ is the gamma function.4 The expected value
of a beta random variable p is:

E(p) =
a

a + b
. (3)

We will use this as follows. Consider a process with two possible outcomes tj and
fj , which represent the events that a certain agent j is correct (tj) or incorrect
(fj) in providing certain information to another agent i. Now let ui

j and vi
j be

the number of times agent j was correct and incorrect, respectively, in reporting
this information to agent i in the past. Then the density of the probability, for
agent i, of observing event tj in the future, pi(tj), can be expressed as a function
of past observations using the beta probability distribution, by setting a = ui

j +1

and b = vi
j + 1 (where ui

j , v
i
j ≥ 0). Furthermore, the expected value of pi(tj),

E[pi(tj)] =
ui

j + 1

ui
j + vi

j + 2
, (4)

can be interpreted as agent i’s trust in agent j as a reliable provider of this
information. As agent j reports the information correctly more and more often,
agent i’s trust in agent j’s reliability will increase.

As an illustration, Fig. 3 plots f(pi(tj)) for different values of ui
j in the two
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Fig. 3. Two plots for f(p|a, b) with a = ui
j + 1, and b = vi

j + 1; vi
j is either 1 (on the

left) or 9 (on the right).

cases that the number of incorrect answers observed is vi
j = 1 (on the left) and

vi
j = 9 (on the right). In the graph on the left, where ui

j = 1 = vi
j , the density is

highest at p = 0.5—just like in the graph on the right where ui
j = 9 = vi

j . In those
cases, there is an equal amount of evidence in favor of tj and fj , so p = 0.5 has
the highest density and furthermore, both distributions are symmetric around

4 The gamma function Γ extends the concept of factorial (defined for positive integers
only) to complex and real numbers. It is related to the factorial by Γ (n) = (n− 1)!.



p = 0.5. In the latter case, however, the total amount of evidence is much
stronger, so the density is more strongly peaked at p = 0.5. In both graphs, the
density shifts to higher probabilities of observing tj (higher trust by agent i that
agent j is correct) as the number of correct reports by agent j to agent i (ui

j)
increases.

According to [13], since the probability density f(p) is vanishingly small for
any given value of the continuous variable p ∈ [0, 1], it is only meaningful to
compute integrals of f(p) or to use the expected value of p (Eq. 4). [13] therefore
goes on to specify a reputation rating function based on this expected value,
which is plotted in Fig. 4 for different combinations (ui

j , v
i
j). For all combinations
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Fig. 4. The expected value of p for different combinations (ui
j , v

i
j). Note that both the

u- and the v-axes have been reversed to make the plot better visible.

where ui
j = vi

j (so there are equal amounts of evidence for tj and fj), agent i’s

trust in agent j being correct, E[pi(tj)] = 0.5, which is liberally interpreted as a
neutral disposition of agent i towards agent j’s capabilities. Furthermore, E(p)
goes to 0 with increasing vi

j if ui
j = 0, and to 1 with increasing ui

j when vi
j = 0:

if there is no evidence of agent j being correct, then agent i will come to more
strongly trust agent j to be incorrect with increasing evidence of agent j being
incorrect. The graph can be interpreted by thinking of agent i’s trust in agent j’s
reliability (as a provider of correct information), as moving across the landscape
in Fig. 4, as j provides more and more correct and incorrect reports. Each agent
maintains such trust in every other agent, regarding those other agents’ reliability
as providers of information about every possible environmental feature.

Reputation In [13], the beta distribution is used in the ‘Beta reputation sys-
tem,’ which combines trust based on the beta distribution as descibed above,
with agents reporting each others’ performance (ui

j and vi
j) centrally, so all agents

have access to the same data. In addition, the system uses ‘reputation discount-
ing,’ such that feedback about a target T received by an agent i from another
agent j, is discounted, by i, using i’s own trust in j. Discounting makes feedback
from highly reputed agents more important than feedback from agents with a



low reputation. We exclude such discounting, because we distinguish between
reputation for reliable task performance, and reputation for providing reliable
information about others. More generally, agents should be allowed to develop
different reputations for different capabilities, including providing information
about others.

[2] describes the ability of this Beta reputation system, when used in a com-
puter simulation of a market involving buyers and (strategically dishonest) sell-
ers, to closely follow the sellers’ honesty. The current paper concerns cooperative
agents with good intentions, but not necessarily the right capabilities, so the rep-
utation mechanism is supposed to follow agents’ abilities rather than honesty. A
more important distinction with [13] and [2] (than the domain of application)
is that we only allow reputations to be build up locally, so just between the
agents sharing information about a target T . Technically, this is preferred since
the whole system becomes vulnerable to problems occuring to the central stor-
age. Also, decentralized reputation is more realistic in many application areas,
as centralized storage and access is often not feasible, requiring all participating
agents to be hooked up to and to actually use the central system. Substantively
(and more importantly), we want to allow agents to be able to develop differ-
ent reputations in different communities, so that eventually, our system is able
to self-organize into distinct communities, each consisting of well-coordinated
agents.

Specifically, our implementation of reputation is as follows. If any two agents
i and j share their experiences with a given agent k concerning a particular
capability of k (such as reliably reporting information about a particular feature
l) with each other, they add each other’s counts of ux

k,l(t) and vx
k,l(t) (for the

current rount t) to their own, for x ∈ {i, j}. After this, they share the same
trust-value in k, which could be interpreted as k’s reputation with (or: in the
population of) i and j. In this sense, the recent surge of interest in reputation is
understandable, considering the possibilities provided by the internet for sharing
experiences about someone with others.

Feedback After reporting values for each of the features l in her task, an agent
i receives as feedback a payoff, which is the fraction of features for which she
reported a correct value. She then sets the current round t’s positive and negative
evidence with respect to reliably providing information about each feature l,
ui

x,l(t) and vi
x,l(t), respectively (for all agents x ∈ Ci, the set of all agents to

which agent i is connected in the organizational structure), as follows. Assume
that, in timestep t, agent i ended up reporting a value of f ∈ {0, 1} for feature
l. Now if she received a payoff of 0 ≤ π ≤ 1,5 then she sets ui

j,l(t) = π and

vi
j,l(t) = (1 − π) for all the agents j who had claimed the value was f . For all

agents k who had claimed the value was 1− f , agent i sets ui
k,l(t) = (1−π) and

vi
k,l(t) = π.

5 Note that the agent is not told what the actual value of feature l was, but just that
out of all features in her task, the proportion reported correctly was π.



To see why this is necessary, consider that the agents j who communicated
feature value f—the value that agent i ended up reporting—contributed to the
payoff π, as received by agent i. This payoff is higher (lower), ceteris paribus,
if the value communicated by the agents j and subsequently reported by i was
correct (incorrect), and this determines the extent to which agent i’s trust in the
agents j (as providers of reliable information about feature l) changes: if f was
indeed the correct value for feature l, there should be an increase in agent i’s trust
in agents j, which there will be since π, now counting as positive evidence, is then
higher, and if f was the incorrect value, there will be a decrease. Note that the
feedback is aggregate, so this change in i’s trust in j as a provider of information
about feature l is obscured by the correctness of the other feature values reported
by i. This reflects a common situation where rewards obtained from decisions are
hard to attribute to the individual inputs of the decision making process, just
like they may be delayed, another notorious problem in reinforcement learning
[19]. In any case, it makes the agents’ problem (of learning to whom they should
turn for supplying each feature value most reliably, cf. Sec. 2) harder. The agents
k reporting the other value for feature l (namely 1−f) did not contribute to the
payoff the agent received, so for them, the same as above with π is done with
1 − π: if they were in fact correct (and agent i was incorrect), agent i’s payoff
was lower, ceteris paribus, and since 1 − π is added to ui

k,l(t), agent i’s trust in
agents k increases, as it should, since they were correct.

To summarize, if i reported f , then

– for agents j who communicated f , ui
j,l(t) = π, and vi

j,l(t) = 1 − π, while

– for agents k who communicated 1 − f , ui
k,l(t) = 1 − π, and vi

k,l(t) = π.

The result of this is that, if i’s report was

correct (the value of feature l is indeed f), then π is high (c.p.), so (1) i’s
trust in agents j (who communicated correctly) increases, because positive
evidence for j is equal to π (which is now high) and negative evidence for
j is equal to (1 − π) (which is now low), and (2) i’s trust in agents k (who
communicated incorrectly) decreases, because positive evidence for k is equal
to (1 − π) and negative evidence for k is equal to π;

incorrect (the value of feature l is in fact 1 − f), then π is low (c.p.), so
(1) i’s trust in agents j (who communicated incorrectly) decreases, because
positive evidence for j is equal to π (which is now low) and negative evidence
for j is equal to (1 − π), and (2) i’s trust in agents k (who communicated
correctly) increases, because positive evidence for k is equal to (1 − π) and
negtive evidence for k is equal to π.

Forgetting Information about correct and incorrect claims by connected agents
should eventually be forgotten, or at least discounted. Agents may become bet-
ter at providing information and their reputation should be allowed to follow
such developments. Following [13], we introduce ‘forgetting’ to make evidence
from longer ago less important in assessing trust than more recent evidence:



older observations are discounted more strongly than recent observations, using
a discounting parameter 0 ≤ λ ≤ 1. Indexing ui

j,l by time t as ui
j,l,t, at the end

of any timestep t,
ui

j,l,t = ui
j,l(t) + λ · ui

j,l,t−1
, (5)

where ui
j,l(t) measures whether (or, the extent to which) agent j was correct

about feature l in timestep t (see the discussion under “Feedback” above). The
same of course holds, mutatis mutandis, for vi

j,l,t. In our simulations, we follow
[2], and use λ = 0.99.

3.2 Network Structure

A final part of the system that needs to be described concerns the structure of the
network in which the agents are connected. An organization’s structure is a very
important factor in determining the system’s efficiency and effectiveness [20, 21].
Many different topologies are possible, ranging from simple classes like hierarchy,
ring, star, to the class of networks that contains the range from random through
regular networks [22]. There has already been a wealth of studies investigating
the impact of an organization’s structure on its performance [20, 21] and also on
the effect on the functioning of trust and reputation and referral mechanisms of
different network structures.

In our case, the network influences the way in which information about en-
vironmental features and about reputation flows through the system, both of
which are important inputs for the individual agents’ information processing
and ultimately, the system’s performance [23–26]. An agent i passes informa-
tion on to the agents she’s connected to, both about environmental features and
about their trust in other agents’ reliability.

3.3 Trusting Agents

Here we discuss the way each agent decides about a value to report for each fea-
ture in her task on the basis of her own observations, information communicated
by others, and the agent’s trust in those other agents’ reliability. After observing,
each agent asks all the agents she is connected to in the system’s communication
structure, to report their observations of the values of the features in her task.
If an agent receives information about the value of a particular feature from 2
(or more) different agents, she will need to decide upon a value to assume to be
correct. Information provided by agents she trusts highly should be given more
weight. For each feature l, this can be accomplished, for each possible feature
value f ∈ {0, 1}, by determining ui

Xf ,l,t and vi
Xf ,l,t of the group Xf of all agents

reporting the value f , as:

ui
Xf ,l,t =

∑

j∈Xf

ui
j,l,t (6)

and
vi

Xf ,l,t =
∑

j∈Xf

vi
j,l,t. (7)



This says that the agent simply adds the positive and negative evidence across
all the agents claiming the value for feature l is f . The agent can then calculate
the expected probability that this group is correct in claiming that the value of
feature l is f , as:

E[p(f)] =
ui

Xf ,l,t + 1

ui
Xf ,l,t + vi

Xf ,l,t + 2
. (8)

By doing this for both groups Xf , with f ∈ {0, 1}, the agent obtains the expected
probabilities that each of these groups is correct, and she will decide on a value
to report based on these two expected probabilities (see below).

4 Simulation Experiments

4.1 Simulation Model

We performed simulation experiments with the system described in Sec. 3, ex-
panding upon a previous version of the paper [27]. In our simulation environment,
the agents and the environmental features are distributed across a 1-dimensional
grid. There are 50 consecutive cells, with the ends pasted together as a ring. Each
cell contains 1 agent and 1 environmental feature, which has a randomly assigned
value ∈ {0, 1}. The agents have a limited neighborhood that they can perceive,
defined by a radius g (see Sec. 2), and a limited number of connections to other
agents that they can communicate with. The accuracy of an agent’s observations
of a feature is influenced by her distance to that feature (d in Eq. 1), and by
the value for α associated with the cell she occupies. Initially, each cell carries a
randomly chosen value for α in the range [0.05, 0.45]. Note that this means that
an agent at a distance larger than that of a second agent, may have a better

perception of a feature. Each agent’s task is to report the values of a number of
environmental features: the feature at their own location, plus the values of the
features in a number of cells to the left and to the right. Note that this means
that the agent can not necessarily, by herself, perceive all the features she has
to report on, so there will typically be features for the observation of which she
has to rely on others.

Each simulation experiment can be described by the pseudo-code in Algo-
rithm 1. Each simulation experiment is repeated a certain number of times
(lines 1–2): in our experiments, we perform 50 runs of each experiment (using a
different random seed in each experiment), and results are averaged over those
50 runs, using errorbars to indicate 1 standarddeviation around the average.

In a first series of experiments, the agents make observations and commu-
nicate their opinion about feature values just once (lines 3–6), before the start
of the sequence of rounds (line 7), and after that, try to improve upon their
performance solely by assessing others’ performance better, which they do by
iteratively adjusting their opinion (based on their trust in each other) and adjust-
ing their trust in each other based on the feedback obtained from their opinion.
These experiments are presented in Sec. 4.2. In a later series of experiments,



Algorithm 1 Pseudo-code for the simulation.

1: for each in a sequence of runs do

2: initialize simulation //using a run-specific random seed
3: for each agent do

4: opinion ← perceive feature values //for now, outside the round-loop
5: communicate opinion to connected agents //see Sec. 3.2
6: end for

7: for each in a sequence of rounds do

8: for each agent do

9: report values ← trust-based decision; obtain payoff //see Sec. 3.3
10: set this-round u- and v-evidence using payoff //Sec. 3.1 (“Feedback”)
11: end for

12: for each agent do

13: share this-round evidence //reputation, see Sec. 3.1 (“Reputation”)
14: update overall evidence //discounting, see Sec. 3.1 (“Forgetting”)
15: end for

16: for each agent do

17: opinion ← reported values //reported values replace the original opinion
18: //communicate opinion //new opinion is communicated, not used now
19: end for

20: //change some feature values //this ensures dynamics, not used now
21: end for

22: end for

renewal of observations occurs inside the round-loop, so that a changing envi-
ronment can be monitored (see Sec. 4.3).

In any case, after the initial observation, each agent has an opinion about
the value of each of the features in her field of vision, which she communicates
to the agents she is connected to. In each of a series of rounds (line 7), then,
each agent makes a trust-based decision about which values to report for each
of the features in her task, reports them, and obtains a payoff, which she uses
to update her (this-round) evidence in favor (ui

j,l) and against (vi
j,l) each of the

agents she’s connected to (lines 8–11).
Then, each agent shares her this-round evidence with respect to other agents,

with each of the agents she’s connected to in the communication network,6 and
updates her overall evidence with respect to each of her connected agents’ relia-
bility as a provider of information about each of the features in the agent’s task
(lines 12–15).

Finally, the agent replaces her previous opinion about the value of each fea-
ture (resulting from her trust-based decision, cf. line 9) with the value she re-
ported earlier in the round (line 17). In addition, she may communicate her new
opinion to the agents she’s connected to (line 18), allowing her to change her

6 For now, we are using just one network for exchanging both opinions about feature
values and reputation-information. In future work, these will be 2 separate networks,
which will allow us to study the effects of changing each of the networks’ topologies
separately.



reputation with those other agents, although this also introduces a lot of noise
into those other agents’ assessment of the agent’s reliability.

4.2 Single Observation

In this first series of experiments, as explained in Sec. 4.1, the agents make just
1 observation of the feature values they can perceive, and communicate those
to the agents they are connected to in the communication structure. Then they
enter into a sequence of rounds, in each of which they first form an opinion
about the value of each feature to report, (cf. Sec. 3.3), then report those values
to obtain a payoff, and finally update their trust in others based on the payoff
obtained.

Task Size = 1 (Unambiguous Feedback) Results from a benchmark exper-
iment are shown in Figure 5, where each agent has a task consisting of just the
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Fig. 5. Each agent has vision of 1 cell (g = 0) and a task comprising just the feature
in her own cell. The graph shows the average agent-performance when the agents use
deterministic vs. roulette wheel choice between possible feature values.

feature in her own cell, vision limited to that 1 cell, and no connections to other
agents in the system (although in this setting more connections would make no
difference, because different agents would not have relevant opinions to report
to one another). The agents either make a deterministic choice between the al-
ternative possible feature values—choosing the one supported by the agent or
group of agents she trusts most highly overall—or they make a roulette wheel
decision—choosing each feature value with a probability proportional to the rel-
ative expected probabilities mentioned in Sec. 3.3 (Equation 8).

Because the task consists of just 1 feature, feedback is unambiguous (π is
either 0 or 1) and each agent is immediately able to focus on the correct feature
value, which then replaces her initial observation as her opinion, in which she
starts to trust herself more and more. The effectiveness of this process is com-
promised when the agent makes probabilistic (roulette wheel) choices, which



introduces a lot of noise, significantly slowing down the learning process: the
graph is still rising at t = 100, but only very slowly. In some situations, however,
non-determinism of the agents’ choice mechanism has been shown to yield good
performance when deterministic choice quickly locks the agents into develop-
mental pathways caused by early random errors.

Task Size = 3 If the agent’s tasksize is increased to 3, the impact of having
different numbers of connections to other agents starts to become clear. Figure 6
shows these results when the agent has a vision of 1 cell (g = 0) in the graph
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Fig. 6. Each agent has a task comprising the feature in her own cell plus the features
in the cells on either side, and vision of 1 cell (g = 0) in the graph on the left and 3 cells
(g = 1) in the graph on the right. The graphs shows the average agent-performance
when the agents have different numbers of connections to other agents around them.

on the left and 3 cells (g = 1) in the graph on the right, and the agents use
deterministic choice again. (Having 1 connection here means that the agent is
just connected to herself.) The graph on the left shows that if the agent has
a field of vision encompassing just 1 cell (her own cell), and no connections to
other agents, then her performance appears to be quite bad because she has
no way of reliably estimating the values of the 2 task-features outside her field
of vision. In reality, the agent is doing very well given this limitation, because
it would make us expect her to score about 67% (50% on the 2 features she
can not observe, and 100% on the feature she can observe), which is exactly
what she is doing. If she obtains connections to the agents next to her, who can

observe the features she can not observe herself, then performance increases to
approximately 95%, but then, with an increase of her field of vision (the graph on
the right), comes a slight decrease in performance, caused by more opportunities
for conflicts between the different agents’ opinions. In both cases, adding more
connections causes performance to degrade even further, while connections to
more than 5 agents have no influence on the results, since those agents have no
relevant contribution to make, given the current size of the agent’s task.



Including Algorithm 1, line 18 If the agents inform each other of their newly
formed opinion (see line 18 in Algorithm 1), then Figure 7 shows the disastrous
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Fig. 7. Same results as in Figure 6, except the agents inform each other of their newly
formed opinion.

effect on performance. Although one would imagine that the population of agents
would benefit from each individual agent’s better informed opinion being shared
with others, the consequence is that the agents end up having to learn moving
targets. Even the performance of each individual agent, with minimal field of
vision (the graph on the left) and no connections to others (only 1 connection to
herself), degrades, as she replaces her old observation—which earlier was staying
the same all the time, allowing her to bootstrap her trust-mechanism off of it—
with her newly formed opinion in each timestep. The original observation is a
relatively easy target to focus on, and to learn the reliability of, but a changing
observation is much harder to pin down.

Dynamically Changing Environment If the environment changes, perfor-
mance can be expected to degrade more or less quickly, depending on the mag-
nitude of the change. In Figure 8, the graphs are the same as in Figure 6, except
that the value of 1 randomly chosen feature changes in each timestep, repre-
senting a modest dynamics—the important thing to focus on here, however, is
the qualitative effect, rather than the quantitative one. Just like in Figure 6,
the agents’ performance initially increases rapidly, but it soon degrades because
the ground-truth values of the environmental features are changing, while the
agents are still basing themselves on their initial observation, taken before the
simulation’s round-loop even begins. Although one initial observation suffices
when the environment is static, a dynamic environment slearly poses additional
demands on the system architecture.

An interesting observation is that performance decreases more and more
slowly over time, and stabilizes around 60%, except when each agent can only
perceive the feature in her own cell, and has no connections to other agents.
This is a clear example where having connections is beneficial, since multiple
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Fig. 8. Same results as in Figure 6, except the value of 1 randomly selected feature
changes in each timestep.

agents may collaboratively come to a better classification of the environment.
On the other hand, although performance in the case of 1 connection doesn’t
increase as quickly as in the other cases, it decreases even more slowly than in
those other cases. An individual agent is not disturbed by the noise introduced
by the reported observations of others, and can simply focus on her own task.
This is especially the case in the graph on the right, where each individual agent
can perceive all the features in her task, and starts to do better than the agents
with more connections after t = 30.

4.3 Updating Observations

In Figure 9, finally, the observation activity (lines 3–6 in Algorithm 1) is put

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

re
la

tiv
e 

pe
rf

or
m

an
ce

time

1 connection
3 connections

≥5 connections

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

re
la

tiv
e 

pe
rf

or
m

an
ce

time

1 connection
3 connections

≥5 connections

Fig. 9. Same results as in Figure 8, except observations are renewed in each timestep
(cf. lines 3–6 in Algorithm 1).

inside the round-loop, so that the agents’ observations are renewed in each
timestep—in effect, lines 3–6 are placed after line 7 which starts the round-
loop. Also, they inform each other of these new observations. (In this case, there



is no difference if the agents perform line 17 in the pseudocode, because these
newly formed opinions are overridden by new observations at the start of the
next timestep anyway.) In the graph on the left, the agent has more limited vision
than on the right, and in that case, there is not much difference between having
3 vs. 5 or more connections: any additional information is helpful, although the
agents without any connections to others are able to learn for themselves. Their
performance is lower than in Figure 6 because the environment changes, but it
is still in the vicinity of 67%. More generally, having new observations in each
timestep, introduces new errors in each timestep as well, giving rise to the mov-
ing target problem described earlier. This problem also manifests itself in the
degradation of performance when going from 3 to 5 connections in the graph on
the right.

5 Conclusions and Future Work

We have designed a task environment for a multi-agent sytem to perform in,
and have designed the interactions in that system to be based on trust. The
agents provide each other with information necessary for task performance, and
receivers of information assess providers’ reliability, by feeding the payoff they
receive back to the providers based on a the providers’ contributions to the
agent’s performance. A complicating factor is that feedback is aggregate, so
individual contributions to the agent’s payoff are hard to separate from each
other. We were still able to show promising performance of the system, as it
depends on a variety of variables and design decisions in the construction of the
system.

Although more systematic experimentation will be performed, some conclu-
sions can already be drawn. It has become obvious that the agents can pro-
vide each other with too much information, introducing noise into each other’s
trust mechanisms, and rendering each other’s learning objectives moving targets.
These are harder to follow and pin down accurately, and this degrades perfor-
mance in a static environment. However, providing each other with additional
information is still necessary when the environment changes dynamically, but
even then, performance has been shown to suffer from the agents having too
many connections.

More generally, there is a trade-off between providing too much and too
little information, and the parameters (and hence the ‘solution’) of this trade-off
depend on the magnitude of the changes in the environment. Also, it was shown
that the agents can have too many connections to others, with performance
degrading as too many inputs about the same subject are received, making it
harder for the agent to distinguish different agents’ contributions from each
other, and updating trust values accordingly.

On the whole, the results are promising in that we are able to increase and
maintain performance in a variety of circumstances by varying the parameters of
our proposed reputation-based trust mechanism. More work remains to be done,
however. Further research will be focused on investigating further the influence



of the structure of the network, on applying different mechanisms for building
trust and reputation, and, by way of sensitivity analysis, on the robustness of the
system to variations of parameters, such as those governing agents’ forgetfulness
or (the dynamics of) the environment. Another point for future research is to
disentangle the networks for communicating about environmental features on
the one hand, and about other agents’ performance on the other.
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23. Pujol, J.M., Sangüesa, R., Delgado, J.: Extracting reputation in multi-agent sys-

tems by means of social network topology. In: Proc. AAMAS’02. (2002)
24. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent

systems. In: Proc. AAMAS’02. (2002)
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27. Klos, T.B., Poutré, H.L.: Using reputation-based trust for assessing agent reliabil-
ity. In Falcone, R., Barber, K.S., Sabater, J., Singh, M.P., eds.: Proc. of the 7th

Int’l. Workshop on Trust in Agent Societies at AAMAS-04, New York, NY (2004)
75–82

28. Falcone, R., Singh, M.P., Tan, Y.H., eds.: Trust in Cyber-Societies. In Falcone,
R., Singh, M.P., Tan, Y.H., eds.: Trust in Cyber-Societies. Volume 2246 of LNAI.,
Berlin, Springer (2001)


