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ABSTRACT
In this paper, we consider a form of multi-issue negotiation
where a shop negotiates both the contents and the price
of bundles of goods with his customers. We present some
key insights about, as well as a procedure for, locating mu-
tually beneficial alternatives to the bundle currently under
negotiation. The essence of our approach lies in combining
aggregate (anonymous) knowledge of customer preferences
with current data about the ongoing negotiation process.

The developed procedure either works with already obtained
aggregate knowledge or, in the absence of such knowledge,
learns the relevant information online. We conduct com-
puter experiments with simulated customers that have non-

linear preferences. We show how, for various types of cus-
tomers, with distinct negotiation heuristics, our procedure
(with and without the necessary aggregate knowledge) in-
creases the speed with which deals are reached, as well as
the number and the Pareto efficiency of the deals reached
compared to a benchmark.

1. INTRODUCTION
Combining two or more items and selling them as one good,
a practice called bundling, can be a very effective strategy
for reducing the costs of producing, marketing, and selling
products [4]. In addition, and maybe more importantly,
bundling can stimulate demand for (other) goods or ser-
vices [16, 3]. To stimulate demand by offering bundles of
goods, requires knowledge of customer preferences. Tradi-
tionally, firms first acquire such aggregate knowledge about
customer preferences, for example through market research
or sales data, and then use this knowledge to determine
which bundle-price combinations they should offer. Espe-
cially for online shops, an appealing alternative approach

would be to negotiate bundle-price combinations with cus-
tomers: in that case, aggregate knowledge can be used to
facilitate an interactive search for the desired bundle and
price. Due to the inherently interactive characteristics of
negotiation, such an approach can very effectively adapt the
configuration of a bundle to the preferences of a customer. A
high degree of bundle customization can increase customer
satisfaction, which may lead to an increase in the demand
for future goods or services.

In this paper, we present an approach that allows a shop
to make use of aggregate knowledge about customer prefer-
ences. Our procedure uses aggregate knowledge about many

customers in bilateral negotiations of bundle-price combina-
tions with individual customers. Negotiation concerns the
selection of a subset from a collection of goods or services,
viz. the bundle, together with a price for that bundle. Thus,
the bundle configuration—an array of bits, representing the
presence or absence of each of the shop’s goods and services
in the bundle—together with a price for the bundle, form
the negotiation issues. In theory, this is just an instance of
multi-issue negotiation. Like the work of [11, 8, 7, 17], our
approach tries to benefit from the so-called win-win oppor-
tunities offered by multi-issue negotiation, by finding mutu-
ally beneficial alternative bundles during negotiations. The
novelty of the approach, however, lies in the use of aggre-
gate knowledge of customer preferences. We show that the
bundle that represents the highest ‘gains from trade’ Pareto-
dominates all other bundles within a certain collection of
bundles.1,2 Based on this important insight, we develop a
procedure for combining aggregate knowledge of customer
preferences with data about an ongoing negotiation process
with 1 customer, to find alternative bundles that are likely
to lead to high Pareto improvements. Note that due to the
use of aggregate data only, our approach does not necessitate
infringement of customers’ privacy.

1The gains from trade for a bundle are equal to the cus-
tomer’s ‘valuation’ of the bundle minus the shop’s valuation
of the bundle, which is his (minimum) price (cf. [12]).
2An offer constitutes a Pareto improvement over another
offer whenever it makes one bargainer better off without
making the other worse off. A bundle b′ ‘Pareto-dominates’
another bundle b whenever switching from b to b′ results in
a Pareto improvement (cf. [12]).



The procedure we developed requires a process in the fore-
ground and one in the background. The foreground pro-
cess uses aggregate knowledge about customer preferences
to recommend promising alternative bundles during ongo-
ing negotiations with customers. Intuitively, the idea for
the process in the foreground is that, whenever the shop de-
cides to stop bargaining about a bundle b and to switch to
an alternative bundle, he will choose from a ‘neighborhood’
of b, the bundle that looks promising in the sense that it has
the highest conditionally expected gains from trade. The
background process obtains the necessary aggregate knowl-
edge about customer preferences. Based on this knowledge
it estimates for each bundle the expected gains from trade,
conditional on what the ongoing negotiation process reveals
about the current customer.

With respect to the background process we consider two
cases. In the first case, we do not explicitly consider the
background process: the shop already possesses the neces-
sary aggregate knowledge. The shop may have obtained this
aggregate knowledge by having access to expert knowledge
or by collecting historical sales data and mining this data of-

fline. The main purpose of this case is to highlight the value
of the foreground process given sufficient aggregate knowl-
edge, and to provide an upper bound for the second case.
In the second case, we explicitly consider the background
process: the shop does not have any a priori knowledge
of customer preferences. Instead he learns about customer
preferences online by interpreting individual customers’ re-
sponses to the shop’s proposals for negotiating about alter-
native bundles. This allows the shop to make progressively
better estimations of the expected gains from trade.

To ensure that bundling can stimulate demand for (other)
goods or services we conduct computer experiments with
simulated customers that have nonlinear preferences: i.e., a
customer’s valuation for a bundle of goods may be higher
(or lower) than the sum of the customer’s valuations for
the individual goods. In our experiments, we consider the
foreground process both with and without the aggregate
knowledge already being available. In the absence of ag-
gregate knowledge, the background process will learn the
relevant information online. We show how, for various types
of customers—with distinct negotiation heuristics—the fore-
ground process (both with and without the necessary ag-
gregate knowledge) increases the speed with which deals are
reached, as well as the number and the Pareto efficiency
of the deals reached compared to a benchmark. Moreover,
through time, the performance of the foreground process
without a priori information approaches the procedure that
already possesses the necessary aggregate knowledge.

The subproblem of just finding a good (or better) bundle
configuration can be seen as a form of recommending [14],
if we do not consider the negotiation and pricing aspects.
The general subject of bundling has received a lot of atten-
tion recently, especially in the context of online information
goods [10, 19, 1, 3, 5]. The issue of finding the appropri-
ate bundles is, however, not limited to information goods.
It also occurs outside of the realm of information goods,
where a number of aspects of a complex product can be
selected, such as for a PC [6], a trip [20], or photography
equipment [13]. Until now, this has not been considered as

part of a negotiation process, to the best of our knowledge.

For numerous real word applications—like the above exam-
ples of selecting aspects of a complex product—the number
of individual goods to be bundled, n, is relatively small. In
this paper we will also only consider small values of n (say
n ≤ 10), for which aggregate knowledge still greatly facil-
itates the process of finding attractive alternative bundles
during a negotiation process. For example, with n = 10
there are 2n − 1 = 1023 possible bundle configurations, so
facilitating the search process among all those bundles is
highly valuable.

This paper builds on and significantly extends the idea, de-
veloped in a preceding paper [18], to negotiate over bundles
and prices using aggregate knowledge. The scope of the
earlier paper is limited to the foreground process; the nec-
essary aggregate knowledge is assumed to be already avail-
able. This approach is warranted because the paper focuses
on additively separable preferences (i.e., a customer’s valua-
tion for a bundle is always equal to the sum of her valuations
for the individual goods comprising the bundle). With addi-
tive separability it suffices to learn the conditional expected
gains from trade for the individual goods (cf. [18]), which
greatly simplifies the problem of learning the required aggre-
gate knowledge. In this paper we consider non-linear cus-
tomer preferences, for which learning the desired aggregate
knowledge can be very difficult. For example, it may be very
difficult to determine the conditionally expected gains from
trade by collecting historical sales data and mining those
data offline. It requires that the sales data reveals the cor-
relation between customers’ valuations for the various bun-
dles. Such high quality data may not be readily available,
especially when at the same time customers’ privacy should
be respected, as we assume in this paper. By interpreting
customers’ online responses to the shop’s proposals for ne-
gotiating about alternative bundles, our background process
circumvents these difficulties.

The next section provides a high-level overview of the inter-
action model. In Section 3 we introduce relatively mild con-
ditions on the customers’ and the shop’s preferences. Based
on these conditions, Section 4 develops a procedure for find-
ing the most promising alternative bundles. In order to test
the performance of our system, we used it in interactions
with simulated customers. In Section 5 we discuss how the
necessary aggregate knowledge of customer preferences is
learned online. Section 6 presents our computer experiments
and discusses the results. Conclusions follow in Section 7.

2. OVERVIEW
This section gives an overview of the interaction between the
shop and the customer, as they try to negotiate an agree-
ment about the price and the composition of a bundle of
goods. The shop sells a total of n goods, each of which may
be either absent or present in a bundle, so that there are
2n − 1 distinct bundle-configurations containing at least 1
good. In the current paper, we use n = 10. A negotiation
concerns a bundle (configuration), together with a price for
that bundle, and it is conducted in an alternating exchange
of offers and counter offers [15], typically initiated by the
customer. An example of such a practice may involve the
sales of bundles of news items in categories like politics, fi-



nance, economy, sports, arts, etc.

We develop a procedure that a shop can use to find mutually
beneficial alternative bundles during the negotiation about
a given bundle, so that alternative bundles may be recom-
mended whenever the negotiation about the given bundle
stalls. Specifically, the procedure finds Pareto improvements

by changing the bundle content.2 It uses information spe-
cific to the current negotiation process as well as aggregate
knowledge (obtained from the analysis of sales data, (anony-
mous) data on previous and current negotiations, market
research, or expert knowledge). The ongoing negotiation is
analyzed to determine when an alternative bundle is needed,
and both the ongoing negotiation process and the aggregate
knowledge are used to assess which bundle to recommend.

A customer can explicitly reject a suggested bundle by spec-
ifying a counter offer with a different bundle content (e.g.,
the previous one), and she can implicitly reject a suggested
bundle by offering a low price for it. In the current paper,
only implicit rejection is allowed: customers only specify the
bundle content for the opening offer, and thereafter only the
shop can change the bundle content of an offer. This is to
ease the description of our model and solutions. The possi-
bility for customers to explicitly reject or change the bundle
content can be easily incorporated in our model and solu-
tions, however.

Figure 1 provides a high-level overview of the interaction
between a shop and a customer. The shaded elements are
part of the actual negotiation—the exchange of offers. The
process starts with the customer indicating her interests, by
specifying the bundle they will initially negotiate about. Af-
ter that, they enter into a loop (indicated by the dotted line)
which ends only when a deal is made, or with a 2% exoge-
nous probability. (We do not model bargainers’ impatience
explicitly; therefore we need an exogenous stopping condi-
tion, which specifies the chance of bargaining breakdown.)
In the loop, the customer makes an offer for the current bun-
dle b, indicating the price she wants to pay for it. The shop
responds to this offer either by accepting it, or by consid-
ering a recommendation. In any case, conditional upon the
98% continuation probability, the shop also makes an offer,
either for the current bundle b or for a recommended bundle
b′ (which then becomes the current bundle).

In the model, the valuations of the customers and the shop
are expressed as monetary values. The utilities of deals are
expressed as strictly monotonic one-dimensional transforma-
tions of valuations. In the simplest form, this would be the
difference between the valuation of the bundle and the ne-
gotiated price. The agents are interested in obtaining a deal
with optimal utility (“net monetary value”). See Section 3
for details.

3. PREFERENCE MODEL
3.1 Informal Discussion
The essence of our model of valuations and preferences lies
in the assumption that customers and the shop order bun-
dles based on their net monetary value; the bundle with the
highest net monetary value is the most preferred bundle. A
customer’s net monetary value of a bundle is equal to the
customer’s valuation of the bundle (expressed in money) mi-

nus the bundle price and the shop’s net monetary value is
equal to the bundle price minus the shop’s bundle valuation
(also expressed in money).

Given the above assumption and the assumption that a cus-
tomer wants to buy at most one bundle (within a given time
period), Section 3.2 shows that any deal involving the bundle
with the highest gains from trade is Pareto efficient. We can
now specify which is the best bundle for the shop to advise:
faced with the problem of recommending one bundle out of
a collection of bundles, the “best” bundle to recommend is
the bundle with the highest expected gains from trade; this
bundle Pareto dominates all other bundles. (Section 3.2 can
be skipped upon first reading.)

3.2 Formal Discussion
Before being able to more formally state the results, some
notation is necessary. Let N ⊂ N, with n = |N |, de-
note the collection of n individual goods and 2N denote the
power set of N (i.e., the collection of all subsets of n), then
B = 2N \ {∅} denotes the collection of all possible bundles.
Furthermore, let P = R denote the collection of all possi-
ble bundle prices.3 The customer and the shop attach the
monetary values of vc(b) and vs(b), respectively, to a bundle
b ∈ B (with vc(b), vs(b) ∈ P ). The function xj : B ×P 7→ R

with j ∈ {c, s} denotes the net monetary value for bundle
b at price p: xc(b, p) = vc(b) − p and xs(b, p) = p − vs(b)
denote the customer’s and the shop’s net monetary values,
respectively.

We assume that the customer’s and the shop’s utility for
consuming bundle b at price p, denoted by uj(b, p) with j ∈
{c, s}, can be expressed as the composition function gj ◦

xj(b, p) with gj : R 7→ R. For gj we assume that
dgj (x)

dx
>

0 for all x ∈ R. Thus we have that uj(b, p) = gj(xj(b, p))
and since gj is a strictly increasing function, we can assume
without loss of generality that uj(b, p) = xj(b, p) (cf. [12]).

Given the customer’s and shop’s monetary values, we define
a useful subset B∗ of B as follows: B∗ ≡ arg maxb∈B(vc(b)−
vs(b)), that is, B∗ represents the collection of bundles with
the highest possible gains from trade (across all possible
bundles). We are now ready to introduce the following
proposition.

Proposition 1. A deal (b, p) with b ∈ B and p ∈ P is

Pareto efficient if and only if b ∈ B∗.

Remark 1. A deal (b, p) is Pareto efficient if there is no

(b′, p′) such that uj(b, p) ≤ uj(b
′, p′) for all j ∈ {c, s} and

the inequality is strict for at least one j.

Proposition 1 means that a deal is Pareto efficient if and
only if it entails a bundle with the highest possible gains
from trade. For the proof of this proposition the following
lemma is very useful.

3Negative prices may not be realistic, but we want to make
as few behavioral assumptions as possible. For the results
the possibility of negative prices is not problematic (see
Footnote 4).
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Figure 1: A flowchart describing the integration of recommendation in a shop and a customer’s alternating
exchange of offers and counter offers.

Lemma 1. For any two deals (b∗, p∗) and (b, p) with p∗, p ∈
P , b∗ ∈ B∗, and b ∈ B \B∗ we have xc(b, p) < xc(b

∗, p∗) or

xs(b, p) < xs(b
∗, p∗).

Proof. We prove the above lemma by contradiction. Sup-
pose that for any b∗ ∈ B∗ and b ∈ B \B∗ we have xc(b, p) ≥
xc(b

∗, p∗) and xs(b, p) ≥ xs(b
∗, p∗). A necessary condition

for this to hold is that vc(b)− vs(b) ≥ vc(b
∗)− vs(b

∗). How-
ever, b∗ ∈ B∗ and b ∈ B \ B∗ means, by definition of B∗,
that vc(b) − vs(b) < vc(b

∗) − vs(b
∗).

We are now ready to prove Proposition 1.

Proof. 1. (If) Pick any j ∈ {c, s}. Suppose that j’s
position improves by moving from any deal (b, p) with
b ∈ B∗ to (b′, p′), that is, uj(b, p) < uj(b

′, p′). It then
suffices to show that the opponent denoted by j′ will
always be made worse off, that is, uj′ (b, p) > uj′ (b

′, p′).
From the properties of gj and gj′ it follows that a bar-
gainer’s position improves/worsens whenever the net
monetary value increases/decreases. Since j’s position
improves, it follows from Lemma 1 that j′ is made
worse off whenever b ∈ B \ B∗. Moreover, if b, b′ ∈ B∗

then the gains from trade remain unchanged, hence j′

is made worse off.

2. (Only if) We will prove this part by contradiction.
Suppose that b /∈ B∗ with the price being any p ∈ P .
Pick any b′ ∈ B∗ and set the bundle price to p′ =
p + vs(b

′) − vs(b), so that p′ − vs(b
′) = p − vs(b). It

follows from p ∈ P that p′ ∈ P (recall that P = R)4

and the properties of gs that the shop is indifferent
between the deals (b, p) and (b′, p′). Also, it follows
from Lemma 1 and the properties of gc that the cus-
tomer is made better off. That is, any b′ ∈ B∗ Pareto
dominates b /∈ B∗. Thus b /∈ B∗ cannot be a Pareto
efficient solution.

4If we choose to a priori rule out p < 0 and vj(b) < 0 (for
j ∈ {c, s} and all b ∈ B), then p ≥ vs(b) should hold because
otherwise the shop will not be willing to sell the bundle in
the first place. Consequently, p′ ∈ P still holds.

4. THE FOREGROUND PROCESS
The idea is to develop a mechanism for a shop to find Pareto
improvements by changing the bundle content during a ne-
gotiation. The mechanism we propose contains two subpro-
cedures. The first procedure monitors the negotiation pro-
cess and tells the shop when to recommend, at which time
the second procedure tells the shop what to recommend, by
generating recommendations based on aggregate knowledge
and the ongoing negotiation process. Figure 1 shows the in-
teraction between these two procedures; they are discussed
in more detail in Sections 4.1 and 4.2, respectively.

4.1 Deciding When to Recommend
The shop needs a procedure for deciding when he should
recommend negotiating about a different bundle. The ob-
vious input for this decision is the progress of the current
negotiation process, which can be described as a sequence of
offers and counteroffers. An offer O contains a bundle defi-
nition and a price: O = (b, p) with b ∈ B and p ∈ P . (B and
P denote the collections of all possible bundles and prices,
respectively.) Let h = (O(1), O(2), . . . , O(k)) denote a finite
history of offers (k is a natural number), where O(i + 1) is
the counter offer for O(i), for all i < k. Furthermore, let
H denote the universe of all possible finite offer sequences
(thus h ∈ H). The problem of when to advise can now be
specified as the mapping f : H 7→ {now, not now}, where
“(not) now” means: (don’t) recommend a new bundle now.

We construct a heuristic for f based on the assumption that
there is a probability of not reaching a deal with a customer
(e.g., a break off, endless repetition, or deadline): the longer
the negotiation is expected to take, the less likely a deal is
expected to become. Furthermore, as a deal becomes less
likely, the incentive for the shop to recommend negotiation
about an alternative deal should increase. Given the shop’s
bargaining strategy, our heuristic then extrapolates the time
the current negotiation process will need to reach a deal,
from the pace with which the customer is currently giving
in. More precisely, if we let O = (b, p) and O′ = (b, p′)
denote the customer’s current and previous offers for bundle



b, then ∆t, the predicted remaining number of negotiation
rounds necessary to reach a deal, is defined as follows:

∆t =
vs(b) − p

p − p′
, (1)

where vs(b) denotes the shop’s monetary value for bundle
b. The higher ∆t, the higher the likelihood of a recommen-
dation. Specifically, the probability of a recommendation
depends on ∆t as follows:

prrecommendation = 1 − exp(−0.25∆t),

which means that the probability that the shop recommends
an alternative bundle approaches 1 as ∆t increases.

4.2 Deciding What to Recommend
Our mechanism combines aggregate knowledge (obtained
from the analysis of sales data, (anonymous) data on pre-
vious and current negotiations, market research, or expert
knowledge) with data about the ongoing bargain process,
to recommend bundles to customers while negotiating with
them. Suppose, for example, that a customer offers to buy
a bundle b at a price p. Whenever a recommendation is
needed (see Section 4.1) the idea is to select from within the
“neighborhood” of bundle b, the bundle b′ that maximizes
E[vc(b

′) − vs(b
′)|vc(b) ≥ p]: the expected gains from trade

for bundle b′, given that the customer is willing to pay at
least p for bundle b. (To simplify notation we will write
E[·|b] instead of E[·|vc(b) ≥ p].) Since the shop knows its
own monetary value for bundle b′, vs(b

′), the aim is really
to maximize E[vc(b

′)|b] − vs(b
′). The difficulty here lies in

estimating the customer’s expected valuation of bundle b′:

E[vc(b
′)|b] =

X

i∈P

i · pr(vc(b
′) = i|b), (2)

where pr(vc(b
′) = i|b) denotes the probability that the cus-

tomer’s valuation for bundle b′ is equal to i, given that she
is willing to pay at least p for bundle b. In Section 5 we
propose an online learning mechanism for determining this
estimation (the background process mentioned in Section 1.
It is, however, instructive to first discuss the recommenda-
tion mechanism in some more detail (i.e., assuming that the
expectations are already known).

A customer initiates the negotiation process by proposing an
initial bundle and offering an opening price: let O(0) = (b, p)
denote the customer’s opening offer (with b ∈ B and p ∈ P ).
The shop stores the bundle proposed by the customer as
(his assessment or estimation of) the customer’s “interest
bundle,” in the neighborhood of which the shop searches
for promising alternative bundles to recommend if, at any
time, the shop decides he should make a recommendation
(see Section 4.1). This neighborhood of bundle b, Ng(b), is
defined as follows.

Ng(b) ≡ {b′ ∈ B : b′ ⊂ b and |b′| + 1 = |b|

or b′ ⊃ b and |b′| − 1 = |b|}, (3)

In other words, Ng(b) contains the bundles which, in binary
representation, have a Hamming distance to b of 1.5 The

5Remember that each bundle can be represented as a string
containing n bits indicating the presence or absence in the
bundle, of each of the shop’s n goods.

advantage of advising bundles within the neighborhood of b
is that the advice is less likely to appear haphazard.

Having defined a bundle’s neighborhood, let the ordered set
A denote the so-called “recommendation set,” obtained by
ordering the neighborhood Ng(b) on the basis of the esti-
mated expected gains from trade of all the bundles b′ in
bundle b’s neighborhood, Ê[vc(b

′)|b] − vs(b
′), where Ê de-

notes the estimation of E.

To recommend a bundle bk (the kth recommendation, with
k ≥ 1), our mechanism removes the first bundle from A,
adds a price to it and proposes it as part of the shop’s next
offer. Depending on the customer’s counter offer for bundle
bk, the current advice set may be replaced: if the customer’s
response is very promising (to be defined below) A will be
emptied, bundle bk will be taken as the customer’s new in-
terest bundle (in the neighborhood of which the search con-
tinues), and the bundles in the neighborhood of bk are added
to A.

To specify this in more detail, let Oc
t denote the sequence

of offers placed by the customer up until time t, and let
max (Oc

t ) specify the customer’s past offer with the high-
est net monetary value from the shop’s perspective. Then
the shop will determine the impact of the kth recommenda-
tion by comparing the net monetary value of the customer’s
current offer O(t + 1) with that of offer max (Oc

t ). For this
purpose, the shop uses the function signb,b′ : R×R 7→ {0, 1}.
If we let max (Oc

t ) = (b, p) and the customer’s current offer
O(t + 1) = (b′, p′), then

signb,b′ (p, p′) =



1 if p′ − vs(b
′) > p − vs(b)

0 otherwise
. (4)

If signb,b′ (p, p′) = 1, then the shop’s assessment of the cus-
tomer’s interest bundle is updated to be bk: the customer’s
response is promising enough to divert the search towards
the neighborhood of bk. That is, the first element of A be-
comes the bundle b′ ∈ Ng(bk) with the maximum difference

Ê[vc(b
′)|bk] − vs(b

′), the second element of A becomes the

bundle b′′ with the second highest difference Ê[vc(b
′′)|bk] −

vs(b
′′), and so on.

In case signb,b′ (p, p′) = 0, the shop will make the next
recommendation. Before the shop makes the next recom-
mendation however, he checks if the negotiation is currently
about the interest bundle. If this is not the case he will first
make an offer containing the interest bundle. Whenever this
offer is not accepted by the customer the shop will make the
next recommendation in the following round. Consequently
we have the property that a recommendation is always pre-
ceded by an offer containing the interest bundle. (We will
see in Section 5.1 that this is a very useful property.)

5. THE BACKGROUND PROCESS
The ordering of all bundles in the neighborhood of an inter-
est bundle b constitutes a crucial aspect of the recommen-
dation mechanism described in Section 4.2. Ideally, given
an interest bundle b, the first bundle in the ordering has
the highest expected gains from trade, the second bundle
in the ordering has the second highest expected gain from
trade, and so on so forth. So, as explained in Section 4.2,



we are interested in knowing E[vc(b
′)|b]− vs(b

′) for all bun-
dles b′ within the neighborhood of bundle b, where the dif-
ficulty lies in estimating the customer’s expected valuation
E[vc(b

′)|b]. Expert knowledge may provide the shop with
these estimations, but unfortunately such knowledge is of-
ten not available. We will therefore introduce an effective
approach for online learning to “correctly” order the bundles
in the neighborhood of the interest bundle.

5.1 Using Bargaining Data
To order the bundles, the shop uses data on the current and
past bargaining processes. More precisely, suppose the shop
advises b′ given an interest bundle b with the most recent
customer offer of O = (b, p) and that the customer responds
with the counter offer O′ = (b′, p′). The shop then feeds the
triples < b, b′, p′ − p > and < b′, b, p − p′ > as new training
examples to an online learning mechanism.

The recommendation mechanism described in Section 4.2
ensures that the customer’s offers O = (b, p) and O = (b′, p)
are placed directly after one another; thus, as long as the
customer’s strategic misrepresentation of the underlying bun-
dle values do not jump around too much from one trading
period to the next, the misrepresentation in p and p′ will
roughly cancel each other out. Consequently, p − p′ will be
a good indication of the difference in a customer’s valuations
of bundles b and b′, vc(b) − vc(b

′). (Similarly, p′ − p will be
good estimation of vc(b

′) − vc(b).)

Based on these training examples the learning mechanism,
when given < b, b′ > combined with the shop’s valuations
for the two bundles, vs(b) and vs(b

′), predicts ∆gt(b′, b) ≡
E[p′−vs(b

′)− (p−vs(b))|b]: the expected difference in gains
from trade, resulting from changing from bargaining about
bundle b to bargaining about bundle b′ (given that a cus-
tomer expressed an interest in bundle b, as assumed above).
To sort bundles in the vicinity of an interest bundle b ac-
cording to their expected gains from trade, it suffices to sort
the bundles according to ∆gt(b′, b).

5.2 Complexity Issues
Knowledge of the correlation between the values of the vari-
ous bundle pairs is essential for correctly learning to order all
bundles in the vicinity of an “interest” bundle b. Given that
the shop sells n individual goods, there are 2n − 1 possible
bundles containing at least 1 good. Learning the correlation
between all bundle pairs requires—worst case—comparing
an order of (2n)2 bundle pairs. Clearly, for particular in-
stances of the problem the complexity may be reduced sig-
nificantly. Take for instance the situation, where the cus-
tomer’s valuation for a bundle is always equal to the sum of
her valuations for the individual goods comprising the bun-
dle. In that case it suffices to compare n individual goods
with 2n bundles, reducing the complexity—worst case—to
an order of n · 2n. In this paper we focus on the more gen-
eral case, where a customer’s bundle valuation may not be
equal to the sum of her valuations for the individual goods
comprising the bundle.

For this more general customer preference setting, search-
ing in the neighborhood of the interest bundle has two ad-
vantages: besides making an advice less likely to appear
haphazard, it significantly reduces the number of bundle

pairs that need to be considered. Recall that we defined the
neighborhood of a bundle b as consisting of all bundles at
a Hamming distance of 1 from bundle b (see Section 4.2).
It then requires comparing n · (n − 1) bundles when the
interest bundle has size 1, (n

2 ) · (n − 2) additional bundle
pairs when the interest bundle size is 2, and so on. ((n

k )
Denotes the binomial coefficient.) Thus—worst case—there
are

Pn

k=1(
n
k )·(n−k) < (n·2n) bundle comparisons necessary,

which is significantly less than (2n)2.

5.3 Online Learning Mechanism
In this paper we consider only the situation where the num-
ber of individual goods to be bundled is relatively small:
i.e., n ≤ 10. (With n = 10 there are 2n − 1 = 1023 possi-
ble bundle configurations, so facilitating the search process
among all those bundles is still highly valuable.) Since we
only consider bundles within the neighborhood of an inter-
est bundle, it is tractable, for relatively small values of n,
to explicitly estimate the required conditional expectations
online. Moreover, bargaining with one customer generally
creates numerous training examples which can be used twice
(i.e., < b, b′, p′ − p > and < b′, b, p − p′ > are both stored
as separate training examples, see Section 5.1). For small
values of n therefore, the learning mechanism can improve
its estimation of the conditional expectations, even given
relatively few customers who provide training examples.

Given the k training examples << b, b′, p1 − p′

1 >, . . . , <
b, b′, pk − p′

k >>, the online learning algorithm simply esti-
mates ∆gt(b′, b), the expected difference in gains from trade,
resulting from changing from bargaining about bundle b to
bargaining about bundle b′ (given that a customer expressed
an interest in bundle b), as the average of the training ex-
amples, i.e.,

∆ĝt(b′, b) =
1

k

k
X

i=1

(pi − p′

i). (5)

The danger of using ∆ĝt(b′, b) directly to sort the bundles
in the neighborhood of the interest bundle b, is that the
diversity of the trading example remains limited. Conse-
quently, learning the correct ordering of the bundles is not
possible. To allow for sufficient exploration the shop chooses
with a probability p(b, b′, M0) (with M0 = Ng(b)) a bundle
b′ ∈ M0 to be first in the ordering of Ng(b); once the first
bundle in the ordering is determined, say b∗, with a proba-
bility p(b, b′, M1) (with M1 = Ng(b)\{b∗}) the shop chooses
a bundle b ∈ M1 to be second in the ordering, and so on.
The probability p(b, b′, M) (with M ⊆ Ng(b)) is computed
according to the softmax action selection rule (cf. [21]), i.e.,

p(b, b′, M) =
eλ·∆ĝt(b′,b)

P

b′′∈M
eλ·∆ĝt(b′′,b)

. (6)

where λ determines the exploratory behavior of the mecha-
nism. The greater λ, the less exploration will take place, i.e.,
the higher the probability that the bundle with the highest
expected gains from trade will be picked first, the second
highest second, and so on. Initially λ is very small; it in-
creases over time.

6. NUMERICAL EXPERIMENTS



In order to test the performance of our proposed mechanism,
we implemented it computationally, and tested it against
many simulated customers. Valuations for the shop and
the customers were drawn from random distributions. First
we describe customer preferences and how we implemented
negotiations in the simulation, and then we present our ex-
perimental design and simulation results.

6.1 Customer preferences
The goods may be complementary, in which case the valua-
tion of a bundle is higher than the sum of the valuations of
the individual goods in the bundle. We model the possibility
of complementarities by representing vc(b), the customer’s
valuation for a bundle b, as a (cubic) polynomial. If we let
N denote the collection of n individual goods and the vector
x = (x(1), . . . , x(n)) the binary representation of a bundle b
(i.e., x(i) = 1 if and only if i ∈ b), then

vc(b) = a0 +
X

i∈N

ai · x(i) +
X

i,j∈N

aij · x(i) · x(j) +

X

i,j,k∈N

aijk · x(i) · x(j) · x(j), (7)

where a0, ai, aij , and aijk (for i, j, k ∈ N) denote the con-
stant, linear, quadratic, and cubic coefficients of the poly-
nomial, respectively. The quadratic and cubic coefficients
determine the extent to which complementarities exist be-
tween two and three goods. (Customers buy at most one
instance of an individual good, hence we can ignore the pos-
sibility of complementarities between identical goods: i.e.,
aii = aiii = 0 for all i ∈ N .)

An individual customer’s values for the various coefficients
are randomly distributed. If ~a denotes an arbitrary instance
of all these coefficients, then ~a gives rise to a multivari-
ate normal distribution, i.e., pr(~a) ∼ N [~µ,Σ], where the
vector ~µ and the matrix Σ = [σij ] denote the means and
(co)variances of the distribution.

From Equation 7 (and the fact that x(i) ∈ {0, 1}) it follows
that we can obtain all bundle valuations (vc(b1), . . . , vc(b2n−1))
by applying a linear transformation on ~a. Consequently, the
corresponding probabilities pr(vc(b1), . . . , vc(b2n−1)) also form
a multivariate normal distribution [9]. That is, we have

pr(vc(b1), . . . , vc(b2n−1)) ∼ N [T~µ,TΣT′], (8)

where the matrix T specifies the linear transformation (the
jth element in the ith row of T specifies whether or not the
corresponding ith coefficient in ~a should contribute to the
valuation of the ith bundle).

6.2 Modeling Negotiations
6.2.1 Time-dependent Strategy
For the customer (shop), the time-dependent bidding strat-
egy is monotonically increasing (decreasing) in both the
number of bidding rounds (t) and her (his) valuation. In
particular, a bidding strategy is characterized by the gap
the customer leaves between her initial offer and her valua-
tion, and by the speed with which she closes this gap. The
gap is specified as a fraction of the bundle valuation and it
decreases over time as gap(t) = gapinit · exp(−δt), so over
time, she approaches the valuation of the bundle she is cur-
rently negotiating about. Note that changes in the gap are

time-dependent, but not bundle-dependent! This strategy
is therefore called “time-dependent-fraction” (tdf). Almost
the same holds for the shop’s bidding strategy, mutatis mu-

tandis. The initial gap, gapinit , is set at 0.5 for the customer
and at 1.5 for the shop, and we fix δ = 0.03 for the shop
as well as the customer, in order to reduce the number of
jointly fluctuating parameters somewhat. Summing up, the
customer (shop) starts her (his) bidding for a bundle at (one
and a) half her (his) valuation, and her (his) bids gradually
approach her (his) valuation.

6.2.2 Tit-for-Tat Strategy
The time-dependent strategy described above generates bids
irrespective of what the opponent does. As an example of
a strategy that responds to the opponent, we implemented
a variant of tit-for-tat (tft) [2]. The initial ‘move’ is al-
ready specified by gapinit like in the tdf-strategy. If in sub-
sequent moves the utility level of the opponent’s offer im-
proves, then the same amount is conceded by the bargainer.
Note that it is the increment in the utility level perceived
by the bargainer (not the opponent). Furthermore, this per-
ceived utility improvement can also be negative. To make
the bidding behavior less chaotic, no negative concessions
are made. That is, we used a so-called monotone version
called tit-for-tat-monotone-fraction (tftm) which can never
generate a bid with a worse utility than the previous bid.

6.3 Experimental Setup
In the computer experiments reported in this paper, we
compare our new approach of having no a priori informa-

tion and learning customer preferences online (as discussed
in Section 5.1), to the one where—for example because of
expert knowledge—the shop already knows the underlying
joint probability distribution of all bundle valuations (see
Section 6.1). The latter approach is also the one discussed
and experimented with in more detail in [18]. In this ap-
proach, the shop directly derives the value of E[vc(b

′)|b] for
each bundle pair; based on these values the shop computes
the expected gains from trade and orders the bundles in the
neighborhood of b accordingly.

Besides comparing our new online procedure (referred to as
µ) with the previous method (called S), we also assess the
relative performance of the system by performing the same
series of experiments with a benchmark procedure (called
B), which simply recommends a random bundle from the
current bundle’s neighborhood. That is, the benchmark
does not base the order in which it recommends the next
bundle on the estimated expected gains from trade like our
system does.

In the experiments, the shop’s bundle valuations are de-
termined by applying a nonlinear bundle reduction. This
means that the bundle price is generally less than the sum
of the individual goods comprising the bundle. In order to
prevent the trivial problem of customers wanting to buy all
goods, the bundle reduction becomes 0 for bundles which
contain more than 3 goods.

There are 10 individual goods. We randomly generate the
underlying probability density function pr(~a). In order to
ensure sufficient difference in valuations between customers,
however, we fix the correlation matrix (but not the covari-



Table 1: Comparison of the different methods µ, S and the benchmark B. Figures are averages across 10 runs
with different random seeds, and 12000 customers per run. Standard deviations are given between brackets.

Methods
Performance µ S B

Indicator tdf tftm tdf tftm tdf tftm

max. gains 1202.81(5.34)
min. gains −1023.61(54.77)
gains binit 438.70(15.45)
gains bint 763.55(15.75) 549.27(4.23) 826.18(16.30) 573.14(5.81) 697.74(14.19) 527.55(11.61)

gains bfinal 863.33(4.57) 797.45(4.40) 939.72(8.60) 875.98(7.57) 777.82(8.59) 727.81(5.96)
percentage 0.85(0.00) 0.82(0.00) 0.88(0.00) 0.85(0.00) 0.81(0.00) 0.79(0.00)

rel. percentage 0.52(0.01) 0.43(0.01) 0.61(0.01) 0.54(0.01) 0.41(0.01) 0.34(0.01)
rounds 8.24(0.60) 5.16(0.16) 8.01(0.65) 4.71(0.15) 13.71(0.93) 7.37(0.29)

deals 10314.20(143) 11024.50(39) 10340.60(156) 11114.20(40) 9171.80(181) 10496.50(71)
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Figure 2: Relative performance of the µ-system (on the left), measured by calculating the difference in gains
from trade between the bundles bfinal and binit, as a percentage of the difference between the maximum and
the initial gains from trade. The shop uses the TDF strategy with δ = 0.03, and the customers use either
the TDF strategy (with δ = 0.03), or the TFTM strategy (with δ = 1), as described in section 6.2. The graph
on the right gives the difference in performance between µ and S. (Both graphs actually show the 100-step
moving averages.)

ance matrix). We randomly initialize the covariance matrix
such that we can partition N in 3 subsets (2 of size 3 and
1 of size 4). Selling a customer one of these 3 subsets will
often generate the highest gain from trade. (Roughly be-
tween 20 and 40% of the time this is the case, in the other
cases 1 or 2 and sometimes more goods need to be added or
removed.) To test the robustness of our procedure to quanti-
tative changes in the underlying distributions we conducted
a series of experiments with 10 different distributions. For
each of these settings we simulated negotiations between the
shop, with randomly drawn valuations, which were kept con-
stant across negotiations with 12, 000 customers, each with
her valuations drawn randomly from the particular distri-
bution used. To further test the robustness of our system,
each customer was simulated using 2 different negotiation
strategies, as described in Section 6.2. (The shop always
uses the tdf strategy.)

To allow initiation of the negotiation process by the cus-
tomer, we assume that the customer starts negotiating about
an initial bundle binit . In order to give the shop some room

for improvement, we initialize the customer’s initial bundle
by randomly selecting a bundle b which, in binary represen-
tation, has a Hamming distance of 3 to the bundle b∗ that
is associated with the highest gains from trade.

6.4 Results
The overall results of our experiments are listed in Table 1.
The numbers are averages over 12, 000 customers drawn
from each distribution of valuations, and over 10 differ-
ent randomly generated distributions; standard deviations
(across averages from the 10 distributions) are listed be-
tween brackets. The maximum and minimum attainable
gains from trade are determined by the current random
distribution of valuations; they do not depend on the cho-
sen strategy and method. Likewise, the bundle a customer
wants to start negotiating about does not depend on the
chosen strategy and method. Therefore, the average of these
figures represented in the first 3 rows are identical across all
experiments—for each shop-customer interaction these fig-
ures are known even before the negotiation commences.
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Figure 3: The cumulative average number of deals per customer, as attained by the µ-system (on the left)
and the 100-step moving average of the number of rounds required to reach those deals (on the right). As in
Figure 2, the shop uses the TDF strategy and the customers use either the TDF or the TFTM strategy. The
shop manages to reach deals with 11, 381 of the TDF-customers, and with 11, 554 of the TFTM-customers.

The remainder of the results is measured at the end of each
shop-customer interaction, and subsequently averaged over
all 10 ·12, 000 customers. The row for ‘gains bint(erest)’ shows
the gains from trade associated with the bundle of which
the shop, at the end of the negotiation with each customer,
thinks the customer is most interested in. This estimation
is most accurately performed by the S-system, which is not
surprising since it has direct access to the distribution un-
derlying the customer’s preferences—even though it does
not know each individual customer’s actual preferences. But
the µ-system, that has to do without this a priori knowledge
altogether, and instead has to learn about its customers’
preferences online, does not do much worse, especially when
compared to the benchmark system, B, in the rightmost
columns.

The row labeled ‘gains bfinal’ gives the gains from trade as-
sociated with the bundle that the shop and the customer
were actually negotiating about at the end of the simula-
tion, irrespective of whether that end was caused by the
98% exogenous break-up probability, or by the fact that a
deal was reached in the negotiation. The rows for ‘percent-
age’ and ‘rel(ative) percentage’ present the same results in
a different way: ‘percentage’ shows the shop’s performance
relative to the maximum attainable:

percentage =
(gains bfinal − min. gains)

(max. gains − min. gains)
,

whereas ‘relative percentage’ takes into account the starting
bundle binit:

relative percentage =
(gains bfinal − gains binit)

(max. gains − gains binit)
.

Again, in both these rows, as in all the rows more generally,
the S-system outperforms the µ-system, which beats the B-
system, but bear in mind the challenge for the µ-system,
as compared to the S-system, in terms of (dealing with the
lack of) available aggregate knowledge. The rows labeled
‘rounds’ and ‘deals’ give the average number of rounds it
took to reach a deal (whenever a deal was reached) and the

average number of deals reached. An observation that can
be made is that the shop seems to do better (in terms of
gains from trade) when the customers use the tdf-strategy
than when they use tftm, although in the former case the
shop requires a higher number of rounds to reach deals, and
reaches less deals, as compared to the latter case.

Figures 2 and 3 illustrate the shop’s learning process when
using the µ-system. The graph on the left in Figure 2 shows
(the 100-step moving average of) the ‘relative percentage’
from Table 1, measured at the end of the negotiation with
each of the 12, 000 customers, and averaged over the 10 dif-
ferent preference-distributions. The increase over time, of
the shop’s aggregate knowledge of his customer’s preferences
is clearly visible, for both strategies used by the customers.

The graph on the right in Figure 2 shows the difference
of these results between the µ- and the S-systems, respec-
tively; the S-system does better, but the µ-system closes the
gap as it learns more about its customers. Significantly, the
difference between the plots for tdf and tftm disappears,
indicating the robustness of the µ-system to changes in the
customers’ negotiation strategies. So the µ-system is clearly
able to learn customers’ preferences online, irrespective of
the negotiation strategy used by those customers. However,
the overall performance of the shop using the µ-system to-
gether with his own negotiation strategy, is dependent upon
the customer’s negotiation strategy. More specifically there
is a trade-off in performance. Compared to tftm, interact-
ing with customers using tdf results in higher gains from
trade, less deals (see also Figure 3), and more rounds to
reach those deals. The explanation for these differences is
that with tftm customers will give in quicker; whenever
the shop suggests a good alternative the amount the cus-
tomer concedes equals the gains from trade plus the amount
conceded by the shop (perceived by the customer). Conse-
quently deals are reached more quickly. This also results
in more deals being reached but goes at the expense of the
gains from trade because the search process is shorter.



7. CONCLUSIONS AND FUTURE WORK
In this paper, we consider a form of multi-issue negotiation
where a shop negotiates both the contents and the price
of bundles of goods with his customers. To facilitate the
negotiations of a shop, we develop a procedure that uses
aggregate (anonymous) knowledge about many customers
in bilateral negotiations of bundle-price combinations with
individual customers. By online interpreting customers’ re-
sponses to the shop’s proposals for negotiating about alter-
native bundles, the procedure acquires the desired aggregate
knowledge online; it requires no a priori information while
respecting customers’ privacy.

We conduct computer experiments with simulated customers
that have nonlinear preferences. We compare our new ap-
proach of having no a priori information and learning about
customer preferences online, to the one where—for example
because of expert knowledge—the shop already knows the
underlying joint probability distribution of all bundle valu-
ations. The latter approach is also the one discussed and
experimented with in more detail in [18]. Our experiments
show how, over time, the performance of our procedure ap-
proaches that of our previous procedure, which already pos-
sesses the necessary aggregate knowledge. Both procedures
significantly increase the speed with which deals are reached,
as well as the number and the Pareto efficiency of the deals
reached, as compared to a benchmark. Moreover, the ex-
periments show that the new procedure is able to learn the
necessary information online, irrespective of the negotiation
strategy used by the customers.
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