
Acta Informatica 37, 727-742 (2001) .area
© Springer-Verlag 2001

Running a job on a collection
of partly available machines, with on-line restarts

Rob van Stee*, Han La Poutre

Centre for Mathematics and Computer Science (CWI), Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands (e-mail: { rvs,hlp }@cwi.nl)

Received: 31 March 1999 I 5 April 200 I

Abstract. We consider the problem of running a background job on a se
lected machine of a collection of machines. Each of these machines may
become temporarily unavailable (busy) without warning. If the currently se
lected machine becomes unavailable, the scheduler is allowed to restart the
job on a different machine. The behaviour of machines is characterized by a
Markov chain, which can be compared to [6]. The objective is to minimize
the expected completion time of the job. For several types of Markov chains,
we present elegant and optimal policies.

1 Introduction

In networks of workstations, a considerable amount of capacity is unused,
since the primary users are only using the workstations part of the time. Such
machines could therefore be used for large(r) jobs that can be executed in
the background or with low priority. This means that such a job gets the
"free time" of the machine, i.e., the time that no higher-priority job is using
it. However, this does not mean that the job does not have any objectives in
completion time.

When a workstation is used (for a higher-priority job), there is informa
tion available on the type of job that is executed. This is e.g. available from
the process manager (process statuses). With this information, it could be
decided what to do: e.g., to just wait until the workstation is available again,

* Research supported by The Netherlands Organization for Scientific Research (NWO),
project number SION 612-30-002.

728 R. van Stee, H. La Poutre

or to restart the larger job on another machine. In this way, the completion
time of this job could be minimized.

The above situation is not only true for workstations, but for e.g. super
computers or other scarce high-performance computers that are available
in smaller quantities as well. We therefore study the problem of execut
ing a large job as a background job, where the completion time should be
minimized and the job can be executed on one machine at a time.

To be precise, we study the problem of scheduling a job J on a machine
out of a collection of machines that are not available continuously, with
out having full knowledge about when they are available. At the start, the
scheduler must pick one machine to run the job on. If the machine becomes
temporarily unavailable, the scheduler is allowed to move the job and restart
it from scratch on a different machine. The goal is to minimize the expected
completion time. This was mentioned as an open problem in [8].

Scheduling n jobs on m machines under availability constraints has been
studied in a number of papers (see the surveys [7, 8]). Most attention has
gone to deterministic availability constraints, both for non-preemptive and
preemptive problems. Also the non-resumable case has been studied, where
a job must restart if its machine goes down: it cannot wait for the machine
to become available again. In [3], stochastic scheduling is studied: here the
task durations are stochastic and the availability periods are deterministic,
which is the opposite of our model.

In [1], a method is discussed for a different but related situation, viz.,
where a job J must be run in a specific time interval. The assumption made on
the availability of the workstations was that at least one of the workstations
would be available for a certain amount oftime (significantly larger than the
time required to run the job) during the interval in which the job was to be
run. Using this assumption, a method was shown which had an 1 -0(1/m)
probability of choosing a "good" workstation, so that J is completed on
time, where m is the number of workstations. However, with this approach
it is not possible to minimize the expected running time of J. As it turns
out, in order to give bounds for the completion time, it is necessary to use a
different approach.

We study the case where the availability of the workstations is captured
by a Markov chain. This has similarities with the modeling in [6], where
the paging problem was addressed in a similar way, i. e., by modeling the
behaviour of a program by a Markov chain. Every behaviour of worksta
tions can indeed be modeled by a Markov chain, depending on the grain of
description. E.g, the most simple chain can be obtained by having, besides a
state for "available" (idle), one state for "unavailable", with the expected un
availability time as its cost. Making more elaborate Markov chains based on
(on-line) system statistics and additional information, enables finer grained

Running a job on partly available machines 729

descriptions and improved scheduling strategies, yielding lower completion
times.

We will consider Markov chains that, if the idle state is deleted, become
acyclic. In practical situations, a Markov chain is obtained and approximated
from statistical information, and approximating "infinite cycling behaviour"
by just one or a couple of states will fall within the statistical and practical
accuracies. We also refer to [6] for some general comments on Markov
chains.

In the paper, we present elegant and optimal scheduling strategies. The
actual job size does not need to be known (but it does not help to know it
either). The computational complexity of our strategies is O(n · e), where
n is the number of nodes in the Markov chain and e is the number of edges.
This only needs to be computed once for all future large jobs. The strategy
only depends locally on the machine the job is running on. This is in contrast
with [I], where global decisions are needed.

In the paper, we begin by looking at a Markov chain where only one
user-job size can occur. We then examine more complex Markov chains,
where jobs of different sizes can occur. Finally, we look at the case where
the interrupting jobs themselves form a Markov chain (i. e. more is known
about the sequences in which jobs are often started), thus enabling a fine
grained description of machine behaviour.

2 The model

We have a job J which takes d units of time to complete. (Although d does
not need to be known in advance, throughout the paper, we use d as if it
were known.) At any time, we can allocate not more than one machine
from a collection of machines to run J. If the machine becomes temporarily
unavailable, the scheduler is allowed to restart the job from scratch on a
different machine. The goal is to minimize the expected completion time of
J.

The behaviour of every machine is characterized by a Markov chain.
One state of this chain, called the idle state, represents the situation that
the machine is available for executing a (new) large job. Any other state
represents a local job or a job session, that makes the machine unavailable
for the scheduler. Such local jobs or job sessions can have different sizes.
Only the expectation of the size of each such job or job session needs to be
known, since we minimize the expected completion time of J. However, for
reasons of simplicity, we henceforth consider a state to correspond to just
one job with a fixed size. The conversion to job sessions and expected size
of those is not made explicit any more, but this is trivial since only expected
(completion) times are considered.

730 R. van Stee, H. La Poutre

The machines are identical, in the sense that they are modeled by the same
Markov chain. All machines behave independently of each other and of the
decisions made by the scheduler. The scheduler may use the information
of the Markov chain. We assume that if the scheduler wants to restart J,
there is always a machine available. This is realistic: we show in [9] that in a
network of some non-trivial size, the expected time for the first machine to
become available, starting in a randomly chosen time step, is very small as
long as the Markov chain does not yield extreme occupation in this network.
(And if there is extreme occupation, no scheduler can hope to perform well.)

The Markov chain of a machine, together with the possibility of a restart,
induces a Markov decision process on the job J, as follows. We define J
to be in time state t if it has been worked on for t time steps since its latest
restart, not counting the time that the current machine was busy. For every
time state 0, ... , d - 1 of J and every possible interrupting job, we need to
decide what to do in case of an interruption. Do we restart J or wait? J is
completed when it reaches time state d.

3 The basic case

In the basic case, all machines behave according to the Markov chain shown
on the left in Fig. I. A more compact way of picturing this is shown on the

1-p~ Co o M

()~

Fig. 1. Markov chain of one machine in two forms

right in the same figure, where the J\.1-node costs lt1 units of time. Note
that this is just a simplifying picture and cannot be used as the basis of
calculations. The induced Markov chain on J is shown in Fig. 2. Costs are
in bold type.

In Markov decision theory, this is known as a first-passage problem
[5]. Such problems can be solved using a linear program, but this requires
introducing 2d variables, one for each node in the Markov chain. Solving a
linear program with 2d variables can be done in O(d3) time. This is clearly
impractical, as this is far more than the running time of the (large) job
itself. Furthermore, such a linear program would have to be solved for every
occurringjob size d. We show an optimal policy with time complexity 0 (1),
that is independent of, and does not need to know, d.

Running a job on partly available machines 731

0 1-p I / p 2 f-p d-1 1-p d

~~;.o~~;.\';~~o-,--• o~~;:
Fig. 2. Markov chain of our job

Clearly, in the top row of this Markov chain (representing the idle node),
it is always optimal to continue. Only when the process moves to one of the
nodes in the lower row, meaning that the current machine is busy because
of a higher priority job, we need to make a choice.

3.1 The optimal policy

It is known [5] that for any first-passage problem there is an optimal policy
that is stationary: it does not depend on the total time that the job has been
running, or the number of times it has been in the current time state. Also,
it is deterministic.

A policy will be denoted by a vector a = (ao, _ . _ , ad-l), where at = 1
means the scheduler will restart J if it gets interrupted in time state t, and
at = 0 means he will not restart. Define f(t) to be the expected minimal
costs (running time) to complete J, starting in time state t. These costs
satisfy f (d) = 0 and

f(t) = (1 - p)(l + f(t + 1))

+ p · min{f(O), M + J(t + 1)} t = 0, ... 'd - 1. (1)

This holds because the probability of going directly to the next time state is
the probability of remaining in the idle node, 1 - p, and the optimal costs in
that case are 1+f(t+1). When the machine becomes busy, the minimal
costs are the minimum of the two choices there: restarting costs f (0), and
waiting costs M + f (t + 1).

It follows from (I) that a restart in time state t is optimal if and only if

f(O) ~ M + f(t + 1), (2)

and in that case restarting is optimal in all the previous time states as well,
since f (t) is monotonically decreasing. Thus at = at-1 = ... = ao = 1.

It follows that an optimal policy is a threshold policy: inte1Tuptions cause
restarts only up to a certain point. Therefore an optimal policy is of the form
a(k):

a(k) = (1,.~.,1,0,d-:-~:-k,O) kE{l, ... ,d-1}.

732 R. van Stee, H. La Poutre

Here k indicates the number of steps for which an interruption causes a
restart, e. g. k = 2 means ao = 1, a1 = 1, a2 = ... = ad-I = 0. We have
k 2: 1 since in time state 0, restarting is always cheapest.

We define C (k) as the expected cost to reach k for the first time, using
strategy a(k).

Theorem 1 Theoptimalpolicyforthe basic case is given by a(k*) = (1, .k.*.
, 1, O, d-.1.--;k•, 0), where k* is determined by

k* = rlog(l + (M - l)p)l ·
- log(l - p)

(3)

The expected completion time is at most M + (d - k*)(l + (M - l)p).

Proof It follows from (2) that restarting is optimal as long as f(O) - f(t +
1) < M. Since f(O) - f(t + 1) is the expected total optimal cost minus the
expected optimal cost starting in t + 1, it is equal to C(k*), where k* is the
optimal choice of k. Thus, we need to calculate C (k) for general k and we
need to find the smallest k for which C (k) > M.

We first calculate C (k). Define Rk as the event that a restart occurs
before reaching time state k, then IP(Rk) = 1 - (1 - p)k. We write CR(k)
for the cost until a restart, given that this occurs before k is reached. After
a restart the costs to reach k are again C(k). Using that the expectation of a
random variable JEX= E(X!Y)IP(Y) + E(Xl--iY)lP(-iY) we can see that

C(k:) = (Cn(k) + C(k))(l - (1 - p)k) + k(l - p)k (4)

or
1-(1-p)k

C(k) = CR(k) ()k + k. 1 - p .

Since JE(XIY) = LxEY xlP(X = x)/IP(Y), we have that

Cn(k) =Lt· lP'(restart after t steps)/(1 - (1 - p)k).
t<k

Using IP(restart after t steps) = (1 - p) t, we can derive

C(k)= 1-p_ l-(l-~)k = l-p((l-p)-k-1).
p (l - p)h p

(5J

If C(A:) > M, it is no longer advantageous to restart Jin time state k. Since
C(k*) ::; M implies (1 - p)-k* - 1 ::; M 4, we have

k* = llog(l + ~)j = rlog(l + (M - I)p)l ·
- log(l - p) -log(l - p)

Running a job on partly available machines 733

After time state k*, the job is not restarted any more. The expected completion

time from then on is at most (d - k*) (1 + (J\[- 1)p), since d- k* more units

of work need to be done on J, which are each expected to take (1-p) · l + pM
time. Therefore, the total costs are at most M + (d - k*)(l + (~i\f - 1) p).

If we compare this to [1], where the job was completed with probability

1 - 0(1/rn) if at least one machine was available for ndlogrn time, we

see that we now have a bound that does not depend on m. Note that on the

other hand, the behaviour of the machines is now more precisely modeled.

4 Two or more jobs

Suppose there are two jobs that can interrupt J, of sizes AI1 and M 2• where

Afi < _!\h. The probabilities of interruptions by jobs M 1 and Ah are p 1 and

p2, respectively. We assume that these interruptions do not occur simulta

neously. Then for the completion costs f we have

f(t) = (1 - Pt - P2)(l + f(t + 1))

+Pt· min{f(O),AI1 + f(t + l)}

+p2 · min {f (0), Ah + f (t + 1)}.

A policy for this problem has the form

- a.·u c.z1 ... a.d-1 (
l 1 1)

a - ·) ·) ·) '
Oi) rt[... Clj_ .. 1

where for all t and i, a; E {O, 1 }. a; = 1 means that J will be restarted if

interruption Al; occurs in time state t, and 1d = 0 means J will continue. In

this section, we give only the results; the calculations are related to Sect. 3

but more elaborate, and can be found in [9].

We find that we can divide the time states of J in three consecutive

phases (time state intervals). In phase I, J gets restarted when Ali or J\h

interrupts it. In phase 2, it is restai1edjust when 1\h (the largest of M1 and

AI2) interrupts it, and in phase 3 it is not restarted at all.

The probability that .J gets interrupted in phase I is Pt + P2 =: qi.

Analogously to section 3, we find for the optimal length li of phase I

l* = [log(l +(Aft - l)qi)l ·
1 I - log(i - qi) ·

(6)

Define C; as the expected cost to reach phase i + 1 for the tirst time, starting

in time state 0. E. g. C 1 is the cost to reach time state l]' from time state 0.

734 R. van Stee, H. La Poutre

We have C1 = !.::E. ((1 - p)-1i - 1). Using this value, we can calculate
p

the optimal length l2 of phase 2. We find

l (C +~T) J 12 = log 1 1~ 2 / log(l - q2) ,
M2 + -91.Y.2 q2

(7)

where q2 = p2 and T2 is the expected time to go from one time state to the
next in phase 2 when there is no restart. We now have the following theorem.

Theorem 2 The optimal policy for two interrupting jobs is

(1.1L1 o .1?. o o d-1:-.1r-12 o),
1 ... 11 ... 10 ... 0

where li and 12 are determined by (6) and (7).

Ifthere are r > 2 interrupting jobs M1 , ... , Mr, then li does not change.
For i = 2, ... , r, we find

(8)

where qi =Pi.+ . .. +Pr· Ci-l is the expected cost to reach the end of phase
i - 1 starting from 0, and Ti is the expected time to go from one time state
to the next in phase i. See [9] for details on how to calculate Ci- I; T; can
be calculated directly from the definition of phase i. We have the following
theorem.

Theorem 3 Forr interrupting jobs M1, ... , Mr, the optimal policy for each
f\lfi is given by

(1 lj+ ... H~ 1 0 0)
., ... ", ' ' ... ' '

where the li 's are given by (6) and (8).

5 General Markov chains

Finally, we consider the situation where n different jobs, connected by a
Markov chain .Af, can interrupt the scheduler's job J. We assume that Al,
including the 'idle' node, denoted by 0, is irreducible (all states communi
cate), and that M\ {O} is acyclic.

Node i of M represents a job of size Mi ('i = 1, ... , n). For each node i,
the costs associated with a restart are 0 and the cost of continuing (waiting)
is AI;. Define OUT('i) as the set of nodes j where edge ('i,j) exists. The
probability that a machine moves from node i to node j is denoted by PiJ·

Recall that this is independent of the scheduler's decisions.

736 R. van Stee, H. La Poutre

5.2 Nodes should be unblocked exactly once

Lemma 1 From one time state to the next, when using the optimal policy,
the cost of a node in the Markov chain can never increase more than the
cost of a restart in that same node.

Proof. Take a time state t. We use an induction. Note that as t grows, the cost
of restarting grows, because more work is lost by restarting. To simplify the
wording, we will now color non-blocking nodes green and blocking nodes
red.

Consider a green node i and suppose that the cost of all its successors
has not increased more than that of a restart since time state t - 1. In that
case, no successor turned red.

We divide OUT(i) in two sets, OKt(i) and BADt(i), where the "bad"
nodes are nodes where J is restarted in time state t. We need to show that
the cost of i can not increase faster than the cost of a restart, which is R~{!1 ,0 .
Write

Rt,i M + """"' t+l,O = 'i ~
kEOUT(i)

where

k E OKt(i)
k E BADt(i)

Write the increase in cost starting from i as o = R~~ 1 , 0 -R;:;; 1 ·i, the increase
in the costs of a successor k as Ok= xk(t + 1) - xk(t) for all k E OUT('i)
and finally the increase in the cost of a restart (while i is green, non-blocking)

i: Ro,o Ro,o
aSUYEs= t+lO- to·

We need to show o ~ OYES· Fork E OUT(i) we have three cases:

k . J: t k t-1 k J:
- · remamed green, then uk = Rt'+l,O - Rt,o ' < uy ES because of the

induction hypothesis.
- k remained red. Then 8k = R~:i,o - R~,.g = oy ES·

kt d . , Rt,k Ro,o < Ro,o Ro,o , th . - urne green. uk = t+l,O - t,o t+l,O - t,o = uy Es. o erw1se
k could not be green now.

In other words, Ok :S: Oy ES for all k, so 8 = "f:,kEOUT(i) PikOk :S: oy ES.

Corollary 1 If a node of M is non-blocking, it must remain non-blocking
until the job is completed, unless the job is restarted.

Proof The previous lemma implies that if a node of Al is non-blocking in
time state t, it will not be blocking in t + 1, for any t.

Running a job on partly available machines 735

5.1 Definitions and notations

In the following, we always use the word node to refer to the state of the
current machine, and keep using time state to refer to the state of J. When
describing policies, we continue to use subscripts to indicate time states,
and we introduce superscripts do indicate nodes (states of the machine). A
policy a for this problem consists of n policies ai, one for each node i, and
we write a; = (a(1, a] , ... , a;l-- l), where the subscript denotes the time state

of J. ai = 1 means that J will be restarted if i is visited in time state t,
and a~ = 0 means J will continue. The optimal policy is deterministic and
stationary.

A node i of the Markov chain is said to be blocking in time state t if
at= 1, and it is reachable in time state t if there exists a path in the Markov
chain from 0 to i without blocking nodes. We say that an alg01ithm unblocks
node i in time state t when a~_ 1 = l and ai = 0.

We introduce two important costs:

- Bt(i) is the total cost of reaching time state t, starting in time state 0 in
the idle node, if i is blocking before time state t.

- Ut(i) is the total cost of reaching time state t + 1, starting in time state
0 in the idle node, if i is unblocked in time state t.

Say a and b are time states and :i: and y are nodes in the chain. Assume
b =J 0. We will write

- Dg.·_;;' is the cost of going directly (without restart) from {a, :.r} to { b, y}
(which we call the goal),

- p1bLt is the probability of this happening . . y

- R~1 ·"· is the total cost of this move, including possible restarts and as-u,y

suming no restarts take place in {a, :t}.

Note that the optimal decision in {a, :J:} does not depend on the number of
times this node and state have been visited.

We write D1"·'1 (--,·i) and J/11·'1 (-ii) to indicate costs and probabilities when !,.If J,y
it is assumed that node i is not visited in the meanwhile. If u. = t, but
b :S: t + 1, then it is assumed that t + 1 is not reached before the goal. We use
the notations v;;·i~· and p~;·~' to indicate the cost and probability of a restart

when starting in, {a,:r}. CAs an example, p~/~(-ii) is the probability of a
restart, starting in time state t and node 0, without visiting node i or time
state t + 1.)

Finally, the cost of' node :i; in time state t is given by R;~i.o·

Running a job on paitly available machines 737

5.3 Thresholds

We begin by looking at individual nodes, and show locally optimal strategies.
Later we will describe the global policy.

If we write f (t, i) for the optimal completion costs, starting in time state
t and node i, we have that

f(t, i) = min{f(O, 0), M1 + L Jiikf(t, k)}, (9)

kEOUT(i)

similar to the earlier cases. We do not have a simple interpretation for
f(O, 0) - f (t, k) anymore. Instead, we use the following lemma.

Lemma 2 The optimal policy in time state t and node i can be determined
by minimizing the cost from the re until time state t + 1.

Proof An optimal policy will minimize the cost to reach t for all t: if it costs
the policy more to reach t 1, it will cost more to reach any point beyond t1.

Let ft+ 1 (t, i) denote the optimal cost of reaching t + 1 for the first time,
starting in (t,i). Then ft+1(t,i) = min{J\li + LA:EOUT(i)Pikit+dt,k),
ft+l (0, O)}. Since the decision in time state t and node i is the same each
time this pair is visited, we can in fact replace this equality by

(I 0)

if we calculate these costs for the optimal policy (see Fig. 3).

f(ll,ill

I 2 ~ 1

----0 ----- 0- - - - - 0-------

~
l+I J
0-- - - 0

7 .·· Ri~1.11
Markov (. .'h<tin

0,

Fig. 3. Markov chain of J in the general case

We will now formulate equations for three important costs. All costs
naturally depend on the chosen strategy, but we will not denote this explicitly

in every equation.

738 R. van Stee, H. La Poutre

- R~~i,o is equal to the cost of node i, which is Ali, plus the expected cost
if there is no restart, plus finally the expected cost if there is one. We
have

Rt,i nf + t,i Dt,i. + t,i (Dt,i + U (.))
t+l,O = 1v i Pt+1,o t+1,o Po,o o,o t i ' (11)

h t;i + t,i 1
w ere Pt+1,o Po,o = ·

- Similarly, we can derive the following connection between Bt+l (i) and
Bt(i):

Bt+1(i) = Bt(i) + p~~1 ,0 (-ii)D~~1 ,o(''i) + P;,'.~(D~;? + Bt+1('i))

+ Pki(-,i)(Dti',~(-,i) + B1+1Cf))

Thus,

B (.) (B (.) + t,O (.)Dt,o (.) + t,ODt,o t+l i = t i Pt+l,O -,z t+l,O -,z Pt;i t,i

+ t.O (')Dt,0 (")) I t,O (') Po,o -,z 0,0 -,z Pt+l,O -i'l .

N h t,O (') + t,O + t,0 (·) 1 ote t atpt+i,o -,z Pt,i Po,o ''l = .
- For Ut(i) we find similarly

U(.) (B(")+ t,o (')Dt,o (')+ t,O(Dt,o+Rt;i) t 'l = t 1. Pt+l,O -,z t+l,O -i'/, Pt;i t,i t+l,O

+ t,o (.)Dt,o (·)) /(1,0 (.) + t,o) Po.o -,·t o,o ' 2 Pt+ 1,0 ' 2 Pu ·

Using (12), we can write this as

(12)

U1(·i) = aBt+i(·i) + (1 - a)R~~l,O for some n E [O, 1]. (13)

According to (10), the optimal policy in each node is to unblock it if this

is cheaper than keeping it blocking; in other words, if R~~ 1,0 < Bt+ 1 (i,).
Note that if t = 0, restarting is always cheaper.

We are therefore especially interested in those values oft, where R~~i,o =
B1+1 (i), because this is a time state where i should be unblocked. Using

(13), this implies R~~i,o = Ut(i) = Bt+I (·i).Using these equalities in (11),
we find

(14)

Finally, we have from (12) that

B (.) _ , 1,0 (.) {B (,.) nt,o (,.) } 1,0 (.) Dt,o (,.) t,ont,o
t 2 -Pt+1,0'2 t+1i- t+I,o'i -Po,o'2 o,o'l-Pt,i t,i·

Running a job on partly available machines 739

Combi.ning this with (14), we can see that Bt+i(i) > R~~Lo is equivalent
to Bt(i) > THt('i), where ·

THt(i) = -p'·o(-.i)Dt,o(-.i)- Pt,oni,o 0,0 0,0 t;t t,i

(
M· + t,i Dt,i + t.i Dt,i)

+pt,i (-.i) ! Pt+l,O t+l,O Po,o 0.0 - Dt,O (")
t+l,O t,i t+l,O -ii

Pt+1,o

(15)

T Ht (i) is called the threshold of node i in time state t. Thresholds determine
when nodes should be unblocked.

Lemma 3 From time state t, the optimal policy is that the subset of blocking
nodes remains constant until the first to 2 t for which there is a blocked
node iforwhich Bt0 ('i) 2 THt0 (i) and Bto-1(i) < THto-1(i). ln time
state to, i is unblocked.

Proof The threshold T H 1(i) depends only on which nodes are blocking
in time state t and which are not. This is because it consists of costs and
probabilities of moves in the Markov chain in time state t, without including
costs after restarts. Therefore, as long as the subset of blocking nodes does
not change, TH1('i) is a constant. Furthermore, B1(i) is strictly increasing
in t, since it is not cheaper to reach t than it is to reach t - 1.

This implies that, as long as the subset of non-blocking nodes does not
change over time, for every node i there is one specific time state ti, where for

t < ti we have R~~i,o > Bt+1 (i) and fort 2 ti we have R~!i,o ~ Bt+l (i).
This time state is determined by the threshold for each node i. A node
for which the threshold is first reached should be unblocked at that time.
Before then, the optimal subset of blocking nodes does not change, because
blocking nodes must never become non-blocking by Corollary I.

We show in [9] how to calculate all relevant thresholds, using that the
Markov chain is acyclic.

5.4 The algorithm

We are now finally ready to describe a method to determine the global
strategy (for the whole Markov chain). We will eventually tag each node
with the time state in which it is unblocked. We will begin at the "end"
of the Markov chain (which is well defined, since the chain is acyclic),
and work our way back to nodes that can be reached from 0, each time
calculating which node should be unblocked next. This way, some nodes
will be unblocked before they can even be reached from 0, but this has no
adverse effect on the costs of the algorithm.

The method is divided into steps. In each step x we calculate the next
time step t;i: on which a node ·i:c gets unblocked. We do this until all nodes

740 R. van Stee, H. La Poutre

are non-blocking (or the job finishes). Within each interval [tx-1, t,r - l]
the thresholds are constant. We put io = to = 0.

Each step :r consists of a number of calculations. There are always a

number of relevant nodes, for which some calculations are necessary, in

the correct order. We will define two sets of nodes: Ax and BJ:· Each step

consists of the following substeps.

Define Ar as the set of non-blocking nodes from which i 3:- ! can be

reached. For every node i in this set, recalculate Di~ 1 , 0 , D~·,~ and p~~i.o·
Do this in reverse order (walking backwards through the graph), begin

ning with the nodes that have no successor in Ax.
- Define B.r as the set of blocking nodes from which 0 or a non-blocking

node can be reached in a single step. Calculate the thresholds of this set
in any order, using the new data from the set A1, when necessary.

- Determine the node i 3, E B,1, which first reaches its threshold. Calculate

t.r and unblock i,r in time state t,1,.

A few notes on this algorithm:

1. For blocking nodes i ~ B,r we always have that the threshold is not
reached yet, since it is always cheaper to restart immediately than to

wait until the next (blocking) node and then to restart.

2. For nodes i E B:i: n B.r-1 from which i:i- l can not be reached, the
threshold now is the same as in step x - 1.

3. It is possible for two or more nodes to have the minimal threshold value.

In this case, unblock the latest one in the acyclic ordering.

Theorem 4 This algorithm is optimal.

Proof This follows immediately from Lemma 3, the structure of the algo
rithm and the notes above.

Theorem 5 This algorithm runs in O(n · c) time, where e is the number <?f'
edges in the Markov chain.

Proq{ Consider one step in the algorithm. The calculations for A 4 , take

0(number of outgoing edges from Ai:), which is certainly 0(e).

For B,r, some costs and probabilities starting in t need to be recalculated

if i:r-1 is reachable. This requires walking backwards through the graph

starting in i.1:-1, and doing O(number of outgoing edges) calculations in

each node. Since each edge is used only once, and the Markov chain is
acyclic, the total costs of this are O(e) as well.

The entire process therefore is O(n · e).
A first-passage problem like this can also be solved using a linear pro

gram; however, in this case for each node in the Markov decision process

Running a job on partly available machines 741

a variable needs to be introduced. Solving a linear programming problem
with nd variables can be done in O(d:3 n:~) time. This is clearly far worse,
especially if the Markov chain of the machines is fairly small relative to the
size of the job, so that d > > n. Moreover, this linear program needs to be
solved for every occurring job size d. Since the time complexity is the third
power of the job size itself, this is impractical.

5.5 On the use of this strategy

All the calculations for this strategy can be done before the job starts, and
in fact this is necessary. When for every node it is known when it should be
unblocked, this can be represented internally by tagging each node with the
time state in which it is unblocked. Every time the machine switches to a
different node, the scheduler can check its tag and compare it to the current
time state to see whether the job needs to be restarted. Since the strategy
does not depend on the length of the job, this tagging only needs to happen
once and then many jobs could be run.

Finally, more than one scheduler can use this strategy: if all schedulers
have different priorities, they can disregard jobs (and schedulers) with lower
priorities. They can then construct their own Markov chain, their own model
of the availability of the workstations, and run jobs (one scheduler must run
only one job at a time). As long as there are not too many background jobs
being run, the important assumption that it does not take too long to restart
will still hold.

6 Conclusion

We have shown optimal policies for scheduling on Markovian machines, for
several types of Markov chains, and an efficient way of calculating them.
These policies can be readily extended to run many jobs simultaneously on
one network, or to run jobs with checkpoints [4 l (by considering each part
of the job as a separate job). Also, note that our solutions do not depend on
d, neither in their computational complexity, nor as input parameter. This
means that they only need to be computed once, for all possible occurring
jobs. Then the nodes can be tagged with the time state in which they are
unblocked, and any job can be run on the network.

An open question is whether it is possible to do this for a Markov chain
that has cycles, since in our method and proofs we use heavily that it is
possible to walk backwards through the graph. Perhaps in this case one
would have to resort to using a linear programming formulation, using d 11

variables. This can be solved in O(cfln:') time, which is much more than
r1 itself. As noted, this is substantially worse than in the acyclic case, and

742 R. van Stee, H. La Poutre

requires new computations for every possible job size d. Hence, this would
be an impractical approach.

Recall however, that we can approximate a cyclic Markov chain by our
acyclic ones (after deleting { 0}), see Sect. 1.

Acknowledgements. We would like to thank Sindo Nufiez Queija, Bert Zwart and Ger Koole
for their support on the basic case.

References

I. B. Awerbuch, Y. Azar, A. Fiat, F. T. Leighton: Making commitments in the face of
uncertainty: How to pick a winner almost every time. In: Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, 1996

2. A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis. Cambridge
University Press I 998

3. P. Chretienne, E. G. Coffman, J. K. Lenstra, Z. Liu: Scheduling Theory and its Appli
cations. New York: Wiley 1995

4. E. G. Coffman, Jr., Leopold Flatto, Paul E. Wright: A stochastic checkpoint optimization
problem. SIAM J. Comput. 22(3), 650-659 (I 993)

5. C. Derman: Finite State Markovian decision processes. New York: Academic Press
1970

6. A. Karlin, S. Phillips, P. Raghavan: Markov paging. SIAM J. Comput. 30, 906-922
(2000)

7. C.-Y. Lee, L. Lei, M. Pinedo: Current trends in deterministic scheduling. Ann. Oper.
Res. 70, 1-42 (1997)

8. E. Sanlaville, G. Schmidt: Machine scheduling with availability constraints. Acta Inf.
35(9), 795-811 (1998)

9. R. van Stee, J.A. La Poutre: Running a job on a collection of dynamic machines, with
on-line restarts. Technical Report SEN-R9841, CWI, Amsterdam, December 1998

