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Abstract. Designing efficient bidding strategies for sequential auctions represents an important, open problem area in agent-
mediated electronic markets. In existing literature, a variety of bidding strategies have been proposed and have been shown to
perform with varying degrees of efficiency. However, most ofstrategies proposed so far do not explicitly model bidders’attitudes
towards risk which, in mainstream economic literature, is considered an essential attribute in modeling agent preferences and
decision making under uncertainty. This paper studies the effect that risk profiles (modeled through the standard Arrow-Pratt
risk aversion measure), have on the bidders’ strategies in sequential auctions.

First, the sequential decision process involved in biddingis modeled as a Markov Decision Process. Then, the effect that a
bidder’s risk aversion has on her decision theoretic optimal bidding policy is analyzed, for a category of expectationsof future
price distributions. This analysis is performed separately for the case of first price and second-price sequential auctions. Next,
the bidding strategies developed above are simulated, in order to study the effect that an agent’s risk aversion has on the chances
of winning a set of complementary-valued items. The paper concludes with an experimental study of how the presence of
risk-averse bidders affects both bidder profits and auctioneer revenue, for different market scenarios of increasing complexity.

1. Introduction

Design of electronic auctions is considered an important open area of research in electronic commerce,
both from a theoretical and an application perspective. There are two main approaches to this problem.
One concerns the design of the auction mechanism itself, such as it guarantees certain properties, such
as efficiency, individual rationality or budget balance. Such approaches usually rely on combinatorial
auction mechanism, where a trusted center collects a set of bids from all the agents and computes the
final allocation and payments [25].

However, many real-life markets are much more decentralized and dynamic. Different items (or
tasks) may be auctioned by different sellers, in auctions with different closing times, and sometimes
even in different markets. Often, the items to be allocated may not even be known in advance. For
example, in transportation logistics, orders may be given throughout a day, and carriers are expected to
put in offers for such orders when they appear, often in a typeof reverse second-price auction. In such
sequentialauction settings, research has mostly focused on designingthe bidding strategies of the agents
participating in such auctions, such as to guarantee maximal expected revenue for their owners.

As previous shown in [4,9,23,27], the main problem that a bidder has to face in a sequential (or
simultaneous ascending) auction is the exposure problem. Informally stated, exposure means that an
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agent has to commit to buying an item (and thus take a “sunk” cost [23]), before she can be sure that she
will able to secure other items in her useful set or bundle (i.e. the set of items that gives her a positive
utility). If she does not manage to acquire the other items, she is exposed to the risk of a loss. For
example, if we consider a decentralized transportation problem, a truck acquiring an order for a part-truck
load in an auction may rely on acquiring other orders in the future to fill the remainder of the truck’s
capacity in order to make a profit.

In order to deal with this problem, several strategies have been proposed in existing literature. Boutilier
et al. ’99 examines the role of dynamic programming in computing bidding policies in sequential
auctions, based on distributions over estimated prices. Reeves et al. ’03 [23] study the problem of
bidding in simultaneous ascending auctions (a problem closely related to the sequential settings) – in
the context of market-based scheduling. Osepayshvili et al. ’05 [1] continue this line of research, but
use probabilistic prediction methods of final prices and introduce the concept of self-confirming price
distribution predictions. Gerding et al. ’07 [7] derive theoptimal bidding strategy for a global bidding
agent that participates in multiple, simultaneous second-price auctions with perfect substitutes. Unlike
this work, however, they do not consider complementarities(i.e. agents requiring bundles of items),
and the setting is slightly different, as all auctions are assumed to close exactly at the same time, not
sequentially.

In a direction of work that considers a setting very related to this paper, Greenwald and Boyan ’04 [9]
study the bidding problem, both in the context of sequentialand simultaneously ascending auctions. For
the sequential auctions case, they consider a decision-theoretic model and show that marginal utility
bidding represents an optimal policy. Their result applies, however, only to risk neutral agents. Hoen
et al. ’05 [27] look at the related problem of bidding in repeated auctions with complementarities and
draw a parallel with the N-person iterated prisoner’s dilemma. The above approaches have been shown
to be efficient in many situations, both in self play and against a wide variety of other strategies, in
competitions such as the TAC. Although most do implicitly consider the aspect of risk, they do not
explicitly model the risk-takingattitudeof the bidding agents. By “explicitly model” we mean building
a profile of the agent’s risk preferences towards uncertain,future outcomes (such as the final allocation
of a sequential auction).

In standard economic theory, since the seminal work of K. Arrow and J. Pratt, preferences towards risk
have been considered essential in understanding and modeling decision making under uncertainty [2,8,
13,21]. In fact, a body of auction theory from economics [17,21] identifies risk preferences as a very
important, open research area. In recent econometrics and financial economics literature, this has lead
to considerable research interest in efficiently modeling and eliciting risk aversion from human users [5,
21,22]1. Existing economic approaches to risk modeling do not, however, consider sequential auctions
over combinations of items, nor propose bidding heuristicsfor this setting.

From the point of view of multi-agent systems literature, only a limited number of papers discuss risk
profiles. Babanov et al. ’04 [3] use the concept of certainty equivalence, similar to our work, in the
context of optimal construction of schedules for task execution. Liu et al. [15] do consider risk-aversion
on the part of the agents (similar to the approach taken in this paper) – but their work is mostly concerned
with providing an analytical solution to the one-shot auction case. Vytelingum et al. ’04 [6] consider
risk-based bidding strategies in a double-auction setting. However, both the auction setting (i.e. CDA)
and the risk model used (which is not based the standard Arrow-Pratt model) make this work rather

1A practical example of risk elicitation in finance are the questionnaires involving probabilistic choices between several
scenarios that investment fund managers send to potential investors.
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different in focus from ours. Finally, Vetsikas and Jennings [28] also consider a model that includes
agent attitudes towards risk (among other factors, such as budget constraints and reserve prices), for the
case on multi-unit, sealed-bid auctions. They provide a thorough theoretical analysis of this case, but
they do not consider complementarities (i.e. agents desiring bundles of goods), nor sequential allocation.

1.1. Goals and organization of this paper

The basic goal of this paper is to study the relationship between a bidder agent’s attitude towards risk
(measured by the standard Arrow-Pratt risk aversion model –more specifically the CARA model) and her
perceived best available bidding policy in a sequential auction (modeled by a Markov Decision Process).
In this context, we consider the bidding decisions of an agent that desires a bundle of complementary-
valued goods that are sold through a sequence of auctions.

First, we investigate analytically how an agent’s perception of her optimal bidding policy, given her
probabilistic expectation of future prices, is affected byher risk aversion profile. Similar to [4,9,10,23,
27], we take a decision-theoretic approach to the design of bidding agents, meaning agents reason w.r.t.
the probability of future price distributions, and do not explicitly deliberate over the preferences, risk
profiles and strategies of other bidders. Next, we conduct anexperimental study of how an agent’s with
complementarities attitude towards risk affects her chances of winning a desired bundle, when bidding
against a population of local bidders, desiring only one good. Furthermore, we also look at how this
bidding policy affects the auctioneer’s revenue. Our primary goal is to gain a qualitative understanding of
how sequential auction markets are influenced when bidders with complementary valuations participating
in them are risk averse.

The remainder of the paper is organized as follows. Section 2presents the risk aversion model, which
forms the foundation of the following sections. Section 3 describes the bidding model and discusses
the optimal bidding policies for both first and second-pricesequential auctions. Section 4 provides the
experimental results, while Section 5 concludes the paper with a discussion.

2. Modeling utility functions under risk

The literature on risk aversion identifies several 3 main types of agents w.r.t. their risk profiles: risk
averse, risk neutral (indifferent) and risk proclave (“risk loving”) agents. In the following we will focus
our attention mostly on the risk averse and risk neutral cases, since these are the cases that describe the
behaviour of economic agents in most practical situations (c.f. [2,17,21]). Denote the private payoffz

achieved by an agent participating in an auction or lottery.The utility a risk-averse agent assigns to this
payoff is described by the Arrow-Pratt utility function:

u(z) = 1 − e−rz for r > 0 (1)

For the case of risk indifference (r = 0), we takeu(z) = z.
Note that the auction model we consider in this paper is aprivate valuemodel. The payoffz of a

bidder after participating in an auction is a difference between a private valuev and the amount of money
paid to acquire the item in the auction (or cost)c. Since the private valuev is private to each agent,
the payoff value is also private. Therefore, in a risk aversesetting there are parameters describing the
private preferences of a bidder: valuev and risk aversion coefficientr. Preferences of agents cannot be
directly compared by comparing their private values or payoffs, as the risk factorsr must also be taken
into account.
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Our choice of defining Eq. (1) represents a standard form of defining utility functions under uncertain-
ty [21] (the same choice is made in [18,21], among others). This form ensures that the following relation
holds:

ru(z) = −
u′′(z)

u′(z)
(2)

As defined in Eq. (2),ru(z) corresponds to the Arrow-Pratt measure of absolute risk aversion [2,21]. In
this paper, we considerr constant for each agent, i.e.ru(z) = r,∀z, thus we use the constant absolute
risk aversion (CARA) model.2 Factorr represents a constant which differs for each agent, characterizing
her own preference towards risk-taking.

We use a state-based representation, in which all possible future outcomes at timet is denoted bySt.
All s ∈ St are assigned by the agent a monetary payoffzs and an expected probabilityps (whereps > 0
and

∑

s∈St
ps = 1). We define the lotteryLt over a set of payoffs~zs (corresponding to the stateSt)

as the set of payoff-probability pairs, i.e.Lt = {(zs, ps)} wheres ∈ St. In this form, the definition is
generic, but as we show in Section 3, there is a natural correspondence between lotteries and states in a
sequential-auction game.

Theexpected utilityof the agent at timet over the lotteryLt is described by a von Neumann-Morgenstern
utility function:

Eu[Lt] =
∑

(zi,pi)∈Lt

piu(zi) (3)

In case all the agents are risk-neutral (i.e. haveu(z) = z), it is easy to compare expected utilities and
payoffs across agents. However, for risk averse agents thisis not the case, and we need a measure that
enables comparison of payoffs across agents with differentattitudes to risk in uncertain domains. The
utility functions of the agents are not directly comparablein this setting, since each agent has a different
attitude towards future risk (differentr factor).

The widely used concept in risk modeling is to identify a monetary value (i.e. amount of money), such
that the agent is indifferent between receiving this value with certainty or entering the lottery.

This amount is called thecertainty equivalent (CE) of the lottery. It can be seen as the monetary
payoff the agent would attach to the future, if all the uncertainty (and hence risk) were discounted.

Formally defined, thecertainty equivalent (CE) of a lotteryLt is defined as the certain payoff value
which is equivalent to the expected utility of the lotteryLt. That is:

u(CE(Lt)) = Eu(Lt) (4)

Expanding both sides using Eqs (1) and (3) above, we have:

−e−rCE(Lt) =
∑

(zi,pi)∈Lt

−pie
−rzi (5)

Hence the following expression can be derived for the certainty equivalent of the lottery:

CE(Lt) =







−1
r
ln

∑

(zi,pi)∈Lt
pie

−rzi for r > 0

∑

(zi,pi)∈Lt
pizi for r = 0

(6)

2This is a widely used risk aversion model, which we deemed sufficient for the purpose of this work. We leave the study of
Relative Risk Aversion (RRA) models to future research.
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In other words, the certainty equivalent can be seen as the certain amount of money which has the same
utility to the agent as the equivalent lottery, before the outcome of the lottery is known. In the following,
we define and prove a recursive property of CE functions, which is relevant for their application to
sequential games considered in this paper.

Property 1: Suppose we have a game that occurs in stagest; at each time stept the game can transition
into either one of 2 states:X+

t (having an associated rewardz+
t ) with probabilityp+

t , or X−
t (having

an associated rewardz−t ), wherep+
t + p−t = 1. In the sequential auction case considered here,X+

t ,
respectivelyX−

t represent the states in which the agent wins / does not win an upcoming auction (the
formal link is made in Section 2). The following relation holds:

CE[(CE[(z+
t+1, p

+
t+1), (z

−
t+1, p

−
t+1)], p

+
t ), (z−t , p−t )] = (7)

= CE[(z+
t+1, p

+
t p+

t+1), (z
−
t+1, p

+
t p−t+1), (z

−
t , p−t )]

Note that the notationsz+ andz−, for each timet only relate to whether the agent wins or does not
win the auction. These numbers can actually be negative, in case the payoff for a state is negative. For
example, an agent with a strictly complementary valuation for items sold at timest andt + 1, that wins
the item at timet but does not win the item at timet + 1, gets the payoffz−t+1, which is negative.

Proof: The proof involves repeated application of Eq. (6) to the left-side term:

CE[(CE[(z+
t+1, p

+
t+1), (z

−
t+1, p

−
t+1)], p

+
t ), (z−t , p−t )] =

= −
1

r
ln[p+

t e−rCE[(z+

t+1
,p+

t+1
),(z−

t+1
,p−

t+1
)] + p−t e−rz−t ]

= −
1

r
ln[p+

t e−r[− 1

r
ln[p+

t+1
e
−rz

+

t+1+p−
t+1

e
−rz

−

t+1 ]] + p−t e−rz−t ]

After reducing−r(−1
r
) and using thatelnX = X, we get:

= −
1

r
ln[p+

t p+
t+1e

−rz+

t+1 + p+
t p−t+1e

−rz−t+1 + p−t e−rz−t ]

= CE[(z+
t+1, p

+
t p+

t+1), (z
−
t+1, p

+
t p−t+1), (z

−
t , p−t )] (q.e.d.)

Note that the above property can be applied recursively to games with any number of stages. This
property, while apparently straightforward, is importantsince it shows that performing local CE opti-
mization at each time step gives the same result as CE optimization for the entire game (a property which
is not obvious for non-linear functions). As such, it is usedas an implicit assumption in our MDP model.

2.1. The importance of risk aversion in decision making: an example

In the following, we give an illustration why risk aversion can have an important effect on monetary
values. Consider the case of two complementary-valued items: A and B, which are sold sequentially.
Suppose the agent has to accept a sunk cost of $5 (dollars or any monetary units) for item A. If she
acquires both A and B, she makes a profit of $10, but if she doesn’t, she makes a loss of−$5 (thus
potential profit is double the size of potential loss). Supposing the agent estimates the probability of
acquiring B atpB , how large doespB have to be in order for the agent to accept the gamble?

We plot the CE payoffs in this lottery for 3 risk attitudes of the agents, fromr → 0, r = 0.15 and
r = 0.3. The left-hand side of Fig. 1 shows the case when all agents have the same evaluation for both
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Fig. 1. Example of the certainty equivalents of 3 agents with3 different risk profiles for a lottery with 2 possible outcomes:
−$5 (non-desirable) and $10 (desirable). The figure illustrates 2 cases: A(left): The desirable outcome is assigned a monetary
value of $10 by all agents. B(right): The desirable outcome is assigned a monetary value of $5 (for the risk indifferent agent
(r→0), $7.5 by the slightly risk averse one (r = 0.15) and $10 by the strongly risk-averse agent (r = 0.3).

the desirable (i.e.+$10) and the non-desirable (−$5) outcome. From this figure, one can already see
that a risk neutral agent (r = 0) would “join in” this lottery or sequence of auctions, if the probability
of winning (getting the desirable outcome) exceeds 33.3%. However, a relatively risk-averse agent (r =
0.3) would need to have at least 78% probability of winning inorder for it to assign a positive CE value
to this lottery (and thus have an incentive to participate inthe game). In the right-hand side of Fig. 1,
we keep the payoff of the non-desirable outcome constant at−$5, but we vary the maximal payoff from
$5 (for the risk indifferent agent), to $7.5 (forr = 0.15) and $10 (forr = 0.3). Even if the estimated
probability of acquiring the bundle{A,B} is exactly the same for all 3 agents, the probability of winning
has to be above 97% in order for the agent with the highest valuation to assign the sequence of auctions
the highest CE value, among these agents.

3. Bidding in sequential auctions with complementarities

As shown in the introduction, the main problem that a bidder has to face in a sequential auction with
complementarities is the exposure problem. Following Boutilier et. al. [4] and Greenwald & Boyan [9],
we model the decision problem that the bidder agent has to face in sequential auctions as a Markov
Decision Process.

Assume there is a set of itemsIt, sold in sequential auctions held at time pointst = 1..n. A state in
this game is specified by a set of goodsXt acquired up to timet (whereXt ⊆ I for t = 1..n). The
bidding policyof an agent in this game is described by a vector of bids~B = (b1, . . ., bn), which assigns
a bidbt to each item sold at time pointt. Fig. 2 illustrates this, for an auction with 2 items.

The bidding agent maintains a probabilistic expectation ofthe closing prices for itemsI1, . . .In, in the
form of n distributions. In the current model, these distributions are assumed independent of each other
and stationary during one bidding round ofn auctions (n could also be seen as the number of auctions
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Fig. 2. The decision process faced by an agent in sequential auction, for a two stage example, with goods labeled A and B.

the agent can stay in the game before its deadline). This definition of stationarity does not exclude the
agent being able to learn, or refine its distributions of closing prices between episodes but, in this paper,
we assume they are stationary for the duration ofn auctions (i.e. one episode).

Considering the probabilistic distribution of future prices (a similar choice as in [1,4,9]) is more
relevant to this setting than simply working with a vector ofthe average past prices (such as in [23,27]),
since the thickness of the tails of the distribution may be ofparticular importance if the agents are risk
averse. Note that in this form, we do not make any assumption on the type or shape of the expected future
distributions: they can be normal, log-normal (usually used to model future prices in financial markets),
uniform, binomial etc. For the results reported in this paper, we employed the normal distribution, but
the generic approach can be applied to other distributions as well. The transition probabilities between
different states are the cumulative distribution probabilities that the agent wins the lottery with it current
bid bt:

Prob(Xt+1 = Xt ∪ {It}) = Prob(ClosingPricet 6 bt) = cdft(bt) (8)

wherecdft(bt) denotes thecumulative density functionof the probability distribution over the closing
prices, when bidbt is placed.

We model the utility of a future outcome at each time stept (except the final one when all the goods
have been allocated) as equivalent to a lotteryLt(Xt, bt). The payoffs of this lottery are determined
by the agent’s utility function, the set of items acquired sofar Xt and bidbt. The probabilities over
outcomes depend on the bidbt and expectation of future price distributions. The decision problem the
agent faces, at each time point is to choose a bidbt that provides the right balance between expected
payoff and probability of winning, given her risk aversionr. This means choosingbt which maximizes
the certainty equivalent of lotteryCE(Lt(Xt, bt)). Using formal MDP notation, the value at each state
is:

Q(Xt, bt) = CE(Lt(Xt, bt)) (9)

The optimal biding policy and the corresponding reward as:

b∗t = π(Xt) = argmaxbt
Q(Xt, bt) (10)
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V (Xt) = maxbt
Q(Xt, bt) (11)

We can rewrite the above two equations, for the optimal bid attime t b∗t and the associated optimal
certainty equivalent valueCE∗, that can be obtained by taking the optimal bidding decisionas:

b∗t = argmaxbt
CE(Lt(Xt, bt)) (12)

CE∗(Lt) = maxbt
CE(Lt(Xt, bt)) (13)

Note that this optimization of the certainty equivalent value CE is performed for the current auction at
time t, but assuming that the optimal bidding decisions are taken the whole sequence of future auctions,
occurring at timest + 1, . . .n. Therefore, the problem of determining the optimal bidb∗t for time point
t actually involves recursively determining the bidsb∗t , . . .b

n
t that maximize the certainty equivalents

of states att1, . . . n. Due to the recursive property of the CE function (captured by Lemma 1 above),
maximizingCE(Lt) at each state leads to maximizing the initial certainty equivalent expectation for the
entire sequence of auctions, i.e. maximizingCE(L0). This means that standing MDP reasoning models
can be applied to this problem, where the Q values of the standard MDP definition are the CE values of
the lottery over future expectations at each step.

A naive alternative to this method would be the application MDP optimization directly to the utility
function of the agent (as done in [4] for risk neutral agents). For risk-averse agents, however, due to the
non-linear nature of the utility functions, definitions of bidding policies in sequential auctions can only
be defined in terms of the CE values of future states.3 This is done in the following Sections, which also
include a numerical example and an illustration that provides insight into the dynamics of the problem.

3.1. Optimal bidding policy for sequential 2nd price(Vickrey) auctions

Greenwald and Boyan [9] show that the optimal bidding strategy for a risk-neutral agent in a second-
price sequential auction is to bid the difference between the expected value of the state when the auction
is won and the expected value of the state when the auction is not won. Here we can extend these results
to the risk-averse case as follows.

Suppose at timet (after a set oft previous auctions) the agent is in a state in which he has the set of
itemsXt. At the next step (i.e. after the auction occurring att), he can transition in either one of two
possible states: one in which he obtains the set of itemsX+

t+1 = Xt

⋃

{It+1} (if the auction is won) or
X−

t+1 = Xt (if the auction is not won. If the auction at timet is a second-price one, the optimal bidding
policy available to the agent is:

b∗t = CE(Lt+1(X
+
t+1)) − CE(Lt+1(X

−
t+1)) (14)

assuming that at all subsequent stepst + 1, .., n the locally optimal bids are chosen.
Proof. The proof resembles the proof in the textbook of Krishna [14], which refers, however, only

to risk-neutral bidders. First, we simplify the notation bydenoting the certainty equivalent of the state
when the item is acquired byCE+

t+1 = CE(Lt+1(X
+
t+1)) and the certainty equivalent of the state when

3We stress that the term “optimal” used in this paper, should be interpreted as optimal w.r.t. the bidder’s aversion to risk and
estimation of future price distributions. This is not the same concept as dominant bidding strategy from standard auction theory
(i.e. independent of the behaviour of other bidders). As discussed in the introduction, dominant strategies are not known to exist
for the sequential settings considered in this paper.
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the item is not acquired byCE−
t+1 = CE(Lt+1(X

−
t+1)). There is a set ofna independent bidders in each

auction, that only desire the item sold in that auction. All auctions being second price, they always have a
dominant policy of bidding their true value. Let the valuation function over thesena bidders be denoted
byG(x) = Gi(x)na , whereG(x) is the cumulative distribution that bids of allna agents are smaller than
x (Gi(x) here refers to a single independent bidder, but we can consider them in aggregate, without loss
of precision). Theng(x) is the density function of this distribution, i.e. it denotes the probability that the
highest bid of the independent bidders is exactlyx.

Note that the state of winning the auction and having to payx brings a monetary gain ofCE+
t+1 − x

for the agent, while loosing brings a monetary gain ofCE−
t+1. In this case, however, the amount to be

paid depends on the highest bid of independent bidders, so the standard certainty equivalence definition
needs adjusting. Basically, theCE of biddingbt in a state at timet can be expressed as:

CE(bt) = −
1

r
ln{

∫ bt

0
g(x)e−r(CE+

t+1
−x)dx + (1 − G(x))e−rCE−

t+1}

The optimal bidb∗t can be obtained by taking the derivative of the aboveexpression, i.e. whendCE(bt)
dbt

=
0. This gives:

−g(bt)

r
∫ bt

0 g(x)e−r(CE+

t+1
−x)dx + (1 − G(x))e−rCE−

t+1

(

e−r(CE+

t+1
−bt) − e−rCE−

t+1

)

= 0

Of this expression, the first fraction is never zero and can bereduced, which basically gives:

e−r(CE+

t+1
−bt) = e−rCE−

t+1

Which finally, after applying the logarithm and dividing by(−r) gives:

CE+
t+1 − bt = CE−

t+1

Resulting in the final expression forbt as:

b∗t = CE+
t+1 − CE−

t+1

So basically, the marginal optimal bidb∗t in a sequence of second price auctions is always the marginal
difference between the certainty equivalents of the next two states. Note that this was known from
standard auction theory for the case of risk-neutral bidders [14]. Basically, since a rational agent views
all previous payments as sunk costs, they can be discounted and do not have to be accounted for in future
bids. The intuitive reason why we find this result in the case of risk-averse bidders as well is that certainty
equivalent functions, although not linear, are basically monotonically increasing in the monetary payoffs
of future states, so it is rational for the agent to increase her bid until the differenceCE+

t+1 − CE−
t+1 is

covered.

3.2. Optimal bidding policy for sequential 1st price auctions: numerical solutions

For first-price auctions no closed form optimal bidding policy can be formulated, because agents have,
as in the case of risk-neutral agents, an incentive to shade their bid. Liu et al. ’03 [15] show, for the
case of single-shot first-price auctions that, on average, risk averse agents shade their bid less than risk
neutral agents, since they want to minimize the chance of losing the auction. In this case, the optimal
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Fig. 3. Example of the certainty equivalent payoff in a two-stage sequential auction for 2 items: A (at timet = 1) and B
(at t = 2). The graph shows the CE value of the corresponding 2-stagegame, if the costs for both items are drawn from
N(µ = 2.5, σ = 1.5), for an agent withr → 0 (left) andr = 0.3 (right).

bid levelb∗t given in Eq. (14) above for the second price auction represents an upper bound on the bid
level a rational agent would place in a first-price auction.

For the sequential case, in order to get insight into the case, we computed the numerical solutions
of the optimal bidding policy as perceived by the agents at time t = 0 (before entering the sequence
of auctions). This is done for a sequence of 2, respectively 3upcoming auctions (items are numbered
alphabetically, by the order they are being auctioned). Theanalysis can be extended to any number of
auctions, and the results are largely similar).

We take the expected distributions for future prices for individual items are drawn from identical,
independentnormaldistributions (i.i.d.s are a choice widely used in economicmodeling [16]). In this
case, we chose normal distributions with meanµ = 2.5 and dispersionσ = 1.5. The chosen valuations
levels are:v{A} = 0, v{B} = 0 andv{A,B} = 10 (for the 2-stage auction), respectivelyv{A,B,C} = 15
and 0 for all other subsets (for the 3-stage auction). This choice of values is such that the sum of the
mean expectation of the costs is exactly half the bundle payoff.

A bidding policy is defined as a combination of bids for itembA, bB , with the note that the bid for B is
only placed if the agent wins A in the preceding auction (otherwise, it has a dominant policy to bid 0 and
earns a reward of 0). Using a mathematical optimization package (in our case Matlab), we computed
the optimal bid levels of this game(b∗a, b

∗
B), for each level of risk aversion from 0 to 1, as well as the

expected CE level of this optimal bidding policy, i.e.maxbA,bB
CE(Lt=0).

In Fig. 3, we show the CE value of the initial choice to enter the set of auctions (i.e.CE(Lt=0)) for
one level of risk aversionr and all possible combinations of bids for the first, respectively second good
in the sequence. As can be seen in Fig. 3, the surface of possible bids has a single optimum point, for
each level of risk aversion.

In Fig. 4 we plot the optimal bid levels for a sequence of 2, respectively 3 auctions. Basically, each
point on the left (i.e. two-item) side of Fig. 4 corresponds to the coordinates of the optimum point in
exactly one bidding surface, such as shown in Fig. 3. The samecan be said about the right side (i.e. the 3
item case), although in this case the bidding surface cannotbe actually visualized (being 4-dimensional).

From the analysis of Fig. 4, we can already highlight some important effects:
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Fig. 4. The optimal bidding policy available to an agent having risk aversionr, in a 2, respectively 3-stage sequential auction.
The items have a complementarity value of $10 (resp. $15) if acquired together, but no value if acquired separately. The costs
for all items are drawn from a normal distributionN(µ = 2.5, σ = 1.5).

– The more averse a risk agent is, the higher she will bid for thesecond item in a 2-stage auction
sequence. Intuitively, a risk averse agent is more concerned with reducing as much as possible the
probability she will loose the auction for B and not cover hersunk cost for item A. By contrast, a
more risk-neutral agent is willing to accept a slightly higher probability she will have a sunk cost,
if the potential gain is greater. Otherwise stated, agents with different risk profiles have different
levels of awareness of costs already incurred.

– By contrast, the optimal bid level for item A slightly decreases as the agent becomes more risk
averse. Risk averse agents are not willing to accept a high sunk cost – thus their optimal policy is to
avoid bidding aggressively in the first round. They may prefer not to participate at all in the sequence
of auctions, than to win the first auction with a high sunk cost, which would be difficult to cover.
Furthermore, note that in this example, the average mean expectation of cost of the first item is only
a quarter ($2.5) of the maximal possible cost. We also performed tests with other mean expectation
costs, and found that, if these costs become higher, the effect is considerably more pronounced – and
risk-averse agents’ optimal bid policy may simply be not to participate at all in the auction sequence.

3.3. Bidding strategy for multiple copy auction sequences

The MDP-based bidding strategy outlined above can lead to anoptimal bidding policy, but only if all
CE values of the states for the entire game are computed. Thiscan become computationally expensive,
especially if the sequence contains many stages (auctions). In the simulations presented in Section 4
below, we make an approximation that enable us to significantly prune the state tree in solving the
multiple copies problem. This problem appears when the bidding agent is interested in only a limited
number of items to form a useful bundle, but these are offeredfor sale repeatedly.4 Suppose items are

4Multiple copies can be seen as an instance of the substitutability problem – though substitutability is wider, if we allow for
partial substitutes. These are not considered in the current work.
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divided into several types. The agent’s expectation of closing price distributions for all items of a given
particular type is the same (thus she does not model the future expectation probability per auction or per
item, but per type of item). If this expectation remains the same during the number of bidding rounds the
agent stays in the game, then it is possible to reduce the state tree representation from a representation
dependent on the number of future auctions to a representation which depends only on the size of the
bundle the agent wishes to buy.

Formally, if there are several items of type A and the agent knows that there arenA more auctions of
items of type A to take place. Then the probability of transition from any stateX to a stateX ∪ {A}
(i.e. winning at least one item of type A at some point in the next sequence ofnA opportunities), given
that the agents bidsbA in each of the auctions in that sequence is:

Prob(ClosingPriceA 6 bA) = 1 − [1 − cdfA(bA)]nA (15)

The above formula can be used to determine the probabilitiesof the getting an item of type A in the
final state (i.e. after all auctions for a good of typeA have closed). One still needs to apply the MDP to
determine the best policy based on these probabilities, butthis is straightforward, as it does not require
computing the whole tree.

Note that this policy only uses as input the number of future auctions of each type remaining before
the auction has to leave the market, not their exact order. Infact, if one knows the exact order that future
auctions take place in, then it might be better to compute thewhole tree (although that’s exponentially
more expensive). However, not knowing the exact order that future auctions will take place in, only
the number of auctions of each type, is more realistic in manyreal-world settings. So, for example,
in the simplified transportation case shown in Section 4.5 below, in practice, planners may know that a
number of opportunities (i.e. transportation orders) to fill a truck may appear before the truck needs to
start driving, but they don’t know exactly the order in whichthese will be offered.

For the experiments reported in this paper, because goods are all of the same type (even if a bidder
may desire only a bundle consisting of several such goods), this heuristic approximates very well the
optimal bidding policy. In this case (i.e. same-type goods), there is basically only one possible sequence
of future auctions, and the length of this sequence basically represents the full information needed to
describe it. If there are several possible types of bundles,then the difference in performance may depend
on the exact auction sequence. However, even this problem can be mitigated by randomizing over all
possible auction sequences when performing experimental evaluation.

As we discussed in the numerical example, having multiple future opportunities to buy a good may
determine risk-neutral agents to reduce their bids (since there is a higher chance of winning one of them),
but it may also encourage risk-averse bidders to join the bidding, bidders which would otherwise find a
short sequence of auctions to be too risky to participate.

4. Experimental analysis

The goal of the experimental results presented in this paperis to test how different sequential auction
market settings are influenced by the presence of a complementary valuation bidders, with different risk
aversion levels. We look at how risk aversion influences the expected profit that the synergy bidder makes
over a sequence of auctions, as well as the probability of completing the desired bundle and ending up
with an incomplete bundle (which can result in a loss). Furthermore, we also study how the expected
revenue of the seller(s) is influenced by the presence of a synergy bidder in a market, as well as how the
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number of buying opportunities (i.e. length of the auction sequence) influences the expected profits of
seller and buyer.

The first part of this paper studies these questions for a market with a single synergy bidder participates
in a sequence of auctions for items of the same type. More concretely, we assume a market consisting of
a sequence of auctions, each populated by a set of local (single-item) bidders and one synergy (global)
bidder that desires exactly one bundle of two items. The number of auctions that the synergy bidder can
stay in the market is fixed for each simulation round (although this parameter will be varied between
different experiments). In the second part of our experimental study, we introduce bundle differentiation,
i.e. the auction sequence consisting of auctions for two types of items and a synergy buyer that can
choose between the two possible bundles. This setting was motivated by a transportation logistics setting
described in Section 4.5.

4.1. Experimental hypotheses

In order to better structure the presentation, we first formulate three hypotheses, that should be
confirmed or disproved in the experimental tests. These hypotheses are intuitively formulated based on
the properties observed in the theoretical part of this paper and should help the reader understand better
the focus and choices made in the simulation model.

Hypothesis 1: A more risk averse agent will have a lower chance of ending thesequence of auctions
with an incomplete bundle (i.e. a bundle in which the first item is acquired, but not the subsequent
ones, hence resulting in a loss).

Note that the statement in Hypothesis 2 appears obvious: it is more a control hypothesis. If we do not
find this, then there may be reasons to believe something is wrong in our experimental set-up. The most
important side effect is stated as:

Hypothesis 2: A synergy bidder with a higher risk aversion will obtain a lower average profit from
bidding in a sequence of auctions than a synergy bidder whichis less risk averse.

The final hypothesis refers to the case of different auction lengths.

Hypothesis 3: For all risk aversion levels, the expected profit of a synergybuyer desiring a bundle of
items will be higher if there are more auctions in the sequence (i.e. more opportunities to buy), while
the chance of ending up with an incomplete bundle will be lower.

Besides these hypotheses, referring to the buyer, in our experiments we also look at the average revenue
that a seller of a set of items sold in sequence will be lower ifthe synergy buyer present in the market
is more risk averse. There are a further two further hypotheses, related to markets with different item
types, but they will be introduced them later.

4.2. Experimental setup

The experimental set-up used is as follows. We consider a sequence ofn closed, first-price auctions,
in all of which exactly one item of the same typeA is sold. In each of these auctions, there are an
(unspecified) number of local bidders, assumed myopic, thatdesire exactly one item of typeA. Since
these agents are assumed myopic (i.e. they only consider thecurrent auction they participate in), we can
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model their bids in each auction through some random distribution. Note that the myopicity assumption
of local bidders is important here: if the bidders are able tostrategize over the sequence of auctions, or
over the presence of a synergy buyer in this sequence, then the model we use for their bidding behaviour
may not hold. In this model, because in all auctions an identical good is sold, we can model the maximum
bid received from the competition in each of then auctions in the sequence through identical, independent
probability distributions (i.i.d.) – a choice that is also made in other decision-theoretic bidding models,
e.g. [7]. Since we do assume any prior information about the way independent bidders place their bids,
we take the most general case and assume they follow normal distributionsN(µ, σ).

In each sequence of auctions there is exactly one synergy (orglobal) bidder participating. This bidder
desires exactly one bundle of two items of the same typeA (and is assumed to have no value for an
individual item). The synergy bidder must acquire this bundle in exactlyn auctions (here, the numbern

of auctions that a bidder can stay in the game can also be thought of as a way to model a shorter or longer
deadline that a bidder has). The valuev(2 ∗ A) that the synergy bidder assigns to the useful bundle, the
number of auctionsn, as well as the parametersµ andσ that model the behaviour of single-item bidders
are all parameters of the simulation. For each market configuration, average results are reported over
1000 runs.

4.3. Experimental results for one-type item auctions

In this section we give the results for a market setting whereonly one type of itemA is sold, and the
synergy bidder desires exactly one bundle of two such items.Initially, we do this for sequences ofn = 7
auctions, where the values of independent bidders are drawnfrom a distributionN(µ = 4, σ = 2). The
synergy bidder assigns a value ofv(A,A) = 10 (notice that this means the synergy buyer values a bundle
of two item, on average, with 25% more than the independent bidders). The bids of the synergy buyer
are computed according to the heuristic in Section 3.3, based on the risk aversion coefficient shown on
the abscissa. Results (with averages over 1000 runs) are shown in Fig. 5. Returning to the hypotheses
stated in Section 4.1, we see that indeed, Hypothesis 2 is confirmed for this setting: the higher the risk
aversion of a synergy bidder, the lower his/her average expected profit (the drop is quite considerable –
from 4 to around 2.5). However, one can also notice the variance of the results decreases slightly for the
risk-averse bidder. These results are consistent with expectations.

The right side of Fig. 5 shows the average revenues of the seller for this setting. These are somewhat
surprising, given that one would intuitively expect sellerrevenues to drop if bidders in the market are
more risk averse. In fact, it seems there is some type of revenue equivalence, in the sense that the
revenue that a seller can expect in such a sequence of sequential auctions with a risk averse bidder does
not depend on his/her risk aversion. From further examination, this can be explained as follows: since
these are first price auctions, a more risk averse bidder willbid less often in this sequence. However
when he does bid, he will bid considerably more which, on average, has a compensating effect for the
reduced participation. Nevertheless, a more in-depth investigation is needed (with a larger market and
more synergy bidders), in order to formulate a hypothesis regarding this point.

4.4. Results for one item and different auction lengths

In this Section, we extend the above analysis to a setting where we vary not only the risk aversionr
of the synergy buyer, but also the number of auctions he/she can participate in to acquire the desired
two-item bundle. Furthermore, we made this setting more competitive: while the valuation of each
synergy buyer for a bundle of 2 A-s remainsv(A,A) = 10, the competition is slightly more aggressive
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Fig. 5. Setting with 7 sequential auctions and one synergy buyer withv(A, A) = 10, and independent agents for each auction,
bidding according toN(4, 2). The left side gives the average profit of the synergy buyer, while the right the average revenue of
the seller (both averaged over 1000 runs).

and will be according toN(4.5, 2). This basically means that we reduce from 20% to 10% the advantage
in valuation that a synergy buyer has, on average, over the independent bidders. The motivation for this
is that it seems more relevant to study how the success rate isinfluenced by multiple buying opportunities
(i.e. varying number of auctions), for a more competitive setting.

Results from these tests are shown in Fig. 6, respectively 7.Returning to the above stated hypotheses,
we can conclude that, indeed Hypothesis 2 can be confirmed. Even for this modified setting, there is
a marked decrease in average synergy bidder profits, as his/her risk aversion increases. This effect is
more noticeable for the higher auction lengths (5, 7 or 10 items). The reason for this is that, for this
competitive setting, the participation rates, even for themore risk-neutral agents are on the low side (see
left side of Fig. 7) and relatively constant overr. Furthermore, it seems that the revenue the seller can
expect is also relatively constant over the risk aversion ofthe synergy buyer, even for these more general
tests.

From looking at Figs 6 and 7 one can clearly see the very large effect that the number of available
auctions has, both on the expected profit and success rate of the synergy buyer (thus confirming Hypothesis
3 above). This effect clearly holds for all risk aversion coefficients of the synergy buyer and all
configurations. From Fig. 7, one can also see that a more risk averse bidder, while making, on average,
less profit, does have some advantages in this type of auctions: his/her chances of ending up with an
incomplete bundle before the deadline (hence making a loss in that particular auction run) decrease
considerably. Thus, these results support Hypothesis 1, asexpected. Since in many real life bidding
situations (one will be discussed in the following Section),agent consider only the possibility of profit/loss
in an immediate run (not the long-term statistical average), minimizing chance of a loss, even if it has
only 5%–10% probability, can be an important consideration.

4.5. Setting with different item types and more complex preferences

The previous Section has already highlighted the complexity of bidding in sequential auction to get
a bundle of two items, even for the simplified setting with onepossible item type. However, in most
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Fig. 6. Results for the average profit of the synergy buyer (left) and seller revenue (right), for a setting with one synergy agent
with v(2A) = 10 and a set of independent agents bidding according toN(4.5, 2). The number of auctions the synergy agent
can stay in the game to acquired the desired bundle, as well ashis/her risk aversion coefficient are varied for the different
settings. All results are averages over 1000 runs, but to avoid overloading the picture, error bars were not included.

real-life scenarios, on top of the question of how to divide their bids between complementary items in a
sequence, agents are confronted with several alternativesthat they must choose from during bidding. In
fact, the potential complexity of the space possible preferences is very large. In this Section, while we do
not completely model the full potential complexity of possible preferences, we show that having a second
type of good to choose from introduces a whole different dimension to the dynamics of decision-theoretic
bidding in sequential auctions.

We should mention that our choice for the valuation structure of the bundles, while simple, is motivated
by a transportation logistics application setting and doescapture much of the dynamics of that use case.
Therefore, before we describe the experimental set-up and results, we motivate it by briefly describing
how the experimental choices made could plausibly fit a real-life application setting.

4.5.1. Bidding in sequential auctions for transportation orders
The problem setting we considered in our auction model is that of distributed transportation logistics

with partial truck loads (a real-life, business-oriented platform for this case, developed in collaboration
with a large logistic company, is described in [24]).

In the logistic setting we consider, transportation orders(either from one, but usually from different
sellers/shippers) are usually sold at different points in time through spot market type mechanisms (usually
auctions). The bidders for these loads are small transportation companies who try to acquire a suitable
set (bundle) of orders that would fit the capacity of their trucks. In this model, we assume all orders
are ready for pick-up or return delivery at one central transportation depot.5 Figure 8 shows just such a
topology, with delivery point group into 2 main delivery regions).

5This is actually a realistic assumption in many cases, especially if there is just one shipper, or several small shipperswho
aggregate their demand to one central distribution point.
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Fig. 7. Success and failure rates for a setting with one synergy agent withv(2A) = 10 and a set of independent agents bidding
according toN(4.5, 2). The left side graph shows the percentage (among the 1000 runs) in which the agent acquired his/her
target bundle of two A items. The right side graph shows the percentage of runs with incomplete bundles (i.e. runs in whichthe
synergy buyer obtained the first item, but not the second, hence resulting in a loss).

Fig. 8. Example transportation scenario with one central depot D and two disjoint transportation regions: A and B. A truck
starting from the central depot (D) can only drive to one of the delivery regions, assuming it has to return to the base the same
day. Therefore, a bidding agent representing this truck hasto acquire part-load orders from exactly one of the two regions.

Acquiring suitable combinations (bundles) of orders to fit the same trip with one truck is crucial for
profitability in this setting. A truck acquiring, for example, an order for 1/2 truckload to be delivered to
a certain region usually counts on acquiring another 1/2 truckload order from the same region, in order
to make a profit. In this case, item types represent differentdelivery regions – each trucking company
expecting different costs/profit structure per region, depending on its transportation network. Another
possibility for bundling can concern symmetrical outgoing/return orders which originate in the same
region.

In the utility model used in our auction simulations, we abstract the main characteristics of this setting.
In this way, bidders can be considered as truck owners (i.e. carriers), the items are transportation orders,
item types correspond to different delivery or pick-up regions. In practice, auctions for transportation
orders are reverse auctions: the bidders that offer the lowest cost get the order. However, the correspond-
ing model with sequential ascending auctions studied in this paper is basically equivalent to this, and it’s
easier to compare with other models and in existing literature.

Furthermore, in reporting the results, we also make the assumption that there is a single seller for
all the goods (or orders) in the sequence. While in practice transportation orders may originate from
multiple shippers (or customers), the aggregate revenue ofthe single seller can be seen as indicative of a
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Fig. 9. Results for the average profit of the synergy buyer (left) and seller revenue (right), for a setting with two items A(of
valuevAA = 10) sold in 5 auctions, and B (of valuevB,B = 20) sold in 2 auctions. Notice there is a transition, becauseagents
with risk aversionr >= 0.5 do not try to get the higher value bundle (of item B).

global average, that a seller, without knowing his/her precise place in the sequence of auctions, has from
selling items in this sequence.

4.5.2. Multiple item simulation set-up
The sequential model we consider is as follows. The number ofauction rounds is still fixed at 7, but

there are two types of goods: A and B. In this setting, we introduce a differentiation between the items:
items of type B are relatively “rarer” (they are sold only in 2auctions out of the 7), while items of type
A are more common, and sold in 5 out of 7 auctions.

However, the value the synergy buyer assigns to a bundle of such items is also asymmetrical. A bundle
of 2 items of type B has a valuation ofv(B,B) = 20, while a bundle of 2 items of type A:v(A,A) = 10.
The competition coming from single-item bidders for those goods is also different. For goods of type A,
the bids from this competition are modeled through a normal distributionN(µA = 4, σA = 2), while for
items of type B through a distribution:N(µB = 6, σB = 2). Therefore, the additional valuation of the
synergy agent for a bundle of two items, compared to theaveragepaid by independent bidders is only
2/10= 20% for a bundle of type A, but 8/20= 40% for a bundle of type B. at the same time, a bundle
of type B is twice as rare.

4.6. Multiple item setting: hypotheses

Before we present the result graphs for this setting, we follow the format of the previous Sections, and
formulate two additional hypotheses:

Hypothesis 4: In a market with two types of items, one of which is rarer, but also more valuable than
the other, the synergy bidders with a risk aversion coefficient above a certain level may select to
bid for a bundle of the more common item, in order to maximize their chances of completing the
bundle. This can reduce the synergy bidder’s average expected profit from the auction sequence.
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Fig. 10. Percentages of success and failure per 1000 simulation runs, for a setting with two different types of items described
above. Notice the transition atr >= 0.5, showing that risk averse bidders do not try to get the bundle with the rarer item B, but
only one of A.

Hypothesis 5: In the above setting, if risk averse agents prefer to bid for more common, but less valuable
goods, this also reduces the revenues of the auctioneer.

4.7. Results for two-item case

Experimental results for the above setting are presented inFigs 9 and 10. Figure 9 gives the average
profit of the synergy agent and the seller, while Fig. 10 givesthe percentages of auctions that agents
complete (or fail to complete) bundles of items or either type. All results reported are averages over
1000 runs.

Basically, Hypotheses 4 and 5 are, on the whole, confirmed by these tests: there is a decrease in the
expected profit of the synergy buyer and seller. However, there is an important caveat: there seems,
for this parameter settings, to be an important threshold effect as the risk aversion factor of the agent
becomesr = 0.5. The reason for this threshold effect is clear from Fig. 10: at this level, the more risk
averse agents stop trying to bid for the more valuable, but also “riskier” bundle of item B (for which there
are only 2 available auctions), and go for a bundle of item A, from which there is less absolute profit to
be made, but for which there are 5 available auctions.

The left-hand side of Fig. 9 shows that, while going for the bundle of item B brings, on average,
slightly more profit, this result also is subject to a much higher variance, i.e. the bidding agents are more
likely to loose money by failing to complete their desired bundle. By contrast, bidding for a bundle of
type A (as the more risk-averse agents do), can slightly decrease the average expected profit, but the
bidder is less likely to loose money. In fact, the lower interval of the variance bars, in this case, seem to
be all above the zero axis.

The seller revenue (right side of Fig. 9) is also influenced bythe risk aversion (and, hence, the bidding
behaviour) of the synergy bidder, but the decrease in sellerrevenue that occurs at the threshold level is
relatively slight (of only a few percentage points). Nevertheless, one should note this is a setting with
only one synergy bidder present in the market, therefore theaverage effect may be understated.
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5. Conclusions and further work

To summarize, the main contributions of the work presented in this paper are as follows.
First, we establish a formal link between bidding strategies in sequential auctions and standard (Arrow-

Pratt) risk aversion models from economics. Next, we derivea useful property of certainty equivalence
functions and it shows how such functions can be naturally applied to sequential auction games. We
study the way in which the perceived optimal bidding strategy computed by a risk averse agent, given
her probabilistic model of the future, differs from the optimal strategy of a risk neutral agent. Risk
averse agents tend to bid more aggressively throughout the sequence of auctions, in order to cover their
sunk costs for the initial items in the sequence. However, ifthe future sequence of auctions is initially
perceived as too risky (given the agent’s initial estimation of future closing prices), the best strategy
available to a risk averse agent is simply not to participateat all.

Then, we study experimentally the effect that this decision-theoretic bidding behaviour of risk averse
bidders has on his/her expected profit, for markets in which the competition is formed of “myopic”, local
bidders (i.e. bidders that require only one particular good). We show that, as expected, more risk-averse
bidders have less of a chance to end up with an incomplete bundle, and hence make a loss. But, on average
(i.e. assuming a market with repeated interactions), they make less expected profit. When bundles of
two possible items are available, we show that more risk averse bidders may prefer to bid for the more
common one (even if it has less absolute value), rather than risk the chance of making a loss. This is
rational for them, as it their reduces their risk, although it also reduces their average expected profit.

The paper, while providing some important results regarding the complexity of the sequential bidding
problem for risk averse agents, leaves several issues to be answered in further work. An important
one is deriving optimal bidding strategies in markets in which several synergy agents (i.e. bidders with
complementary valuations) bid against each other, not onlyagainst myopic, single-value bidders, such as
in this work. New bidding heuristics could be developed for software agents that do not only target raw
efficiency, but also allow their owners to select a balance between expected profit and risk, based on their
personal preferences. Finally, the role of mechanisms suchas decommitment [26] and options [11,12,
20,19] in reducing or eliminating the exposure problem thatrisk-averse agents face is another promising
direction for further work.
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