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Foresighted policy gradient reinforcement learning:
solving large-scale social dilemmas with rational
altruistic punishment

ABSTRACT
Many important and difficult problems can be modeled as ``social dilemmas'', like Hardin's
Tragedy of the Commons or the classic iterated Prisoner's Dilemma. It is well known that in
these problems, it can be rational for self-interested agents to promote and sustain cooperation
by altruistically dispensing costly punishment to other agents, thus maximizing their own long-
term reward. However, self-interested agents using most current multi-agent reinforcement
learning algorithms will not sustain cooperation in social dilemmas: the algorithms do not
sufficiently capture the consequences on the agent's reward of the interactions that it has with
other agents. Recent more foresighted algorithms specifically account for such expected
consequences, and have been shown to work well for the small-scale Prisoner's Dilemma.
However, this approach quickly becomes intractable for larger social dilemmas. Here, we
advance on this work and develop a ``teach/learn'' stateless foresighted policy gradient
reinforcement learning algorithm that applies to Social Dilemma's with negative, unilateral side-
payments, in the from of costly punishment. In this setting, the algorithm allows agents to learn
the most rewarding actions to take with respect to both the dilemma (Cooperate/Defect) and the
``teaching'' of other agent's behavior through the dispensing of punishment. Unlike other
algorithms, we show that this approach scales well to large settings like the Tragedy of the
Commons. We show for a variety of settings that large groups of self-interested agents using
this algorithm will robustly find and sustain cooperation in social dilemmas where adaptive
agents can punish the behavior of other similarly adaptive agents.

2000 Mathematics Subject Classification:  91A06
1998 ACM Computing Classification System: I.2.11
Keywords and Phrases: multi-agent games; iterated prisoner's dilemma; side payments
Note: This work has been carried out under theme SEN4 ``Computational Intelligence and Multi-Agent Games''. Part of
this research has been performed within the framework of the project ``Distributed Engine for Advanced Logistics
(DEAL)'' funded by the E.E.T.\ program in the Netherlands. Work of SB is supported by NWO VENI grant 639.021.203.





Foresighted Policy Gradient Reinforcement
Learning: Solving Large-Scale Social Dilemmas

with Rational Altruistic Punishment

Pieter Jan ’t Hoen, Sander Bohte, and Han La Poutré

CWI, 1098SJ Amsterdam, The Netherlands,
{hoen,sbohte,hlp}@cwi.nl

Abstract. Many important and difficult problems can be modeled as
“social dilemmas”, like Hardin’s Tragedy of the Commons or the classic
iterated Prisoner’s Dilemma. It is well known that in these problems, it
can be rational for self-interested agents to promote and sustain coop-
eration by altruistically dispensing costly punishment to other agents,
thus maximizing their own long-term reward. However, self-interested
agents using most current multi-agent reinforcement learning algorithms
will not sustain cooperation in social dilemmas: the algorithms do not
sufficiently capture the consequences on the agent’s reward of the inter-
actions that it has with other agents. Recent more foresighted algorithms
specifically account for such expected consequences, and have been shown
to work well for the small-scale Prisoner’s Dilemma. However, this ap-
proach quickly becomes intractable for larger social dilemmas. Here, we
advance on this work and develop a “teach/learn” stateless foresighted
policy gradient reinforcement learning algorithm that applies to Social
Dilemma’s with negative, unilateral side-payments, in the from of costly
punishment. In this setting, the algorithm allows agents to learn the
most rewarding actions to take with respect to both the dilemma (Coop-
erate/Defect) and the “teaching” of other agent’s behavior through the
dispensing of punishment. Unlike other algorithms, we show that this
approach scales well to large settings like the Tragedy of the Commons.
We show for a variety of settings that large groups of self-interested
agents using this algorithm will robustly find and sustain cooperation in
social dilemmas where adaptive agents can punish the behavior of other
similarly adaptive agents.

1 Introduction

It is well known that in many cases, greedy and selfish behavior by individual
agents may harm the value extracted by a collective of agents as a whole, and –
importantly – ultimately decrease the value extracted by the individual agents.
This class of problems is known as “social dilemmas”, with the classic iterated
Prisoner’s Dilemma (ipd) being an example in the smallest – two player – setting,
and Hardin’s Tragedy of the Commons (Hardin, 1968) embodying the same
problem instantiated with many players. In both settings it is the case that when



all agents take the immediately most rewarding action, the resulting collective
joint action has an individual payoff that is worse for each individual agent than
some other joint action. Thus, in repeated play of these games, myopic selfish
behavior leads to poor outcomes for all individuals.

The problem of how cooperation can be sustained by self-interested agents
in social dilemmas has been studied in such diverse fields as economics (Klein &
Leffler, 1981; Shapiro, 1983; Anderson & Putterman, 2006), game theory (Ru-
binstein, 1979; Milgrom, North, & Weingast, 1990; Kandori, 1992), politics (Ax-
elrod, 1984), evolutionary biology (Boyd, Gintis, Bowles, & Richerson, 2003) and
the social sciences (Fehr & Fischbacher, 2003). For large groups of interacting
agents facing social dilemmas, much research has focused on groups where many
2-player ipd games are played between agents (Boyd et al., 2003; Fehr & Fis-
chbacher, 2003; Sen, 1996; Nowak & Sigmund, 2005). This corresponds closely
with the classical example of trade. Many settings however more closely resemble
Hardin’s Tragedy of the Commons, where individuals can affect the reward for
all involved.

It follows from the Folk Theorems (Fudenberg & Maskin, 1986) that Pareto-
optimal cooperation can in principle be rationally enforced as a subgame perfect
equilibrium in many social dilemmas: if all agents use a certain strategy, and
all agents belief that the other agents also use this strategy, no individual agent
has an incentive to deviate from that strategy. The proofs heavily rely on two
conditions: first, the actions of individual agents are at least partially public
information for other agents to act on. Second, observed deviation from desired
behavior is actively punished by other agents, at personal cost to these agents:
(seemingly) altruistic punishment (Kandori, 1992).

Here, we focus on the setting of the original Tragedy of the Commons,
with the familiar properties of the n-player ipd (nipd), with the additional op-
tion of agents making side-payments (Andreoni & Varian, 1999). Where pos-
itive side-payments may encourage certain actions, and (unilateral) negative
side-payments - punishments - are discouraging. With negative unilateral side-
payments, agents can dispense punishment to (some) other agents, at a personal
cost. In (Milgrom et al., 1990), it is shown that from a game-theoretic perspec-
tive, dispensing seemingly altruistic punishment can be incentive compatible for
a self-interested agent for both 2- and n-player ipd games.

In (Boyd et al., 2003), social dilemmas with possible altruistic punishment are
modeled as a repeated game with two stages: in the first stage, the agents play
an ipd game, and in the second stage, the agents may punish other agents. When
agents can make unilateral side payments by dispensing punishment to (some)
other agents – at a personal cost – defecting in the is no longer the dominant
strategy in the first ipd stage of the one-shot game. However, as punishing itself is
costly, there is still a second order “free-rider” problem in that agents prefer that
other agents dispense the punishment, and when no one punishes, the original
ipd problem returns.

To study large-scale social dilemmas of the nipd variety, we use this two-
stage formalization, where the first stage consists of a single round of the n-



player Prisoner’s Dilemma involving all agents in the group. We denote this
formalization as the nipd-ap game: nipd with altruistic punishment.

From a machine learning perspective, nipd-ap type games are interesting,
because they require agents to have an accurate “theory of mind” (Fehr & Fis-
chbacher, 2003): the individual agents need to be able to predict the reactions
and adaptations of other agents to their own actions. Only then can cooperation-
supporting punishment strategies be potentially rational for the agent in terms
of expected long term profits. Sufficiently foresighted and rational agents should
thus be able to learn that in social dilemmas, given similarly smart opponents, it
can be rational to actively sustain cooperation with costly altruistic punishment,
even for large groups of agents in Multi-Agent Systems (mas).

This issue of an agent’s actions changing other agent’s behaviors is consid-
ered in (Shoham, Powers, & Grenager, 2007): the authors remark that “In a
multi-agent setting one cannot separate learning from teaching” (in the sense
that adaptations may be reactive and can be influenced/taken into account).
Although game theoretical results with full rationality show that cooperation
can be enforced in nipd games through disruptive so-called grim-trigger strate-
gies, it is an open question how such results can be obtained in a gradual fashion
by individual learning agents each using reinforcement learning algorithms.

Current state-of-the-art multi-agent reinforcement learning (marl) algorithms
are typically a mixture of Best Response1 and fixed strategies (Crandall &
Goodrich, 2005). Consequently, typical current marl algorithms have great dif-
ficulty with the 2-player ipd (Crandall & Goodrich, 2005), and generally lack
results for ipd games with more players.

We are not aware of any marl work on nipd games with side-payments. How-
ever, as we show in this paper, standard, myopic gradient-based reinforcement
learning performs poorly in nipd-ap games, and similar results are expected for
any reinforcement learning algorithm that relies on myopic optimization: due to
the second order dilemma of punishing, the Best Response action in the nipd-
ap game is to not punish, as the punishing agent incurs an immediate penalty
without any immediate benefit. Additionally, for most current marl algorithms,
it is not obvious how punishing side-payments should be incorporated.

With these considerations in mind, we design a reinforcement learning al-
gorithm that allows self-interested agents to be foresighted enough to learn to
jointly sustain cooperation in large nipd-ap games with many similarly fore-
sighted agents participating in the mas. We develop a foresighted policy gradient
reinforcement learning algorithm, fpgrl, to learn to optimize an agent’s reward
in the nipd-ap game. The fpgrl algorithm endows individual agents with an
estimate of the impact of their actions on the policy adaptations of other agents,
and the associated gradient of future reward. If the future expected reward con-
ditional on dispensing punishment exceeds the immediate cost, it can become
rational for an agent to do so. This conditional future reward would be derived
from other agents cooperating more, under the expectation that if they defect,

1 The best response is the strategy (or strategies) which produces the most favorable
immediate outcome for the current agent, taking other agent’s strategies as given.



their payoff is so diminished due to punishments, that cooperating is expected
to be more rewarding (clearly, all agents have to be sufficiently foresighted for
this scheme to work, so we focus on self-play here).

Our approach advances recent work on foresighted reinforcement learning
in (’t Hoen, Bohte, & La Poutré, 2006a, 2006b). These algorithms enable self-
interested agents to learn to maximize their reward by sustained cooperation in
small-scale nipd games. If effect, the algorithms find that by learning tit-for-tat
like strategies (Axelrod, 1984), an agent can “threaten” to punish other agents by
measurably reducing future cooperation in response to undesired behavior (just
like game theoretic constructions like grim-trigger strategies to sustain subgame
perfect equilibria). However, these algorithms only work for small groups of
agents, as it rapidly becomes intractable for individual agents to track the effect
their cooperation or defection has on the behavior of the other individual agents.
For larger groups, the collective behavior then increasingly descends into the
worst possible outcome of collective defection.

The fpgrl algorithm we develop here explicitly accounts for the joint learn-
ing/teaching intrinsic to multi-agent learning (Shoham et al., 2007), and the
foresighted anticipation of expected reactions required for successful “teaching”.
“Teaching” is taken as the consideration whether or not it is rational, in the sense
of a sufficient increase in expected future rewards, to punish other agents that
are observed to exhibit undesired behavior. The “learning” accounts for both
the expected immediate payoff of an action, as well as the expected amount
of punishment that can be expected from other agents. We show that together
these ingredients of the fpgrl algorithm allow agents to successfully learn both
a suitable policy for cooperating and for dispensing altruistic punishments in
large groups as a means to increase their own reward in the nipd-ap game.

We thus show that fpgrl allows a large group of sufficiently smart com-
petitive agents to learn to cooperate in the nipd-ap game: they are each able
to compute that, given the observed adaptive punishments of other agents, co-
operating will increase the expected reward from the repeated interaction. The
agents thus learn to cooperate through selfish maximization of their own per-
ceived long-term rewards. The fpgrl algorithm plays a Best Response strategy
when the opponents are estimated to have stationary strategies. We find that
agents using fpgrl in the nipd-ap game achieve and sustain cooperation in
groups of more than 250 agents (further experiments were limited by computer
memory), for a range of punishment models.

2 Model

In the classic nipd game, each player has a choice of two actions: either coop-
erate (C) with the other players or defect (D). A game can be classified as
an nipd game if it has the following three properties: 1) Each player can choose
between playing cooperation (C) and defection (D); 2) The D option is dominant
for each player, i.e. each has a better payoff choosing D than C no matter how
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Fig. 1. Structured payoffs for the (symmetrical) nipd

many of the other players choose C; 3) The dominant D strategies intersect in a
deficient equilibrium.

The nipd payoff matrix is shown in Figure 1; Ci and Di respectively denote
the reward for cooperating and defecting with i cooperators (and n − i − 1
other defectors). The following conditions hold for the respective payoffs (Yao
& Darwen, 1994): (1) Di > Ci for 0 ≤ i ≤ n− 1; (2) Di+1 > Di and Ci+1 > Ci

for 0 ≤ i < n − 1; (3) Ci > (Di+Ci−1)
2 for 0 ≤ i ≤ n − 1 (the payoff matrix is

symmetric for each player).
When playing nipd, the outcome where all (other) players choose their non-

dominant C-strategies is preferable from every player’s point of view to the one
in which everyone chooses D, but no one is motivated to deviate unilaterally
from playing Defect, regardless of what other agents are playing. The natural
outcome of agents playing myopic Best-Response1 policies in nipd is Defection by
all agents, which is stable (a single stage Nash-Equilibrium (ne)) but obviously
Pareto-deficient2(Gintis, 2000).

Here, we assume that an agent can observe its own payoffs, its own actions,
as well as the actions taken by (a selection of) the other agents in each round
of the game. Repeated games are modeled as a series of rounds with the same
opponent(s). All agents concurrently choose their actions. A potential adaptation
of the agents’ policy, i.e. learning as a result of observed opponent behavior, takes
effect in the next round of the game. Each agent aims to maximize its average
reward from iterated play of the same game by adjusting its actions to follow
the immediate reward gradient.

We formalize the nipd-ap game – nipd with altruistic punishment – as in
(Boyd et al., 2003). In the nipd-ap, each round consist of two stages: in the
first stage, the agents play the nipd, and in the second stage, the agents choose
whether to punish certain other agents.

2 A Nash Equilibrium is a joint strategy such that no agent may unilaterally change
its strategy without lowering its expected payoff in the one shot play of the game.
A Pareto optimal solution of the game is a joint strategy such that no agent may
unilaterally increase its expected payoff without making another agent worse off. A
(joint) strategy π1 is said to Pareto dominate a strategy π2 if the expected payoff
for π1 is at least as high as for π2 and higher for at least one of the agents. A joint
strategy is Pareto deficient if it is not Pareto optimal.



Formally, an agent K can in the first stage play cooperate, C, or defect, D,
and the agents receive the payoffs as defined in the standard nipd. In the second
stage, an agent K can choose to punish or not punish certain other agents. When
agent K chooses to punish another agent L, agent L receives a penalty pK > 0
reducing its payoff by pK , and agent K receives a penalty pcK > 0, a “personal
cost”. Without such a personal cost there is no direct incentive for an individual
agent to minimize the amount of dispensed punishing.

For altruistic punishment to be rational for an agent, the agent has to com-
pute that dispensing some amount of punishment increases its expected future
reward more than the immediate expense of punishing. In terms of the nipd, this
means that an agent will only dispense punishment if it computes that this suf-
ficiently increases cooperation of the punished agent(s). Note that if punishment
effectively promotes cooperation in the system, the required amount of actually
dispensed punishment declines with increasing cooperation.

We define different degrees of public information on agent behavior, that
other agents can act on. Let victims(K) be the set of agents whose actions agent
K observes and can potentially punish. If agent K chooses to punish in the
second stage, it punishes all agents L ∈ victims(K) that played D in the first
stage; the payoff of agents L is for each agent reduced by pK , and the payoff of
agent K by pcK .

For punishment to encourage cooperation, it is required that the expected
imposed penalty for an agent L exceeds the reward agent L can gain from defect-
ing. Formally, let AL denote the set of agents that can punish an agent L, and
let

〈
pKj

〉
denote the expected immediate penalty from agent Kj ∈ AL imposed

onto agent L for defecting; further let Ci and Di be the payoffs of the nipd game.
It is incentive compatible for agent L to cooperate when:

Di −
∑

Kj∈AL

〈
pKj

〉
< Ci. (1)

We define three models for the victim(K) sets, corresponding to different
degrees of public information that individual agents observe of other agents’
actions in the nipd-ap game. The different models let us gain insight into the
degree to which rational altruistic punishment depends on the availability of
public information. We investigate various sizes of the victim set, |victim(K)|,
as well as a more general punishment scheme where an agent can punish all
agents for an single observed defection. The latter is inspired by the observation
of (Boyd et al., 2003) that in their evolutionary simulations, the ability of agents
to also punish non-punishing agents significantly increases the cooperation in
their system.

First, we define nipd-ap(1:1). Each agent can potentially punish exactly one
other agent. Agent Ki potentially punishes agent K(i+1)mod n to introduce a ring
structure where every agent can punish exactly one other agent for defecting.
For example, for three agents K0, K1, and K2, agent K0 can punish agent K1,
agent K1 agent K2, and agent K2 can punish K0.

We generalize nipd-ap(1:1) for a larger victim set: nipd-ap(1:k). In nipd-
ap(1:k) each agent can observe the defections of k other agents and then poten-



tially punish them. Agent Ki is then able to punish agents in the set victims(Ki)
formed by the agents with indices ranging from K(i+1)mod n to K(i+k)mod n,
where k < n − 1. Note that a defector can now be punished by up to k agents
at the same time for a single defection. For each agent punished, the punisher
Ki pays the personal punishment cost pcKi

; for k agents punished, a price of
k × pcKi

is paid.
Lastly, we introduce a “spite” model: nipd-ap(1:∼n). Here, a punishment

action by an agent dispenses a punishment to all agents in the system. Agents
can then only punish defections by applying a broad penalty to the whole group
of defectors and cooperators. For example, for agents K0, K1 and K2, if agent
K1 defects then if agent K0 punishes, agent K2 also receives the punishment, as
well as agent K0 itself.

Policies and State space representation. The observed joint actions, and the
value of these joint actions that can be learned, consists of four parts. First of all,
each agent uses the fact whether they cooperated or defected in the last round.
If they defected, they record whether they received a punishment. Furthermore,
they record whether the agents they monitor for defection, i.e. the victim-set,
cooperated or defected. Lastly, the agent records whether a defection by a victim
was punished or not. Along with a cooperation and punishment policy, this
represents how one agent models the (observable) joint actions of the MAS, its
personal payoff for cooperation and punishment, and the expected value of its
current policies.

An agent determines which action to play as a joint policy of two separate
policies: the cooperation policy, and the punishment policy. Let the cooperation
policy µk ∈ [0, 1] denote the likelihood that agent K cooperates in the first
stage of a nipd-ap round (and otherwise defects). Let ηk ∈ [0, 1] denote the
punishment policy, i.e. the likelihood that agent K will punish a defection by an
agent in the victims(k) set.

We first consider the variant of nipd-ap(1:1), i.e. each agent only potentially
punishes exactly one other agent. For an agent K then, two other agents matter:
the agent L that agent K monitors for defection: L = victims(K), and agent M
that monitors agent K: K = victims(M). There are then z other agents playing
the game. Let µ̂L and η̂M be the estimates that agent K has for the cooperation
and punishment policy of respectively agent L and agent M .

The expected payoff of agent K for potential joint actions is given in Table
1. For agents K, L, and M , the possible joint actions with different payoffs are
given, numbered one through nine. For agent K and L, the choices of cooperation
are given. Where relevant, the choices for Punishing or Not Punishing are also
given. The likelihood for the current cooperation and punishment policy along
with the estimated opponent policies are sufficient for agent K to estimate the
expected reward of its current policies. For the nipd-ap (1:k) variants, with more
than one agent in the victims set, Table 1 is also used as joint action values
for an agent K, with the appropriate extensions to account for each individual
agent in the victim set of K and the agent set monitoring agent K.



Table 1. Payoffs for Agent k playing the nipd-ap for potential joint actions. The
labels “got P/NP” and “to P/NP” respectively denote Agent k receiving/not receiving
punishment, and dispensing/not dispensing punishment.

case aK aL got P/NP to P/NP probability reward

1 C C - - µK × µ̂L Cz+2

2 C D - yes µK × (1− µ̂L)× ηK Cz+1 − pcK

3 C D - no µK × (1− µ̂L)× (1− ηK) Cz+1

4 D C yes - (1− µK)× µ̂L × η̂M Dz+1 − pM

5 D C no - (1− µK)× µ̂L × (1− η̂M ) Dz+1

6 D D yes yes (1− µK)× (1− µ̂L)× ηK × η̂M Dz − pM − pcK

7 D D yes no (1− µK)× (1− µ̂L)× ηK × η̂M Dz − pM

8 D D no yes (1− µK)× (1− µ̂L)× ηK × (1− η̂M ) Dz − pcK

9 D D no no (1− µK)× (1− µ̂L)× (1− ηK)× (1− η̂M ) Dz

3 The fpgrl Algorithm

Here, we present fpgrl, a stateless foresighted policy gradient reinforcement al-
gorithm. fpgrl combines the idea of foresighted accounting of reactive-adaptive
interactions with a policy gradient reinforcement learning approach to overcome
the intractability of full state-space representations for large groups of agents. A
foresighted algorithm is needed to sustain cooperation in nipd-ap as an agent’s
actions directly influence the policy adaptations of other agents, and thus influ-
ence the agent’s future payoff.

In (’t Hoen et al., 2006a) a foresighted reinforcement learning algorithm
is developed that accounts for agents’ reactive adaptation due to interactions.
However, this approach works only for fine-grained interactions between a small
number of agents, as states are encoded as the recent history of actions of all
the other agents in the system. This becomes quickly intractable for large multi-
agent systems (mas).

In fpgrl, no states are encoded, but rather a cooperation policy µk and a
punishment policy ηk are adapted with respect to the observed gradient in the
reward, conditional on reactive adaptations of opponents. In our implementation
of fpgrl, we only apply foresighted reinforcement learning to the punishment
policy ηk, by attributing all opponent adaptation to changes in ηk. The coop-
eration policy µk is learned through standard Policy Gradient (Baird & Moore,
1999). The reasoning behind this choice is, that it is already known that focus-
ing on the cooperation policy alone allows for only limited cooperation in large
multi-agent systems (’t Hoen et al., 2006b).

In the fpgrl algorithm, an agent k updates its punishment policy ηk as
follows. At each round of learning, the agent adapts ηk along the gradient of
increasing reward. The gradient of reward is calculated including the expected
adaptations of the observed agents due to the agent’s own actions. The fpgrl
algorithm tracks the changes in observed opponent policies over time. It is as-



Algorithm 1 fpgrl

For each agent k, initialize ηk, µ̂−k and Vk for all joint actions {ak, a−k}.
Do in each epoch
loop

Calculate highest valued pua∗j using (8)
Update policy ηk using pua∗j .
Play ak ∈ Ak according to ηk.
Receive reward rk,t for joint action {ak, a−k}.

Update joint action reward estimate Vk(

»
ak

a−k

–
), and update opponent policy µ̂−k.

end loop

sumed that changes in the opponent behavior, at least in part, reflect a reaction
to actions chosen by the fpgrl algorithm. The policy of the fpgrl is then op-
timized with expected future reactive adaptations of the opponents taken into
account.

We describe the fpgrl algorithm from the perspectives of an agent k and its
opponents, agents −k, we use this notation with subscripts to indicate policy,
action, etc . . . of the two types of agents. For example, ak and a−k are actions
of agents k and −k respectively.

Let µ̂−k be the estimate of an opponent’s −k cooperation policy. Here, we
estimated this online using an Exponential Moving Average (EMA). At time t,
after observing action a−k, µ̂−k,t is adjusted according to:

µ̂−k,t+1(a−k) = (1− αEMA1)µ̂−k,t(a−k) + αEMA1. (2)

with learning rate 0 ≤ αEMA1 ≤ 1. After this update, the policy µ̂−k,t+1 is
normalized to retain µ̂−k as a probability distribution.

The goal is to determine a policy adaptation that maximizes future expected
reward. As computing forward all possible policy adaptations is intractable,
we introduce a set of policy update actions. A policy update action puai

determines whether the likelihood of playing an action ai should be increased,
including a null policy update action puanull that does not change the current
policy. From the set puai, the update expected to be most rewarding is selected
as follows.

Let ηpuai

k be the policy achieved by applying the policy update action puai

to the punishment policy ηk. The policy ηk of agent k given puai 6= puanull is
updated according to:

ηpuai

k,t+1 = (1− αL)ηk,t(ai) + αL, (3)

where αL is the learning rate. The probabilities ηk(·) for actions aj 6= ai are then
normalized to maintain ηk as a probability distribution. Lastly, ηpuanull

k,t+1 = ηk,t.
Let the function ξ(µ̂−k, ai) estimate the changed cooperation policy µ̂−k of

the opponent −k due to an agent k playing an action ai:

µ̂−k,t+1 = ξ(µ̂−k,t, ai) (4)



As an implementation of ξ, we assume that the changes in the opponent policy
are, at least in part, caused by the actions of agent k. We compute the change
in opponent policy as a linear extrapolation of the change in the estimated
opponent policy as observed N rounds in the past, i.e. the opponent policy at
time t−N :

ξ(µ̂−k,t, ai) =
µ̂−k,t − µ̂−k,t−N

N

Nai

N
+ µ̂−k,t, (5)

where we limit ξ to [0, 1] and Nai denotes the number of times action ai has
been played in the last N rounds. Here, we use N = 10.

Let the values Vk : Ak × A−k → < denote the estimates of the reward of a
single joint action {ak, a−k} to agent k (note: this is the part of the reward agent
k receives, not the joint reward). As a simple implementation, the estimate for
Vk is updated using the exponential moving average (EMA):

Vk,t+1 = (1− αEMA2)Vk,t + αEMA2 × rk,t, (6)

where rk,t is the reward received by agent k in round t, and 0 < αEMA2 ≤ 1 is
the learning rate (round t denoting the last time the particular joint action was
played).

The expected reward for a joint action {ak, a−k} is computed using the
agent’s policy ηk, the opponent’s estimated policy µ̂−k, and the learned joint
action values V :

val(ηk, µ̂−k, Vk) =
∑

ai,a−j

P (ai|ηk)P (a−j |µ̂−k)Vk(
[

ai

a−j

]
), (7)

where for policy ηk, the probability of playing action ai is denoted as P (ai|ηk).
With the opponent changes in policy estimated by ξ(µ̂−k, ai), we compute

the policy update with the highest expected payoff:

pua∗j = max
j

val(ηpuaj

k , ξ(µ̂−k, aj), V ) (8)

where val calculates the expected payoff for the achieved joint policies after
effecting policy update action puaj and taking ξ(µ̂−k, aj) as the estimated op-
ponent cooperation adaptation, for learned reward V for joint actions.

The fpgrl algorithm thus obtained is outlined in Algorithm 1. Note that
for static opponents that do not change their policy, ξ will be 0, and the policy-
gradient will realize the best-response settings for µk and ηk.

4 Results

We investigate to what extend agents using the fpgrl algorithm in a multi-agent
system (mas) playing the nipd-ap game learn to dispense altruistic punishment
to maximize their own personal reward. Results are shown for learning rates α all
equal to 0.01 for all agents. Rewards for full cooperation are scaled linearly from
1 for four agents up to a reward of 30 for 256 agents. We fixed the punishment



amount and the cost of punishment: punishment for defection is scaled so that
according to Eq. (1) a 20% chance of punishment is sufficient to make cooperation
more attractive in the first stage than defection for an individual agent; the cost
of punishing was set at 0.1. Values in this range for these parameters were found
to yield good results; setting the cost too high and the punishment too low will
have the agents effectively ignore the punishment signals, and setting the cost
too low and/or the punishment too high effectively forces the agents to playing
a the cooperative joint move.
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Fig. 2. Scaling of the fpgrl agents in the nipd-ap game for mas settings of different
sizes, respectively 10, 20, 30, 40, 100 and 256 fpgrl agents. Plotted is the value for the
cooperation policy µi, averaged over all agents i in the mas, vs the number of epochs
the system has run.

Figure 2 plot the amount of cooperation in a nipd-ap game achieved in
a mas with respectively 10, 20, 30, 40, 100 and 256 fpgrl agents. It shows
that substantial groups of agents each using fpgrl can learn to cooperate with
very little public information, as in the nipd-ap(1:1) game. Full cooperation is
approximately achieved for up to 20 agents. Sufficiently many agents dispense
altruistic punishment, in that they compute that the benefit from altering an-
other agent’s behavior outweighs the immediate cost of punishing it. When the
number of agents in the mas is increased, up to 256 fpgrl agents, the agents
still find a high level of cooperation, though the amount of cooperation does
slowly decreases with increasing agents in mas as compared to cooperation in a
mas with fewer agents (a mas with 256 fpgrl agents was the limit of available
memory in the simulation). In line with the arguments of Wolpert & Tumer
(D. Wolpert & Tumer, 2002), we believe the gradual decrease in performance as
the number of agents increases is due to the fact that the noise in the signal of
rewards increases with the number of agents.
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Increasing the amounts of public information available enables increasingly
large groups to sustain full cooperation, as is shown in the nipd-ap(1:K) setting.
In Figure 3, we show results for 256 agents playing the nipd-ap(1:K) game for
K = 1,K = 3 and K = 10. The high level op cooperation is however achieved
at the expense of a longer learning period and a more pronounced drop in the
initial level of cooperation. As a function of increasing values for K, individual
agents will learn to punish less as the load of punishing a defector is spread
over several agents (not shown). However, the fpgrl algorithm computes that
at least some altruistic punishment is profitable for an individual agent, and a
sufficient level of punishment is maintained to enforce cooperation.

In Figure 4(a), we compare the joint policy development in a mas with agents
using the fpgrl algorithm versus a mas with agents employing a Best-Response
type policy gradient reinforcement learning algorithm. Shown are the results for
four agents collectively playing the nipd-ap(1:1) game; plotted is the coopera-
tion and punishment policy for an agent in the fpgrl mas (fpgrl Coop and
fpgrl punishment respectively), and the same policies for an agent in the mas
with agents using Best-Response policy gradient reinforcement learning (pgrl
Coop and pgrl Punish)3. As before, in the mas with agents using fpgrl, the
agents converge to a sustained high level of cooperation, whereas in the Best-
Response mas cooperation is not sustained.

This result for the best-response pgrl approach was representative for all
variants of the nipd-ap, regardless of the number of agents, and, as we argued,

3 The pgrl type agent is implemented by setting the ξ equation of Equation 4 with
µ̂−i,t+1 = ξ(µ̂−i,t, ai) to return µ̂−i,t as the estimate of the next, unchanged policy
of the opponents in Algorithm 1, this corresponds to playing a Best Response policy.
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Fig. 4. (a)Learned Policies in a 4 agent nipd-ap, fpgrl vs pgrl. Top to bot-
tom legend order follows plotted lines top down. (b) A plot of the joint coopera-
tion/punishment policy as learned over time, for a single participating agent, for various
initial (coop, punish) settings.

is typical for all types of myopic “follow the gradient” reinforcement learning
type approaches. The personal cost that an agent incurs for punishing results
in a negative gradient for the punishment policy, and punishment of defectors
will disappear from the system. The myopic agents then accurately find the
Pareto-deficient NE and all Defect.

In Figure 4(b), we show that the learned policies of the fpgrl agents are
robust to the initialization of the cooperation and punishment policies. Plotted
is the development over time of the joint punishment and cooperation policies
for various initial settings of the cooperation and punishment policies. For all
initial settings, the agents learn to cooperate and to punish. The agents typically
overshoot in the required level of punishment, and then reduce this to a lower, less
costly level. This reduction halts as the agents experience a drop in cooperation
the cost of which exceed the cost of altruistic punishment. The point (1, 0.5) acts
as an equilibrium attractor of the system with converged agents shifting around
this point due to exploratory moves and (inherent) inexact opponent modeling.

Lastly, in Figure 5 we show results for up to 256 agents punishing other agents
according to the nipd-ap(1:∼n) model. Here, an agent’s altruistic punishment
hurts not only the defector, but also all agents in the mas. A steep drop in
initial cooperation is experienced before the fpgrl agents learn to cooperate.
Compared to the significantly slower convergence in the nipd-ap(1:K) game, the
nipd-ap(1:∼n) model demonstrates the robust learning signal that “punishing”
conveys to the group of agents as a whole. The scalability and practicality of
this approach however is somewhat questionable, as the rapid initial decrease of
cooperation to almost zero, as a function of the number participating agents, is
a reason for concern.
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5 Discussion

We have presented a foresighted policy gradient reinforcement learning algo-
rithm, fpgrl, that enables individual self-interested agents in a multi-agent
system to successfully sustain the long term Pareto-optimal strategy of full co-
operation in the nipd-ap game, with a large number of participating agents.
The fpgrl algorithm advances on earlier foresighted reinforcement learning by
developing a robust, policy gradient approach, thus enabling agents to learn with
foresight in larger, more complex settings.

The fpgrl algorithm makes explicit the teach/learn dichotomy implicit in a
system with many adapting agents (Shoham et al., 2007): an agent has to both
learn how to behave profitably in the system, but can and will also modify (or:
teach) the behavior of other agents due to its own actions. The fpgrl algorithm
can be considered a first clear implementation of this realization.

In our setup, agents “teach” by possibly dispensing punishment. We assume
explicitly that a single step punishment (or rather: the expectation thereof) may
be sufficient to dissuade a targeted agent from defecting. The problem is thus
reduced to the question whether or not to punish. This allows us to ignore the
question of what particular punishment strategy should be followed – it is well
known that formulating punishment strategies is itself a hard problem (Littman
& Stone, 2005).

Considerable work has focused on “shaping” the reward that individual
agents receive such that they are “nudged” in the direction of a desired joint ac-
tion. Under certain conditions, it can be shown that reward shaping can be done
without changing the optimal policy (Ng, Harada, & Russell, 1999). For exam-
ple, in (Babes, Munoz de Cote, & Littman, 2008), a mutual beneficial subgame
perfect equilibrium is used as the basis for a potential-based shaping function.



In a similar vein, the work by Wolpert et al. (D. H. Wolpert, Wheller, & Tumer,
1999; Lee & Wolpert, 2004) also focuses on shaping an agent’s reward such as to
include its effect on the collective system reward. Proper adjustment of this re-
ward shaping aligns the learning of the individual agents with the maximization
of the reward achieved by the collective of agents. Similarly, setting “aspiration
levels” for individual agents as in (Macy & Flache, 2002) can be considered a
variant of reward-shaping. However, these “reward shaping” approaches requires
an externally imposed “rule”.

We evaluated our fpgrl algorithm through mas settings where agents all
using fpgrl play against each other – self-play. One justification for this is
that there are no robust multi-agent reinforcement learning algorithms avail-
able where the agents successfully solve the nipd problem. The Joint-Action
Learners in (Banerjee & Sen, 2007) are not very robust, and algorithms like
M-Qubed (Crandall & Goodrich, 2005) do not readily scale beyond the 2-player
ipd. Moreover, it is not obvious how the option of a “punishment” action should
be incorporated in M-Qubed. As noted, there is considerable debate on how
to evaluate different multi-agent reinforcement learning algorithms relative to
each other (Shoham et al., 2007). Some criteria have been proposed, like robust
results in self-play, best-response play against stationary opponents, and (ε-) no-
regret (Bowling, 2005). The latter is obviously of limited use in nipd type games;
the approach presented here demonstrates learned cooperation in self-play, and
converges to best-response play against stationary opponents.

Our findings support previous game theoretic considerations that seemingly
altruistic punishment can be rational for an individual agent by enabling sus-
tainable cooperation in large groups. This in contrast to the studies like (Boyd et
al., 2003), where an additional disruptive mechanism of selection is required for
successful scalable cooperation: in the evolutionary simulation, entire groups are
occasionally continued or discontinued based on the joint group payoff. As noted,
(Boyd et al., 2003) consider groups where many 2-player ipd interactions take
place, whereas we consider the “Tragedy of the Commons” setting in the nipd-
ap game. We would argue that the latter setting is often of more importance in
multi-agent systems.

Note that in groups with many simultaneous 2-player ipd interactions, the
rational amount of altruistic punishment dispensed by an individual agent de-
creases with the group size (Kandori, 1992) (as the likelihood of an single agent
interacting with a specific other agent decreases). This explains the limits to
achievable cooperation observed in (Boyd et al., 2003).

The folk theorem implies that, in many games, there exists Nash-Equilibria
(NE) for repeated games, repeated Nash-Equilibria (rNEs), that yield higher
individual payoffs to all agents than do one-shot NEs, i.e. the rNE Pareto domi-
nates the NE. Hence, in repeated games, a successful set of agents should learn to
play profitable rNEs and the algorithm presented here is shown to allow agents
to find the (single) Pareto Optimal rNE in the nipd.

To be quite precise, by being “foresighted”, we have shown that agents using
fpgrl are able to find a rNE in the nipd-ap game. Thus learning to rationally



sustain cooperation in the nipd-ap is an important step forward. Since social
dilemma’s capture many hard-to-solve real-life problems, we believe this is highly
significant contribution.

There are still however more complicated repeated games that have a large or
even infinite number of rNEs, it is not obvious which rNE in such games would or
should be learned. Apart from the difficulty in computing such rNEs (Littman &
Stone, 2005), agents may have (private) preferences between different rNEs and
prefer one above the other, if allowed by its opponents. Additionally, the more
general question “when to teach?” can be asked. This is obviously dependent
on the game structure, the internal actions available to agents, and the degree
to which they anticipate future moves. We intend to pursue these directions in
future work.

Another future challenge is to apply foresighted algorithms to larger and
more complex state spaces. One direction may be to integrate our framework
with new ideas about state space representations like Predictive State Represen-
tations (Wolfe, James, & Singh, 2005). As noted in (Milgrom et al., 1990), ulti-
mately the generation and communication of information regarding other agents’
actions are limiting factors in community enforcement, such as we consider here.
Lessening this burden through institutionalization or interested/disinterested
intermediation may enable further scaling up of successful cooperation among
self-interested agents (e.g. (Biglaiser & Friedman, 1994)).
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