View metadata, citation and similar papers at core.ac.uk

-
4
brought to youlby i CORE

provided by CWI's Instituti

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

f‘ Software ENgineering

EN An algorithm for on-line price discrimination

D.D.B. van Bragt, D.J.A. Somefun, E. Kutschinski,
J.A. La Poutré

Report SEN-RO213 Jury 31, 2002

https://core.ac.uk/display/301640292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Insfitute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI'is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)
Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X

An Algorithm for On-Line Price Discrimination

D.D.B. van Bragt D.J.A. Somefun
E. Kutschinski J.A. La Poutréf
David.van.Bragt@cwi.nl Koye.Somefun@cwi.nl
Erich.Kutschinski@cwi.nl Han.La.Poutre@cwi.nl
t Also with the School of Technology Management, Eindhoven University of Technology
De Lismortel 2, 5600 MB Eindhoven, The Netherlands

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

The combination of on-line dynamic pricing with price discrimination can be very beneficial for firms operating
on the Internet. We therefore develop an on-line dynamic pricing algorithm that can adjust the price schedule
for a good or service on behalf of a firm. This algorithm (a multi-variable derivative follower with adaptive
step-sizes) is able to respond very quickly to changes in customers’ demand. An additional advantage of the
developed algorithm is that it does not require information about individual customers. Given the growing
concern about customers’ privacy this can be of great practical importance. Computational experiments (with
different customer behavior models) indicate that our algorithm is able to successfully exploit the potential
benefits of on-line price discrimination.

2000 Mathematics Subject Classification: 68T05, 90B99, 90C99

1998 ACM Computing Classification System: F.1.2, G.1.6, 1.1.2, 1.2.8, K.4.4

Keywords and Phrases: dynamic pricing, price discrimination, on-line learning, information goods, e-commerce,
derivative follower algorithm

Note: Work carried out under theme SEN4 “Evolutionary Systems and Applied Algorithmics”. This paper has
been presented at the 8% International Conference of the Society for Computational Economics on Computing
in Economics and Finance (CEF’2002) (Aix-en-Provence, France, June 27-29, 2002). This research has been
performed within the framework of the project “Autonomous Systems of Trade Agents in E-Commerce”, which
is funded by the Telematics Institute in the Netherlands.

1. INTRODUCTION

One aspect of the economics of the Internet is that the cost for changing prices is virtually zero.
Consequently, it becomes economically feasible to change prices more frequently. This observation
has resulted in a growing interest in on-line learning algorithms which, based on sales statistics, can
dynamically and automatically adjust prices for offered goods [3, 4, 5, 1]. Another important char-
acteristic of the economics of the internet is that selling information goods (e.g., computer software,
electronic journals, stock quotes, music and video clips) requires high fixed and extremely low marginal
costs. Due to this specific cost structure, firms operating in such a market are expected to enjoy some
market power (cf. [7]) and, as a consequence, have some flexibility to set their own prices. A firm’s
major concern then remains the customers’ willingness to pay for a product.

Differences in the willingness to pay (in the customer population) create an economic incentive
for a firm to apply price discrimination, i.e., to charge different prices to different customers for the
same goods and services. In general, however, a firm does not have complete information about the
customers’ willingness to pay.! This makes it difficult to successfully apply price discrimination. We
therefore propose to combine on-line dynamic pricing with price discrimination. The advantage of

ITn case of first-degree price discrimination, or perfect price discrimination, the firm has sufficient information to

using an on-line price discrimination algorithm is that, by automating the updating process, more
frequent changes in the pricing scheme are possible. This can speed up the process of learning more
profitable pricing schemes.

We introduce an efficient and robust algorithm for on-line price discrimination in this paper. As
an example, this algorithm is used to dynamically adjust both the price for (bundles of) news items
and the discounts for delayed delivery. The developed framework can also be applied to other types
of price discrimination and/or other types of businesses such as, for example, the travel industry or
the entertainment industry. Within the context of the travel industry an on-line learning algorithm
can be used, for instance, to dynamically adjust both the price for an airfare, train ticket, or hotel
room, and the size of the discounts for buying in advance. Within the entertainment industry, an
on-line learning algorithm could be used, on the other hand, to develop, for instance, pricing schemes
for video on demand (by offering flexible discounts for delayed viewing of a movie).

For the case considered in this paper (selling news items), it is reasonable to expect that (potential)
customers have a higher valuation for a news item when it has been released more recently (compared
to an “older” news item). The valuation of a customer for a bundle of news items can thus change
significantly over time. Consequently, we need an on-line learning algorithm that is able to respond
rapidly to changes in customers’ valuations.

We therefore follow [3, 1, 6, 2, 9] by basing our algorithm for on-line price discrimination on the
derivative follower (DF) algorithm. The DF algorithm is a (local) search algorithm that dynamically
adjusts the price for the offered good based upon observed profits. This algorithm starts at some
user-specified price level and then, step-by-step, changes the price in the same direction until the
current profit drops relative to the profit in the previous trading period. In that case, the search
direction is reversed and steps in the other direction are made. When the profit again decreases the
search direction is reversed again, etc. This algorithm is able to react very quickly to changes in
the profit landscape. Two additional advantages of the DF algorithm are that the underlying idea
of the DF is very intuitive and that the DF requires very little problem specific knowledge (it is a
“black-box” optimization technique). The latter makes it possible to develop an algorithm for on-line
price discrimination which does not need information about individual customers. Given the growing
concern about customers’ privacy this can be of great practical importance.

A technical contribution of this paper is the development of an improved DF algorithm with an
adaptive step-size (i-ADF). This algorithm has attractive (convergence) properties when operating in
static and dynamic profit landscapes (unlike an ADF variant proposed by Dasgupta and Das [1]). The
i-ADF algorithm is also extended in order to update multiple variables. This extension is important for
dynamic pricing with price discrimination, where a list of prices should be adjusted (instead of a single
price level). Computational experiments show that our multi-variable dynamic pricing algorithm is
able to generate high profit levels for a variety of customer models.

The remainder of this paper is organized as follows. In Section 2, we discuss how the seller of a
news item can use a dynamic pricing algorithm to update a price schedule. Moreover, we introduce
our dynamic pricing algorithm and discuss the customer model that we use in the computational
experiments. We report results from the experiments in Section 3. Section 4 concludes.

2. THE DyNAMIC PRICING MODEL

2.1 The seller of a news item

In the market for news items there is one seller who offers a bundle of news items for sale during a
number of consecutive trading periods. At the beginning of every trading period the seller announces
a price schedule. Such a price schedule, denoted as p;~(t), specifies the price if the news item is bought
now (at time ¢t*) and delivered at time ¢ > ¢*. The seller can use the actual time of consumption to

determine the maximum willingness to pay for each customer and have them pay this amount. In case of second-degree
price discrimination, or nonlinear pricing, the price depends on the amount purchased. In case of third-degree price
discrimination, the firm can identify different customer groups who have a different willingness to pay [8].

apply price discrimination. For example, to have the good being delivered immediately after purchase
can be more expensive than having the good being delivered later.
We model the price schedule as a step function with 3 steps (see Fig. 1).2 Since a customer’s

step 1

price step function p,.(2)

step length
(1) step 2

Ly step 3

price

¢ (=now) time ¢
Figure 1: A price schedule with 3 steps.

valuation for a news item is (typically) negatively related to the delivery time we use price step
functions with a negative slope. This requirement is enforced as follows. Assume we have 3 positive
variables, labelled as x1, z2 and z3, which are directly modified by the on-line dynamic pricing
algorithm. We then calculate the price level for step no. ¢, p;, as follows:

p1=T1,p2 = - (550 (2.1)

y4! P
1+ 6xo e 1+ dzs
Since we assume that z; > 0, this implies that p; > p2 > p3. We set § equal to 0.04 in the experiments
reported in Section 3.

2.2 The multi-variable DF algorithm

The seller can use a multi-variable DF algorithm to adjust this price step function over time. The
four variables that are modified are z1, 3, 3 and the length of a single step of the price function
(Istep). Our multi-variable DF algorithm basically consists of four separate DF algorithms (one for
each variable). We denote the DF algorithm which modifies variable z; as DF; (for ¢ = 1,2,3) and
the DF which modifies lg.p as DFlmp.3 These four DF algorithms do not work simultaneously, so
only one variable is changed at each point in time.

The 4-variable DF algorithm starts by handing over the operation to DF;. DF; will then change
variable z; with a certain search step. This operation changes the offset of the price function (the
prices of all steps are modified by changing z1, see Eq. (2.1)). This process continues in the consecutive
trading periods until the profit drops. The DF; algorithm then makes a final search step in the opposite
direction. The 4-variable DF then passes the operation to DFy (which changes x3). This operation
adjusts the prices of step 2 and step 3. When the profit drops, a final search step is again made in the
opposite direction. The 4-variable DF then passes the operation to DF3 (leading to changes in the
price of step 3). When DFsj is also finished, l5p is modified by DF; DF; . will now iteratively

2We also experimented with price schedules with more than 3 steps. Results were not better than those obtained
with a function with 3 steps for the dynamic pricing problem considered in this paper. This is due to the time-consuming
update process when a price schedule with many degrees of freedom is modified variable by variable (as we do in this
paper). The usage of more complex price schedules may, however, be beneficial in special circumstances (e.g., when
highly non-linear price schedules are very profitable, or when there is enough time to adjust a complex price schedule).

3All four variables should be positive numbers. Variables which become negative (or zero) are reset to unity by the
DF algorithm. The DF continues to search in the positive direction with a (re-initialized) step-size of 0.5 in this case.

step® step

modify lsep in a certain direction as long as the profit does not drop (this changes the slope of the
price step function). After DF;,,_ is finished the whole process repeats itself. There is one exception
to the rule for switching from one variable to the other: Whenever the profit immediately drops after
a DF starts to change a particular variable, the DF returns to the initial search point and starts to
search in the opposite direction (until it encounters a second drop in the profit).*

The above description of the multi-variable DF is, of course, incomplete without a description of
the separate DF algorithms that modify the different variables. In this paper, these DF algorithms
are instances of the improved adaptive step-size DF (i-ADF) algorithm. This algorithm is introduced
in the next section.

2.8 The improved adaptive step-size DF' (i-ADF)

The DF algorithm A DF algorithm iteratively modifies the price variable x € R of a profit function
f(z,t). The variable t € Z indicates that the profit function is typically changing over time. A DF
algorithm increases or decreases the previous price z(t — 1) with a step-size o(t) > 0 in the direction
o4ir(t) € {—1,+1}. Suppose the DF increased the price at t — 1 (i.e., 04i»(t —1) = +1). The DF then
continues to increase the price at time t if the profit at ¢ — 1 is not smaller than the profit at ¢ — 2.
Otherwise the DF changes the search direction by setting o4;,(t) equal to —1. The DF then starts to
decrease the price until f(t — 1) again becomes smaller than f(¢t — 2).

We say that a DF “turns” at time ¢ whenever both z(¢+1) and z(¢ — 1) lie on the same side relative
to z(t) (i.e., either z(¢ + 1) > z(t) and z(t — 1) > z(¢), or z(t + 1) < z(t) and z(t — 1) < z(t)). We
count the number of turns of the DF using the variable £ € N and say that the k** turn occurs at
t = t(k).

Drawbacks of traditional DF algorithms There are a number of difficulties with current implementa-
tions of the DF algorithm. For example, the search step of the DF is typically fixed (i.e., o(t) = o(t—1))
[3, 6, 2, 9].5 This can obviously result in a poor performance if the initial search point and/or the
step-size are ill-chosen. A DF algorithm with a small step-size will, for instance, converge slowly to an
optimum of the profit function if this optimum is located at a large distance (relative to the step-size of
the DF) from the initial search point. Likewise, a large step-size may result in significant oscillations
around the optimum.

This problem can be solved by using a DF algorithm with an adaptive step-size (ADF). Making the
step-size adaptive can, however, potentially lead to unstable behavior of the algorithm. An example
is the simple ADF (s-ADF) proposed by Dasgupta and Das [1]. This algorithm multiplies its step-size
with a factor e > 1 if the profit increases (or remains the same). Otherwise the step-size is divided by €
(Appendix 1 contains the pseudo code which explains how the s-ADF adjusts its step-size over time).
The difficulty with this (naive) approach is that the s-ADF does not take the distance to (local) optima
of the profit function into account (relative to the current step-size). Hence, the s-ADF can expand
its step-size in the vicinity of an optimum. This leads to convergence problems: the s-ADF algorithm
is not able to converge to (local) optima of the profit function (see the analysis in Appendix 1).

An additional drawback of current DF and ADF implementations is that these algorithms have
limited trend-following capabilities. That is, these algorithms can have difficulties to follow the peak
of time-dependent profit functions. This ability to detect and follow trends is important in a dynamic
pricing setup, where the profit function is typically changing rapidly over time.

Description of the i-ADF algorithm We developed an improved ADF algorithm (i-ADF) which
solves the above-mentioned problems. The difference between the i-ADF and other implementations

4By default, each DF algorithm (re)starts by searching in the negative direction in the experiments reported in
Section 3.

5Tn some of these studies the fixed step is multiplied by a random number (where the random number is drawn anew
from a uniform distribution with range [0, 1] at each point in time). In the present study, this stochastic approach is
not used (i.e., we focus on deterministic DF algorithms).

of the DF lies in how the search step-size is computed. Appendix 2 contains the pseudo code which
explains how the i-ADF adjusts its step-size over time.

The i-ADF starts by increasing the step-size o(t) as long as it continues to search in the same
direction. After a turn occurs, the i-ADF reduces its step-size. Because a turn typically signals that
an optimum in the profit function has been passed, the i-ADF does not increase the step-size for a
number of steps directly after a turn (to avoid a repeating “overshoot” of the optimum). An exception
to this normal mode of operation occurs when the i-ADF turns twice in a row. In this case, the peak
of the profit landscape may be moving over time. The i-ADF increases the step-size in this case to
avoid the occurrence of premature convergence (due to a small step-size).

In the remainder of this section we will discuss some salient features of the i-ADF. On first reading,
the more technical properties of the i-ADF can be skipped without consequence.

We start our discussion of the i-ADF by considering its behavior in case the profit function f(z,t)
is independent of time (i.e., when f(z,t) = f(x)) and unimodal in a sufficiently large interval.® In
this case, we can say something about the distance between the optimum z, and the price when a DF
turns.

Lemma 1 Suppose f(x) is unimodal and let t(k*) denote the first point in time the optimum x4 has
been passed by the DF. Then, whenever the DF turns at time t > t(k*), the distance |z(t)—z4| < 20(t).

The intuition behind this result is that, after passing the (local) optimum x4, the DF will at most
make one more step in the same direction before it turns. Appendix 3 contains the proof of this
lemma.

It is undesirable that the i-ADF increases its step-size in the vicinity of the optimum (this could
lead to a failure to converge to the optimum). The i-ADF therefore keeps the step-size fixed for some
steps after a turn. The i-ADF uses a total of 5 waiting periods. Lemma 2 shows that this is sufficiently
long.

Lemma 2 Suppose f(z) is unimodal and let t(k*) denote the first time x4 has been passed by the
i-ADF. Then, whenever the i-ADF turns at time t > t(k*), the i-ADF will not increment the step-size
before it makes another turn.

The intuition behind this result is as follows. After a turn, the i-ADF will always make 5 steps with
a constant step-size. The i-ADF is constructed in such a way that the total length of the first 4 steps
will always exceed the maximum distance to the optimum as defined in Lemma 1. That is, after at
most 4 steps the optimum will be passed again. Thereafter, the i-ADF will at most make one more
step in the same direction. As a consequence, the i-ADF will turn again after at most 5 steps without
increasing the step-size. Appendix 3 contains the proof of this lemma.

Using Lemmas 1 and 2, we can proof (by induction on k) that the i-ADF algorithm is able to
converge completely to (local) peaks of static profit functions.

Proposition 1 Suppose the i-ADF passes a local optimum x4 of the profit function f(x) and turns
at time t. If f(x) is unimodal in the interval [xy — 20(t), x4 + 20(t)], then the i-ADF converges to .

We note that it is not our primary objective to develop an algorithm that can be used to rapidly
find the optimum of a unimodal function (other methods, like Fibonacci search, are better suited for
this specific task). Nevertheless, guaranteed convergence for the class of unimodal functions is, in our
opinion, desirable to qualify as a sound ADF algorithm.

The drawback of always decreasing the step-size after a turn is that the algorithm will, for instance,
have difficulties to follow the peak of time-dependent profit functions. To circumvent this problem

6We say that a function f(z) is unimodal in the interval [a,] if there exists a z4 € [a, b] such that is strictly increasing
for all z € [a,z4] and strictly decreasing for all € [z4,b]. If a and b are not specified, we assume that a = —oco and
b= +oo.

we enriched the i-ADF with a simple heuristic that enables the i-ADF to detect rapid changes in the
profit landscape. This heuristic uses the following observation.

Lemma 3 Suppose the i-ADF makes a turn at time t (with t > t(k*)). Then the i-ADF will not turn
at time t + 1 whenever the profit function f(z) is unimodal.

The intuition behind this lemma is that, after a turn, the i-ADF steps back into the direction of the
point which was sampled at t —1. We also have that f(¢—1) > f(¢) (otherwise the DF would not turn
at time t). Lemma 3 then follows directly from the assumption of unimodality of f(z). Appendix 3
contains the formal proof of this lemma.

Lemma 3 implies that the profit landscape is not unimodal when the i-ADF makes two successive
turns. This leaves two possibilities: (i) the profit function is multimodal and/or (ii) the profit function
is changing over time. Possibility (ii) is particularly important in our dynamic pricing setup, since the
information good which is for sale tends to become less valuable as time passes by. In this case, the
danger exists that the step-size of the i-ADF becomes too small to follow the peak of the moving profit
function. The i-ADF will therefore increase the step-size whenever it records a sequence of dropping
profits.

The multi-variable DF' revisited We use, as we mentioned before, separate i-ADF algorithms to
modify the different parameters of a price function. When optimizing such a multi-dimensional func-
tion, the distance to the optimum for a certain variable depends in general on the values of the other
variables. This implies that a change in one of the variables (by a multi-variable DF) can strongly
influence the distance to the optimum for the other variables.

Now suppose that a certain variable is modified by an i-ADF. Suppose also that this i-ADF is initially
far removed from the optimum (measured with respect to its current step-size).” An advantage of
the i-ADF is that, by increasing its step-size, the optimum can be approached rather quickly in this
case. After it passes the optimum, the i-ADF will turn and make one step back in the direction of the
optimum (after which another i-ADF starts to modify a different variable). If we now determine the
distance to the optimum when the i-ADF started to operate, and the distance to the optimum when
the i-ADF has finished, the latter distance is always smaller for a large class of functions. A precise
statement of this key property of the i-ADF is given in Appendix 3 (see Proposition 3).

The multi-variable DF transfers the operation from one i-ADF to the other after an i-ADF turns.
This rule for switching from one i-ADF to the other is used because it allows the separate i-ADF's to
detect rapid changes in the profit landscape. If the profit drops immediately after the turn, it follows
from Lemma 3 that the profit landscape is not unimodal. The i-ADF will then increase its step-size
when it resumes operation. Consequently, the multi-variable i-ADF is also well equipped to follow the
peak of time-dependent profit functions with multiple variables.

2.4 The customers

We now describe the basic customer behavior model that we use in the computational experiments.
We distinguish between various customer classes. Customers that belong to the same class have an
identical valuation for the news items. In every trading period, a customer from each class arrives at
the (virtual) marketplace. If the customer does decide not to buy the information good then he will
never reconsider buying the offered good (and effectively leave the marketplace).

Customers are assumed to have a reservation value for the offered news items that decreases linearly
through time. They decide to buy the news items whenever their reservation value exceeds the price
specified by the step function in one of the remaining trading periods. They consume the news items
in the trading period where the difference between the reservation value and the price is maximized.
In case of a draw they will pick the earliest trading period.

"Technically speaking, we mean with “far removed” that the optimum cannot be reached (or passed) in a single step.

More formally, we have the following quasilinear utility function:
Ui(qi(t),t) = ui(qi(t)) — ci - qi(t) - t + my(t). (2.2)

The term t denotes the delivery time of the news item. The quantity consumed by the i** customer at
time ¢ is denoted as ¢;(t). Because we consider the brokerage of news items we have that ¢;(t) € {0,1}
and ¢;(t) = 1 for at most one point in time. Furthermore, ¢; > 0 is a constant discount factor, and
m;(t) denotes the amount of money held by the it* customer. We set u;(0) equal to zero. We now
assume that customers maximize their utility given the price step function p:«(t). To buy a news
item at time ¢ means that the amount of money held by customer ¢ is p;«(¢) less than when he does
not buy the news item. Customer ¢ will only buy the news item if there exist a ¢ > t* such that
Ui(1,t) > U;(0,t), otherwise not buying the item is the best option. (Recall that t* denotes the
current time.) If we define the valuation of customer 7 for the news item as v;(t) = u;(1) — ¢; - ¢, this
condition can be stated as v;(t) > ps=(t) (for a certain ¢ > t*). When the customer decides to buy the
item, he chooses the earliest consumption period ¢ which maximizes the term v;(t) — pg=(t).

Some assumptions made in the above customer model are relaxed in Section 3. We, for instance,
also discuss results for a market with stochastic changes in the number of customers. We also treat
the case where customers have nonlinear (instead of linear) utility functions.

3. RESULTS
In a first series of computational experiments we distinguish between 30 different customer classes.
The valuations of the customers in these classes are shown in Fig. 2. Note that three different customer

=
o

valuation

o B N W b~ OO N 0 ©
r T g
i

time (t)

Figure 2: Valuations per customer class (for the experiments in Fig. 3).

types can clearly be distinguished among the 30 customers shown in Fig. 2: (i) a group of “impatient”
customers, who are willing to pay much for early delivery but much less later on, (ii) a group of
“patient” customers who value the news item rather high initially, with only a slow decay over time,
and (iii) a group of “indifferent” customers who are not willing to pay much, more or less independent
of the delivery time.

Figure 3 shows an example of the adjustment of a price step function with 3 steps by the 4-variable i-
ADF algorithm (for the customer valuations in Fig. 2). Figure 3a shows the adaptation of the different
steps of the price function (see Fig. 1). Figure 3b shows the adaptation of the price function’s step
length (i.e., lstep). The actual price schedules after 20, 60, and 100 trading periods are shown in
Fig. 3c.

(a) adaptation of the different price levels (b) adaptation of the price function’s step length
75
5
8 B 50|
b £
jo)]
: 5 5
3 g
1]
0 : : : : : 0 : : : : :
0 25 50 75 100 125 150 0 25 50 75 100 125 150
current time (t*) current time (t*)
(c) price schedule at t* = 20, 60, and 100 (d) generated profit for each period
8 ‘ ‘ =20 —— 150 muilti-var. i-ADF ———
o %g o max. w/ pricediscr. -
% -é 100 max w/o pricediscr. -
ey
8 g
2 £ 50r
Q <)
(o}
0 : : : : : 0 : : : : :
0 25 50 75 100 125 150 0 25 50 75 100 125 150
t-t* current time (t*)

Figure 3: On-line price discrimination with the multi-variable i-ADF.

In Fig. 3d, we compare the profits generated in this experiment with the maximum profit that can
be reached theoretically with a price function with 3 steps. We also show the maximum profits that
can be reached theoretically when price discrimination is not applied (i.e., when the seller posts a
single price at each point in time). Note that price discrimination is potentially beneficial in the first
90 trading periods. Thereafter, the theoretical optima with and without price discrimination coincide.

At the beginning of the experiment, the multi-variable i-ADF needs several “learning periods” to
adjust and improve the initial price schedule. The performance of the algorithm increases rapidly,
however. Figure 3d shows for instance that highly profitable pricing schemes are already generated by
the algorithm after only 8 trading periods. At later points in time (especially around t* = 22, 32,45
and 68) performance of the multi-variable i-ADF remains high (note that at these points in time
the generated profits are significantly higher than the maximum profits that can be reached without
applying price discrimination).

In the long run, applying price discrimination is no longer advantageous for the seller. Interestingly,
the multi-variable i-ADF generates almost entirely flat price schedules in this case (see the price
function for t* = 100 in Fig. 3c). The algorithm is thus able to detect automatically that simple flat
price schedules perform optimally in the long run.

Additional computational experiments demonstrate that the multi-variable i-ADF performs signif-
icantly better than an algorithm which consists of DFs with a fixed step-size (especially when the
initial prices or the initial step-sizes are ill-chosen). We also investigated whether the multi-variable
i-ADF continues to perform well for alternative customer models. The following conclusions can be
drawn from this study:

o Customers with nonlinear valuations. The multi-variable i-ADF performs well in case of non-
linear customer valuations (e.g., valuations with an exponential decay over time, or valuations
which decrease as a quadratic function). This (positive) result is not surprising since (i) this
algorithm makes no assumptions about the customers’ behavior (it is a “black-box” optimizer)

and (ii) the i-ADF algorithm is able to respond quickly to changing customer demand.

o A large variety of customer types. The performance of the multi-variable i-ADF remains high
when the number of different customer types increases. Because we use price functions with a
negative slope, the risk of overestimating the mean customer valuation is small since customers
with a low valuation can buy the item at a later point in time (when the price is low).

e Stochastic entry of new customers. The performance of the multi-variable i-ADF remains high
when the number of new customers randomly fluctuates at each trading period. We used the
mean profit (averaged over all new customers) as the input for the algorithm in this case.

Summarizing, we can conclude that the multi-variable i-ADF is a suitable algorithm for on-line price
discrimination. Its strengths are in particular: (i) the ability to adapt the search step on-line, (ii) the
ability to operate successfully in case of rapidly changing profit landscapes, and (iii) the potential to
adjust multiple parameters in case of price functions with multiple degrees of freedom.

4. CONCLUSIONS

The combination of on-line dynamic pricing with price discrimination can be very beneficial for firms
operating on the Internet (e.g., firms selling information goods). We have therefore investigated if it
is possible to develop a dynamic pricing algorithm that can successfully adjust the price schedule for
a good or service on behalf of a firm. Such a pricing algorithm should meet several criteria in order to
generate a high total profit under a variety of (possibly changing) market circumstances. For example,
it is desirable that the algorithm makes frequent and automated updates of the pricing scheme, and
is able to cope with a variety of customers with changing preferences.

In this paper, we have developed a dynamic pricing algorithm which meets these criteria. This
algorithm (a multi-variable derivative follower with adaptive step-sizes) generates highly profitable
pricing schemes even if customers’ demand is changing over time. An additional advantage of the
developed algorithm is that it does not require information about individual customers. Given the
growing concern about customers’ privacy this can be of great practical importance.

As an example, the developed pricing algorithm has been used to dynamically adjust both the
price for (bundles of) news items and the discounts for delayed delivery. A series of computational
experiments show that the algorithm is able to generate high profit levels for a variety of customer
behavior models. The developed framework can also be applied to other types of price discrimination
and/or other types of businesses such as, for example, the travel or entertainment industry.

ACKNOWLEDGEMENTS
This research has been performed within the framework of the project “Autonomous Systems of Trade
Agents in E-Commerce”, which is funded by the Telematics Institute in the Netherlands.

APPENDICES

1. DESCRIPTION AND ANALYSIS OF THE S-ADF
Algorithm 1 shows the adaptation of the step-size o(t) as proposed in [1].

Algorithm 1 Adaptation of the step-size o(t) by the s-ADF algorithm [1]. We assume that € > 1.
1if (f(t—1) > f(t —2)) //profit does not decrease
2 o(t) =exo(t—1) //increase the step size
3 else //profit decreases
4 o(t) = @ //decrease the step size

10

Dasgupta and Das claim that this simple step-size adaptation mechanism is able to “reduce the step
size when the price is in the vicinity of the optimum” [1, p. 302]. We show in this appendix, however,
that such a general claim cannot be made. In fact, the price can fail to converge to the optimal level
when Algorithm 1 is used to adjust the search step. An example is given in Proposition 2 for the case
of simple (unimodal and symmetric) profit functions. We assume in Proposition 2 that Algorithm 1
is used in combination with a deterministic DF (Dasgupta and Das use a stochastic DF).

Proposition 2 Assume the profit function f(z,t) is independent of time, unimodal, and symmetric
with respect to x4 (i.e., f(xg— Azx) = f(xy+ Az)). Assume also that at time t = 0 the s-ADF arrives
at £(0) = zg — 0o (1). Let 04;(1) = +1 and let 6 € [1,1). Also assume that § < 5. The mazimum
distance to x4 then increases over time. More precisely, for each point in time t there exists a t <t
such that the distance |z(t') — z4| > 1o(1)e2lt/sl.

Appendix 3 contains the proof of this proposition. Because § € [%,1), we have that z(0) < x4,
z(1) > x4, and x(2) > z(1). The s-ADF will thus accelerate once after passing the optimum. The
condition § < § implies that the ADF accelerates when it returns to x(0) at t = 4. If this condition
is not satisfied, the ADF will turn at ¢ = 4 and continue to sample the same sequence of values. If
6 € [0, %), the s-ADF turns directly after passing the optimum. It is easy to see that the s-ADF
then also returns to the initial point (i.e., x(0)) after 4 iterations and continues to sample the same
sequence of = values. Because we assume that f(x) is symmetric, a very similar proposition can be
stated for the case where z(0) > z4, (1) < x4, and 2(2) < z(1).

This analysis thus shows that the s-ADF algorithm can fail to converge to the optimal price level,
even in case of simple (unimodal) search problems.

2. TECHNICAL DESCRIPTION OF THE I-ADF
Algorithm 2 shows how the step-size o(t) is adapted by the i-ADF algorithm. The variable #;,;;

Algorithm 2 Adaptation of the step-size o(t) by the i-ADF algorithm. We assume that 1 < a < 2
and B,v > 1.
1if (f(t—1) > f(t —2)) //profit does not decrease
2 if (k=0)o(t) =B +o0(t—1) //initial phase
3 elseif (k>1At—t(k)>5)o(t)=8*0(t—1)
//only increase the step-size after a turn
//ift > t(k) +5
4 else o(t) = o(t— 1) //keep the step-size fixed
5 else //profit decreases
6 if (t =tinit +2) o(t) = o(t — 1) //return to start
7 elseif (k>2Atk)=t(k—1)+1)o(t)=v*0o(t—1)
//increase step-size after two successive turns

8 else o(t) = @ //decrease the step-size

denotes the point in time when the i-ADF starts to operate. This variable is reset (to the current
time) each time the operation is transferred to the i-ADF by a multi-variable i-ADF algorithm.

We use the following settings for the i-ADF algorithm in this paper: o = 1%, B =1.6, and v = 2.0.
These settings satisfy the two conditions stated in Proposition 3. We also verified in a parametric
study that these values are chosen properly for the dynamic pricing problem at hand.

3. PROOFS
Proof of Proposition 2. We assume that the profit function f(z,t) is independent of time, unimodal,
and symmetric. The proof uses the following lemma.

11

Lemma 4 Let z(t) = zg — 0(t)o(t + 1). Let oair(t + 1) = +1 and let 6(t) € [3,1). Also assume that
0(t) < 5. We then have that z(t + 6) = zy — 0(t + 6)o(t + 7), with (¢t + 6) € [3,1), 6(t +6) < &,
ot+7) =€eo(t+1) and ogir(t +7) = oair(t +1).

ProOOF. The s-ADF will pass the optimum, accelerate at ¢t + 1, turn at ¢t + 2, accelerate at ¢t + 3 and
t 44 (because § < § we have that |z(t +4) — z,4| < |z(t +3) — z4|), turn at ¢ + 5, and accelerate at
t+ 6. Because the s-ADF turns twice between ¢t and t 4 6, o4;-(t + 7) = 0air(t +1). Also, because the
s-ADF accelerates at t + 1,t + 3, + 4, and t + 6, we have that o(t + 7) = 2o (t + 1).

We now prove that 6(t + 6) € [3,1]. By inspecting the iterations made by the s-ADF, we find that
z(t+6) =x5—[0(t) +e(e—1)]jo(t+1) and z(t +7) = x4+ [e — 0(t)]o(t + 1). Because ¢ > 1 and
0(t) € [5,1), (t + 6) < x4 and z(t + 7) > 4. This implies that (¢ + 6) € (0,1). Now assume that
f(t +6) € (0, 3). In this case, |z(t +6) — z4| < |z(t + 7) — z4|. Substituting (and re-arranging terms)
then yields the following inequality: €* — 2¢ + 26(t) < 0. This inequality is violated if 6(t) > 1. We
assume, however, that 6(t) € [3,1). By contradiction, we have thus shown that 6(t + 6) € [3,1).

Finally, we need to proof that (¢t 4+ 6) < § if 8(t) < 5. Assume that (¢t + 6) > 5. Since

0(t+6) = w is a strictly increasing function of 6(t), we can restrict our attention to the case
where 6(t) = . Substituting and re-arranging then yields the following inequality: €* — 2¢ + 1 < 0.
This inequality is false, so we have derived a contradiction.

QED

Assume that the conditions stated in Lemma 4 are fulfilled at ¢t = 0. We now define a “cycle”
as a sequence of 6 steps by the s-ADF. We count the number of completed cycles at time t by
the index m(t) € N. So, by definition, m(t) = |¢t/6|. Now denote the last point in time when a
new cycle started as ¢ (£) = 6m(t). Note that ¢ (£) < t. By induction, it follows from Lemma 4 that
o(t (t)+1) = €™M g(1). Moreover, because 8(t (t)) € [1,1), the distance |z(t (t))—z4| > 2o(t (£)+1).
For every ¢ > 0, there thus exists a t <t such that [z(t) — z4| > 1o(1)e2L#/6].

Proof of Lemma 1. We have to distinguish between two cases:

(a) Either z(t — 1) = x4, or z(t — 1) lies on the other side as z(t) relative to x4 (i.e, z(t) > x4 and
z(t—1) < zg, or z(t) < x4 and z(t — 1) > z4). In this case we have that |z(t) — z4] < o(t).

(b) z(t — 1) lies on the same side as z(t) and z(¢ — 2) lies on the other side as z(t) (relative to z,).
In this case we have that |z(t) — z4| < o(t — 1) 4+ o(¢t) < 20(¢).

To see that these are the only two cases, suppose that neither case (a) nor case (b) holds. This
means that z(¢—1) lies on the same side as z(t) (relative to z4) and either z(t—2) = z4 or z(t—2) also
lies on the same side as z(t) (i.e., either z(t —2) > x4, z(t — 1) > x4, and z(t) > z4; or z(t — 2) < x4,
z(t — 1) < x4, and z(t) < x4). Given the assumption that the i-ADF turns at time ¢ we will obtain
a contradiction. Observe that because z(t — 1) and z(t) lie on the same side (relative to x4) the
inequality

|2(t = 1) — 2g| < [2(t) — 24| (3-1)

holds (otherwise the i-ADF does not turn at time ¢). Then two cases remain:

(i) |z(t — 2) — 4| < |x(t — 1) — z4], so it follows from the assumption that f is unimodal that the
i-ADF turns at t — 1. This implies that |z(t — 1) — z4| > |z(t) — 4| which contradicts Eq. (3.1).

(ii) |z(t —2) —z4| > |2(t —1) — z4|, so the i-ADF does not turn at ¢ — 1. Therefore |z(t — 1) —z4| >
|z(t) — x4|, which contradicts Eq. (3.1).

Proof of Lemma 2. Suppose the i-ADF makes the k!* turn at time ¢. This means that the step
size is divided by a factor o at t + 1, i.e., o(t +1) = Lo(t) (see Algorithm 2, line 8). The i-ADF
will then multiply the step size with a factor S at t + 6 if the search direction does not change (see
Algorithm 2, line 3). We will show below that if < 2 (as we assume) then the i-ADF always turns
before t+6. Consequently, the step size is not incremented and we have that o(t(k+1)) = (1)o(t(k)).

12

Suppose the i-ADF does not change the search direction before ¢ 4+ 6. This means that |z(t +4) —
z(t)] = 20(t) > 20(t). Since, |z(t) — z4| < 20(t) (see Lemma 1), we can conclude that z(t + 4) lies
on the other side of z,4 as z(t). Moreover, |z(t + 5) — z(t)| = 20(t) and (¢ + 5) lies on the same side
as z(t + 4) relative to z4. Since |z(t + 5) — x4 > |z(t +4) — x4|, it then follows from the assump-
tion that f(z) is unimodal that f(z(t+5)) < f(z(t+4)). Consequently, the i-ADF will turn at ¢ +5.

Proof of Lemma 3. Observe that either z(t 4 1) lies between x4 and z(t), or (¢t + 1) lies between x4
and z(t—1). In the first case, it follows from the unimodality of f(z) that f(z(t+1)) > f(z(t)), hence
the i-ADF will not turn at time ¢+ 1. In the second case, it follows from the unimodality of f(z) that
f(z(t+1)) > f(xz(t—1)). Moreover, since the i-ADF turns at time ¢ we have that f(z(t—1)) > f(z(¢)).
Thus, f(z(t+ 1)) > f(z(¢)) and the i-ADF will not turn at time ¢ + 1.

Proof of Proposition 3. Throughout the remainder of this appendix we assume that the n-variable
i-ADF operates on an n-unimodal function f: R* — R.

Definition 1 (n-unimodal) Let f : R® — R, with n > 1. Moreover, let f,_, : R = R denote the
function that is obtained by fizing all but the i*" variable in f, where the n — 1 fized variables are
equal to x_; = (T1,... ,Ti—1,Tit1,--- ,&n). We now say that f is n-unimodal if f has a unique global
mazimum and if, for alli € {1,... ,n}, f._, is a unimodal function for any z_; € R* 1.

Intuitively, a function of n variables is n-unimodal if it has a unique global maximum and if by varying
only one of its variables the resulting unary function is unimodal (i.e., this unary function has a unique
global maximum).

For the proof of Proposition 3 some additional notation is useful. We denote the i-ADF algorithm
that modifies variable 7 as i-ADF;. We let k& denote the number of times the n-variable i-ADF has
switched from modifying one variable to another. Moreover, t(k) denotes the point in time when the
n-variable i-ADF turns and switches for the k*" time to another variable (one step later). If k € K,
with K; = {(i —1),(n+i—1),(2n+37—1),(3n + ¢ —1),...}/{0}, then ¢(k) + 1 denotes the point
in time when the i-ADF; algorithm starts to modify variable 7. It is convenient to have t; = t(k)
and tg+1 = t(k + 1). Additionally, x; 4(t) denotes the currently (given x_;) optimal value of ;.
Furthermore, Az; ¢(k) = |zi,q(tx + 1) — s (tx + 1), i.e., Az; 4(k) denotes the distance of x; to the
optimal value at ¢ + 1. Finally, let o;(¢) denote the step size of the i-ADF;.

Note that an i-ADF; does not pass on the operation of the i-ADF whenever it makes a turn
immediately after it starts operating. In this case k is not updated and the current time ¢ is set equal
to t(k) + 1 again.

Proposition 3 The n-variable i-ADF operates on an n-unimodal function. Additionally, suppose
that (1) a; > (a; — 1)B; and (2) 20; > B2(a; — 1) + B; hold fori = 1,...,n. If k € K; and
oi(te +2) < 2Az; 4(k) we then have that Az;g(k +1) < Az; 4(k).

ProOOF. We distinguish between two cases:

(a) either z;(tx+1+ 1) lies on the opposite side as x;(tx+1), relative to z; ¢(tx + 1), or z;(tx41+1) =
z;4(tx + 1). By construction of the i-ADF;, ;(tx4+1 + 1) lies between z;(tx+1 — 1) and z;(tx41)-
Consequently, both z;(tg+1 — 1) and z;(tx+1 + 1) do not lie on the same side as z;(tx+1), relative to
Z;,g(tk+1). Furthermore, z;(tg+1+1) lies closer to x; ¢(tx +1) than x;(tx4+1 —1). Thus Az; 4(k+1) <
Az; 4(k).

(b) z;(tx+1 + 1) lies on the same side as z;(tk+1), relative to z; ¢(tx + 1). We distinguish between
two subcases.

(b1) Assume that either z;(tx4+1 — 1) lies on the opposite side as x;(tx+1 + 1) relative to z; ¢(tx +1),
or z;(tkt1 — 1) = @i g(tk + 1). Since o;(tx + 2) < 2Az; 4(k) it follows from (bl) that o;(te41 — 1) <

13

Az; 4(k). Moreover, since ;(tx+1 + 1) lies between x;(tx41) and z;(tx+1 — 1) we have
Axi,!](k + 1) S |$i(tk+1 +]-) — wi(tk+1 — 1)|
< Bioi(te+1 — 1) — %ai(tkﬂ -1)

Bi

Q5

(Oli — 1)ai(tk+1 — 1)

Hence it suffices if %(ai —1) < 1,ie., o > (a; — 1)B;, which follows from condition (1).

(b2) Assume that z;(tg41 — 1) lies on the same side as z;(ty41 + 1), relative to zi gty +1). Let
m = tgy1 — (t + 1). From the assumption that o;(tx + 2) < %Ami,g(tk + 1), and the fact that
Z;(tk+1 — 1) lies on the same side as x;(tx41 + 1), it follows that m > 3. For m = 4 we have that

Azig(k) > oity +2) + oi(ty +3)
= 20i(tx +2)

and

AN

Azig(k+1) oi(ty +4) + 0i(tg +5) — oi(tx + 6)

<2 - ai> os(te +2).

Hence, Az; 4(k) > Az; ¢(k+1). Analogously, for m = 5 we have that

Az g(k) > oi(ty +2) +oi(te + 3) + oi(tx + 4)
= 3Ji(tk + 2)

and

A.Z‘i,g(k + 1) < O'i(tk + 5) + O'i(tk + 6) - O'i(tk + 7)
= <1 + é(a, - 1)) Ji(tk + 2)

Q5
Thus for Az; 4(k) > Az; ¢(k + 1) to be the case it suffices if 2a; > B;(a; — 1), which is the case since
a; > (a; — 1)B; (condition (1)). Finally, for m > 6 we have that

m

Azig(k) > 4+ (381 — D)ot +2)

n>6

and
Az;g(k+1) < <1 + %(a,- - 1)) ﬁ;"*%,-(tk +2).

We can show by induction on m (for m > 6) that if 4a; > B2(c; — 1) + Bi; and 2a; > B2 (a; — 1) + ;i
(condition (2)) hold then Az; 4(k) > Az;4(k + 1). Moreover, combining o; > (a; — 1)5; (condi-
tion (1)) and 2a; > B%(a; — 1) + B; (condition (2)) implies that 4a; > B2(a; — 1) + Bicvi, hence
Az; g(k) > Az; g(k + 1) for m > 6.

QED

14

References

. P. Dasgupta and R. Das. Dynamic pricing with limited competitor information in a multi-agent
economy. In O. Eztion and P. Scheuermann, editors, Proceedings of the 5th International Conference
on Cooperative Information Systems (CooplS). Lecture Notes in Computer Science, volume 1906,
pages 299-310, Berlin, September 2000. Springer-Verlag.

. J. Morris DiMicco, A.R. Greenwald, and P. Maes. Dynamic pricing strategies under a finite time
horizon. In Proceedings of the 8rd ACM Conference on Electronic Commerce (EC ’01), pages
95-104, New York, October 2001. ACM Press.

. A.R. Greenwald and J.O. Kephart. Shopbots and pricebots. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI-99), pages 506-511, August 1999.

. AR. Greenwald and J.O. Kephart. Probabilistic pricebots. In Proceeding of the 5th International
Conference on Autonomous Agents, pages 560-567, May 2001.

. J.O. Kephart, J.E. Hanson, and A.R. Greenwald. Dynamic pricing by software agents. Computer
Networks, 36(6):731-752, May 2000.

6. J. Morris. A simulation-based approach to dynamic pricing. Master’s thesis, MIT, May 2001.

7. H.R. Varian. Pricing information goods. In Proceedings of the Symposium on Scholarship in the
New Information Environment. Harvard Law School, May 1995.

. H.R. Varian. Differential pricing and efficiency. Firstmonday, 1(2), August 1996. Available at
http://www firstmonday.dk/issues/issue2/different /.

. G. Zacharia, T. Evgeniou, A. Moukas, P. Boufounos, and P. Maes. Economics of dynamic pricing
in a reputation brokered agent mediated marketplace. In J. Liu and Y. Ye, editors, E-Commerce
Agents, volume 2033 of Lecture Notes in Artificial Intelligence, pages 25—-38, Berlin, 2001. Springer—
Verlag.

