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ABSTRACT

The evolution of cooperation in a system of agents playing the iterated prisoner’s dilemma (IPD) is investigated.

We present results for the standard two-person IPD as well as the more general N-person IPD (NIPD) game.

In our computational model, agents can recognize each other and decide whether to interact or not, based

upon “tags” (labels). We consider the evolutionary stability of the evolving populations. Previous work is

extended by introducing sexual reproduction (recombination) of agents and by analyzing its influence on the

evolving populations. We observed the occasional formation of very stable cooperative societies, as opposed

to previous results without sexual reproduction. These cooperative societies are able to resist invasions of

“mimics” (defecting agents with the tag of a cooperating agent).
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1. Introduction

Recently, interest in the evolution of strategic choice and the simulation of adaptive agents has surged
among economists and game theorists [4]. An important topic in this field is the “spontaneous”
emergence of cooperation in multi-agent systems [1]. It has been suggested [6, 8] that under difficult
circumstances (i.e., when agents are tempted to display uncooperative behavior) “tags” might be useful
in promoting the evolution of cooperation. Tags (labels or exterior characteristics) enable agents to
recognize other players and bias their behavior accordingly.

Empirical evidence for the potential of tag-mediated systems has recently been provided by Ri-
olo [8]. Riolo studied a multi-agent system in which agents play a short iterated prisoner’s dilemma
(IPD) game (of only four rounds) against each other. Under these conditions, it is very difficult for
cooperation to emerge. When Riolo added a simple tagging mechanism, however, population dy-
namics changed dramatically and the agents were able to reach mutual cooperation earlier and over
extended periods of time. However, results in [8] indicate that the evolving tag-using populations are
still relatively unstable.

Riolo’s pioneering work is extended in this paper by investigating the stability of the evolving
populations, together with the role of the evolutionary algorithm (EA) that updates the agents’
strategies over time. EAs are stochastic search methods based on the principles of natural genetic
systems [7]. These algorithms deal with a population of individuals (referred to as agents here).
Riolo used a very simple EA in his experiments. In particular, the reproduction of the agents was
modeled as an asexual process (i.e., each parent produces one offspring with mutation as the only
genetic operator). This model does not allow for the exchange of parts of strategies between agents
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(recombination). This recombination process may play an important role in the evolutionary search
process. Earlier experiments by Axelrod [2] have demonstrated, for instance, that cooperative societies
form more frequently if recombination of the agents’ strategies occurs.

Recombination of strategies is also called sexual reproduction. During this process well-performing
agents (the “parents”) exchange parts of their strategies to produce offspring. We will show that
the sexual reproduction mechanism has a remarkably stabilizing effect on the evolving populations,
as compared to asexual reproduction. This monotonicity has as a side effect that the cooperative
populations, on the average, emerge after a longer period of time than in the asexual case. To obtain
a speed-up of the emergence of cooperation, we therefore also consider a natural extension of EAs,
incorporating a model for tag-directed parent (mate) selection.

Tag-directed mating replaces the standard (random) mating of parents with a more sophisticated
matching algorithm, in which parents can select their own co-parent (based upon exterior mating
characteristics). Preliminary results with this extended model already indicate an increasing number
of robust cooperative populations.

This paper is organized as follows. First, we give a brief outline of our computational experiments
in Section 2. Our extension of Riolo’s work is then presented in Section 3. The influence of sexual
reproduction is investigated first in Section 3.1. Section 3.2 then discusses the influence of tag-directed
mate selection. In Section 3 the two-person IPD is considered. The N-person IPD (NIPD), which is
a more suitable model for the so-called “social dilemmas” [5], is evaluated in Section 4. Conclusions
are drawn in Section 5.

2. Experimental setup

All computational experiments have been performed using Swarm,1 a multi-agent software platform
for the simulation of complex adaptive systems (see Fig. 1). The central component of Swarm is the
“ModelSwarm”, which contains the population of players and the (evolutionary) algorithm to construct
a new population (“newList”) from the previous one (“popList”). The “IPD” component contains the
implementation of the IPD game (payoff values are the same as in [8], where the punishment payoff
P=1, the temptation payoff T=5, the suckers payoff S=0, and the mutual cooperative outcome leads
to a reward payoff R=3 for both players). Finally, the “ObserverSwarm” is a component for data
extraction and visualization.

The EA that we implemented in the “ModelSwarm” consists of a canonical fitness-proportional
selection scheme. Three different recombination operators were implemented: single-point crossover,
two-point crossover and uniform crossover (see [7]). Because we are mainly interested in the relative
performance of the agents, the raw fitness fi (the average payoff over all played rounds) is normalized
by taking f̂i = (fi − µ)/σ + 1, where µ is the mean population fitness. This implies that a player
performing one standard deviation above the mean will (on average) get two offspring. Negative
fitness values (f̂i < 0) were reset to 0.1 (see [7]) so that individuals with a very low fitness still have
some small chance of reproducing.

The representation of the agents’ strategies differs from the representation Riolo used in his ex-
periments. Here, we use pure (i.e., deterministic) strategies that are encoded as binary-valued chro-
mosomes, whereas Riolo used mixed (i.e., probabilistic) strategies that were encoded as real-valued
chromosomes. We adopt the genetic representation of IPD players as proposed by Axelrod [2]. Each
agent has a memory capacity of three previous moves (one move of his own, and two of the opponent)
in our model. The agent’s strategy (which specifies the agent’s next move) is then encoded in 23 = 8
strategy bits [s0, ..., s7], located on the agent’s chromosome (see Fig. 2).

Three additional bits [m0,m1,m2] are present on this chromosome to determine the agent’s first
move. Because the IPD game is very short in our simulations (only four rounds, as in [8]), the agents
only have a memory capacity of three previous moves (instead of a memory of six moves in Axelrod’s
151-round simulations).

1http://www.santafe.edu/projects/swarm.
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Figure 1: The Swarm model. On the left, the main components “ModelSwarm” and “IPD” are
depicted. On the right, we see the “ObserverSwarm” component that extracts and displays data from
the components on the left.
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Figure 2: The structure of an agent’s chromosome when tag-based opponent selection and mate
selection are both used.

An agent’s tag consists of three tag bits [t0, t1, t2] (see Fig. 2). We adopted the same algorithm for
tag-based opponent selection as Riolo [8]. In this algorithm (see Fig. 3) each player can inspect the tag
of a limited number of opponents. An opponent search cost (of 0.02, see Table 1) is associated with
each tag trial. When the allowed number of tag search trials is exceeded the player is matched with
a random opponent. After an opponent has been selected, the IPD game is played and the opponent
search costs are subtracted from the player’s average payoff. In the experiments described here, the
tag bias, which specifies the maximum allowed Hamming distance between two tags, is set to 0. In
this case the agent in Fig. 2 will only accept opponents with a similar [1,0,1] tag.

The agent’s chromosome, depicted in Fig. 2, also has a mate selection tag. The mate selection
mechanism is implemented analogously to the opponent selection algorithm. After calculating the
fitness of all agents in the population, a pool of parents is generated (using fitness proportional
selection). Each parent then compares his mate selection tag with the mate selection tags of other
parents in order to find a matching co-parent. When the maximum number of mate tag trials is
exceeded, the parent will mate with a randomly selected co-parent. Note that the mate search costs
are set equal to zero (see Table 1).

An overview of the model settings is given in Table 1. Whenever possible similar parameter settings
as in [8] were chosen. Increasing or decreasing the mutation rate only had a small influence on the
results when the mutation range was varied between 0.001 and 0.1 (a range of commonly recommended
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Figure 3: The algorithm for tag-based opponent selection. This algorithm will be repeated until ten
opponents have been selected from the population of 400 individuals.

values [3]).

Parameter Value
Population size 400
Number of tag trials 5
Tag size (in bits) 3
Tag bias 0
Opponent search costs 0.02
Mate search costs 0.00
Mutation rate (per bit) 0.025
Crossover probability 0.9
Number of moves per game 4
Number of games to play 10

Table 1: Model settings. We adopted the same terminology as in [8].

3. Results and discussion

3.1 Asexual vs. sexual reproduction
Figure 4 shows a typical run of a population of agents playing the IPD. The oscillatory pattern of the
mean population fitness indicates that the population alternates between a state of mutual cooperation
(when the fitness is close to the reward level R = 3) and a society of defectors (when the fitness is
close to the punishment level P = 1). Societies of cooperators are frequently undermined by “mimics”:
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Figure 4: Mean fitness of a population of asexual agents playing the IPD. The fluctuations in fitness
show that stable societies of cooperating agents do not form.

defecting agents with a tag associated with a group of cooperators. These mimics are not recognized
as being defectors and can therefore successfully exploit the cooperative agents [8].

After introducing sexual instead of asexual reproduction, we obtain a significant change in popu-
lation dynamics, see Fig. 5. The oscillatory behavior visible in Fig. 4 disappears and the individual
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Figure 5: Mean fitness of a population of sexual agents playing the IPD: two typical runs. Notice
that the oscillatory behavior observed in Fig. 4 disappears.

runs can now be classified as (1) runs in which a high mean fitness level is achieved and sustained,
and (2) runs in which a society of (mainly) defectors forms. Examples of both cases are shown in
Fig. 5. An important aspect is the monotonicity of the observed behavior: once cooperation emerges
it persists over long periods of time. We, for instance, extended some runs for as long as 10,000
generations without the mean fitness dropping a single time below the 2.3 level after a cooperative
period occurred.2

Average results (over 30 runs) are presented in Table 2.
In case of sexual reproduction, the mean fitness over the entire evolution history (MHF) remains

rather low. This is due to the fact that it takes longer for cooperative societies to emerge when
2A society with cooperative periods is defined here as a society in which the mean population fitness remains above

2.3 for 20 successive generations at least once during the entire run.
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Asexual Sexual
(two-point) (single-point)

Runs with coop- 0/30 8/30 24/30
erative periods (RCP)
Sustained stable 0/30 8/30 24/30
cooperative runs (RSSC)
Gover2.3 0.59 (0.09) 1.0 (0.0) 1.0 (0.0)
Gunder1.7 0.21 (0.06) 0.0 (0.0) 0.0 (0.0)
Gto2.3 22 (21) 7.7 · 102 2.5 · 102

(7.6 · 102) (2.1 · 102)
Mean histori- 2.24 (0.1) 1.54 (0.5) 1.95 (0.44)
cal fitness (MHF)

Table 2: Average fitness performance for asexual experiments and sexual experiments. (Numbers are
calculated for 30 runs of 1,000 generations; standard deviations in brackets.)

recombination is used. Notice for instance in Table 2 that, when two-point crossover is used, the
average number of generations it takes before the fitness first exceeds a value of 2.3, Gto2.3, increases
to 7.7·102 in the experiments with sexual reproduction. But once a population has exceeded this fitness
level, the population fitness never drops below 1.7 (Gunder1.7=0) and in fact always remains above
2.3 (Gover2.3=1). Gover2.3 is defined as the fraction of generations in which the mean fitness is above
2.3, counting only generations after Gto2.3. Analogously, Gunder1.7 counts the fraction of generations
in which the mean fitness has dropped below 1.7. When one-point crossover or uniform crossover was
used instead of two-point crossover, the same stabilizing effect was observed. However, cooperation
was achieved more often using the less disruptive single-point crossover operator. Populations using
single-point crossover evolved to cooperative societies in 24 out of 30 runs compared with only 8 out
of 30 runs for two-point crossover. The mean fitness increased to 1.95 (0.44) compared with 1.54 (0.5)
in case of two-point crossover (see Table 2). In case of uniform crossover, the mean fitness was only
1.34 (0.33) and cooperative societies emerged in 5 out of 30 runs.

The striking stability of the evolving cooperative societies could be explained by the influence of
sexual reproduction on the number of mimics. Our experiments show that in cooperative societies
distinct tagging groups form, i.e., for each tag one agent type becomes dominant. A mimic is then
defined as an agent with the same tag as the dominating agent type, but with at least 5 different
strategy bits. Defined this way, the proportion of mimics is 20-30 % in the experiments with asexual
reproduction. This large proportion of exploiting agents contributes to the large fluctuations in mean
fitness observed in Fig. 4. The proportion of mimics is much smaller (below 10 %) in the experiments
with sexual reproduction.

3.2 Tag-directed mate selection
Results obtained using the relatively disruptive two-point crossover operator slightly improved when
selective mating was introduced. Mate selection yields an increase in mean fitness (from 1.54 (0.5) to
1.68 (0.5)), mainly because, on average, mutual cooperation is discovered earlier (Gto2.3 decreases from
7.7 · 102 to 7.2 · 102). Again we found that, once was cooperation established, average fitness stayed
above the 2.3 level. We also performed experiments with an evolving tag bias for mate selection
(located on the chromosome). In this setup, a mate was only accepted if the Hamming distance
between the two mating tags was equal to the tag bias. We found, in general, that agents have a
strong preference for partners with a similar mating tag (the average mate tag bias converged to a
small value).
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4. Tagging in the N-person IPD game

The two-person IPD game can be used to model many social processes where cooperation is desirable
but not easily obtained or sustained. There is an important class of cooperation problems, however,
which can not be modeled adequately by the two-person IPD game. These problems are the so-called
social dilemmas [5]. Social dilemmas can, however, be modeled by the N-person IPD (NIPD) game.
Therefore, we extend our research on tagging to the NIPD game. Previous computer simulations of
the NIPD with evolutionary algorithms [9] have shown that it becomes substantially more difficult
to evolve cooperative societies if the number of players increases (i.e., when N > 2). To investigate
whether the tagging mechanism also fosters stable cooperation in the NIPD, we performed a series of
experiments for N > 2.

The NIPD game is described in detail in [9]. Like in the 2-person IPD, an agent can only choose
between cooperation or defection in each round. The payoff (per round) is then determined as follows.
If an agent cooperates, his payoff is equal to 2nc − 2, where nc is the total number of cooperating
agents. If he defects, he earns a payoff of 2nc + 1. In the 4-person IPD this payoff scheme would lead
to a payoff of 1 in a society of defectors and a payoff of 6 in a cooperative society. The payoff matrix
for an agent in the 4-person IPD is shown in Table 3.

Number of cooperators among 0 1 2 3
the other N − 1 = 3 players

Cooperates 0 2 4 6agent A
Defects 1 3 5 7

Table 3: Payoff matrix for an agent in the 4-person IPD [9].

In our computational model, the strategy of an agent is now depending on (1) the agent’s previous
moves and (2) the number of cooperating agents in these rounds. If we consider the 4-person IPD,
the length of the strategy block (see Fig. 2) is therefore equal to 29= 512 bits (3 bits to denote the
previous 3 moves of the player, and 3 times 2 bits to denote the number of cooperators in the previous
3 rounds). The initial memory block then also has a size of 9 bits. As in the previous experiments with
the 2-person IPD, the length of the tag is equal to the size of the initial memory block (i.e., 9 bits).
Without a mating tag, the total chromosome length for agents in the 4-person IPD is therefore equal
to 530 bits. An agent in the 4-person IPD repeatedly applies the algorithm for tag-based opponent
selection as is shown in Fig. 3. The agent is thus allowed 5 tag trails per opponent.

In the evolutionary algorithm, the mutation probability (per bit) is reduced to 0.002 (from 0.025, see
Table 1) to avoid an excessive increase of the number of mutations due to the much longer chromosome
length for N=4. (With this mutation rate, on average one bit per chromosome is mutated for N=4
agents.) Values for the remaining parameters were kept the same as in the 2-person IPD (see Table 1).

Computational results for N=4 are reported in Table 4. The degree and stability of the emerging
cooperation is measured by monitoring the mean historical fitness (MHF), the number of runs with
cooperative periods (RCP), and the number of runs with sustained stable cooperation (RSSC). The
horizontal lines in Fig. 6 indicate the mean population fitness for different values of the number of
cooperators nc (accounting for tag search costs). Notice that it is very difficult to achieve cooperative
societies (the MHF remains low). Although the tagging mechanism increases average fitness levels,
population-wide cooperation does not emerge. Remember that the average population fitness would
still be equal to 2.25 if there is only one cooperator in each round (i.e., nc = 1, corrected for the
tag search costs). Note, however, that the number of runs with cooperative periods (RCP) and the
number of runs with sustained stable cooperation (RSSC) significantly increase in case of tag-using
agents.

To gain more insight in the nature of the cooperation that occurs, we examined the number of
cooperators per tag group and in each round of the game. As in the 2-person IPD, distinct tag groups



8

emerge after approximately 100 generations. Most of these tag groups exhibit defective behaviour.
Sometimes, however, a tag group discovers cooperative strategies. In most runs, this “cooperating”
group was of a substantial size, periodically increasing average fitness levels to 3 or even higher. The
maximum fitness measured during the experiments was approximately equal to 5, which indicates the
emergence of a large group of cooperators (also given the fact given that the agents have to pay tag
search costs).

The MHF data presented in Table 4 suggests that sexual cooperation does not help the emergence
of cooperation. Notice for instance that the MHF decreases from ≈2.08 in the asexual experiments
to ≈ 1.14 in the experiments with single-point crossover (when tag use is allowed). A more careful
analysis however shows that the higher mean fitness in the asexual experiments is due to the fact that
in these experiments incidentally a very high fitness is achieved. This cooperation level cannot be
sustained however. The experiments further show that (due to slow convergence), fitness levels in the
runs without sexual reproduction decrease very slowly, but once all cooperation is completely lost, it
is very difficult for the asexual agents to reestablish it (at least not within the 10,000 generations we
have examined). Figure 7 shows that this is not the case for experiments with sexual agents: after an
initial period of low fitness levels a transient towards an increased level of cooperation occurs (after
approximately 600 generations). This increased level of cooperation is then sustained in the remainder
of the experiment.

Sexual reproduction Tags MHF RCP RSSC
No No 1.08 (0.02) 0/30 0/30
(single-point) No 1.11 (0.03) 0/30 0/30
(two-point) No 1.11 (0.02) 0/30 0/30
No Yes 2.08 (0.47) 25/30 3/30
(single-point) Yes 1.14 (0.13) 8/30 4/30
(two-point) Yes 1.62 (0.50) 20/30 14/30

Table 4: Influence of tagging and sexual reproduction in the 4-person IPD. Note that both the mean
historical fitness (MHF), the number of runs with cooperative periods (RCP) and the number of runs
with sustained stable cooperation (RSSC) increase if the agents can use tags. (Statistics are calculated
for 30 runs of 10,000 generations; standard deviations in brackets.)

Sexual reproduction Tags MHF RCP RSSC
No No 6.8 (0.2) 5/10 2/10
(single-point) No 5.7 (0.3) 4/10 2/10
(two-point) No 6.2 (0.2) 5/10 3/10
No Yes 9.5 (2.4) 8/10 4/10
(single-point) Yes 12.9 (1.3) 7/10 7/10
(two-point) Yes 10.6 (1.5) 8/10 8/10

Table 5: Experimental results for the 8-person IPD when the number of iterations per game is increased
to 10. Note that the mean historical fitness (MHF) increases when the use of tags is allowed. (Statistics
are calculated for 10 runs of 10,000 generations; standard deviations in brackets.)

When the number of players was increased to 8 or 16 players, only defective societies where observed,
with fitness levels always lower than 1.5. 3 We found in additional experiments that this difficulty in

3In the 8-person IPD, the mutation probability is set equal to 0.0002; in the 16-person IPD this probability is set
equal to 0.00003.
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Figure 6: Influence of tagging and asexual reproduction in the 4-person IPD, one typical run with
cooperation. Note the step-wise decrease of fitness as evolution proceeds. The horizontal lines indicate
the fitnesses of populations with on (average) 1, 2, 3, or 4 cooperators.
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Figure 7: Influence of tagging and sexual reproduction in the 4-person IPD. Two typical runs with
cooperation. Notice that, once some cooperation is achieved, the population stays out of the defective
zone throughout the entire run.

achieving cooperation was caused mainly by the small number of rounds (namely 4, see Table 1) in the
game. When the game length increases, average fitness levels rise, and cooperation is achieved more
often. As an example, Table 5 shows the results for the 8-person IPD when the number of iterations
is increased to 10. Remember that fitness values in the 8-person IPD lie between 1 (for nc = 0) and
14 (for nc = 8). Again we see that tags help to establish cooperation in societies of agents playing
the NIPD. If we look at the population after 10,000 generations we also observe a strong convergence
per tag group as was the case in the 2-person IPD.

In the 16-person IPD, increasing the number of iterations to 10 causes a small increase of the level
of cooperation. In 10 runs of 10,000 generations each, cooperation (i.e., fitness > 1) emerged only
once with tag-using agents. These results are roughly compatible with experiments from Yao and
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Darwen [9], where no cooperation was found in a 16-person IPD without tags (with 100 iterations and
agents with a memory of size 2). The failure to reach cooperation can be caused by the large search
space (the chromosome length without tags is 32,783 in the 16-person IPD without tags).

5. Conclusions

We have studied evolutionary processes in multi-agent systems. In this paper, we have investigated
the “evolution of cooperation” in a population of agents playing the tag-mediated (iterated) pris-
oner’s dilemma (IPD). Computational experiments have been performed using evolutionary algorithms
(EAs). We have shown that the tagging mechanism and the reproduction process of the agents play
a major role in the formation of stable cooperative societies.

In the 2-person IPD the population alternates between a state of mutual cooperation and a society
of defectors in a model with asexual reproduction (i.e., when children are simple copies of their parents
and mutation is the only genetic operator). A distinct behavior emerges if reproduction of the agents
is sexual (i.e., when the parental strategies are recombined during the reproduction process). We
observed, for instance, the formation of very stable societies of cooperative agents, a phenomenon
not observed in the experiments with asexual reproduction. Furthermore, we found that cooperative
societies emerge more frequently when the recombination operator is not too disruptive (e.g., a single-
point crossover scheme). Finally, we proposed a tagging mechanism to enable biased partner selection.
First results for this extended model were presented.

Results for the N-person IPD showed that (1) it becomes more difficult to evolve cooperative
societies if the number of players is increased (i.e., N > 2), and that (2) tagging does help to achieve
cooperation in the N-person IPD game. Furthermore, stable long-term cooperation emerges more
frequently when sexual recombination of the agents’ strategies occurs (as in the two-person game
studied in this paper).
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3. T. Bäck, U. Hammel, and H.P. Schwefel. Evolutionary computation: Comments on the history
and the current state. IEEE Transactions on Evolutionary Computation, 1:3–17, 1997.

4. K. Binmore and N. Vulkan. Applying game theory to automated negotiation. Netnomics, Vol.
1(1):1–9, 1999.

5. R.M. Dawes. Social dilemmas. Annual Review of Psychology, 31:169–193, 1980.

6. J.H. Holland. Hidden order: How adaptation builds complexity. MIT Press/Addison-Wesley, Read-
ing (MA), 1995.

7. M. Mitchell. An introduction to genetic algorithms. MIT Press, Cambridge (MA), 1996.

8. R.L. Riolo. The effects and evolution of tag-mediated selection of partners in populations play-
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