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Bilateral Bargaining With Multiple Opportunities:
Knowing Your Opponent’s Bargaining Position

Enrico H. Gerding and Han La Poutré

Abstract—Negotiations have been extensively studied theoreti-
cally throughout the years. A well-known bilateral approach is the
ultimatum game, where two agents negotiate on how to split a sur-
plus or a “dollar”—the proposer makes an offer and responder
can choose to accept or reject. In this paper a natural extension of
the ultimatum game is presented, in which both agents can nego-
tiate with other opponents in case of a disagreement. This way the
basics of a competitive market are modeled, where, for instance,
a buyer can try several sellers before making a purchase decision.
The game is investigated using an evolutionary simulation. The
outcomes appear to depend largely on the information available to
the agents. We find that if the agents’ number of remaining bar-
gaining opportunities is commonly known, the proposer has the
advantage. If this information is held private, however, the respon-
der can obtain a larger share of the surplus. For the first case we
also provide a game-theoretic analysis and compare the outcome
with evolutionary results. Furthermore, the effects of search costs,
uncertainty about future opportunities, and allowing multiple is-
sues to be negotiated simultaneously are investigated.

Index Terms—Automated negotiation, evolutionary algorithms
(EAs), incomplete information, multiple opportunities, ultimatum
game.

I. INTRODUCTION

IN THE advent of ubiquitous application of agent technology,
bargaining agents are expected to play an essential role in

electronic market places. Automated negotiations are therefore
becoming an important field of research [1]–[17]. The agents
in a competitive market are self-interested and can be equipped
with the ability to autonomously search for products and services
and negotiate the terms of an agreement. In this paper1 we focus
on strategic aspects of bilateral bargaining within a market-like
setting, where the agents learn effective bargaining strategies by
a process of trial and error.

Bilateral bargaining has been extensively researched, for in-
stance, in game theory [19]–[21]. Negotiations are often stylized
using the ultimatum game—a two-stage game in which an offer
is proposed by player one (the proposer) in the first stage and
the second player (the responder) can only choose to accept
or reject the offer. The ultimatum game has been extensively
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researched both theoretically and experimentally, using human
subjects [21]–[23].

The ultimatum game models a negotiation between an iso-
lated pair of players. In a market setting, however, an agent’s
behavior can change if future opportunities are taken into ac-
count. This paper introduces a natural extension of the basic
ultimatum game in which fallback opportunities are explic-
itly modeled. Both the proposing and the responding agents
have several bargaining opportunities with different oppo-
nents before their payoff is determined. In this way a mar-
ket place is modeled where several sellers and buyers are
available.

The game is further extended to allow several issues to be
negotiated simultaneously; not only the price, but also other im-
portant attributes such as delivery time, package deals, warranty,
and other product-related aspects can be taken into account. This
can reduce the competitive nature of the game since tradeoffs
can be made to obtain win–win solutions. Furthermore, the pa-
per considers the effect of search costs if an offer is refused and
a new opponent needs to be found. We also consider the case
where uncertainty exists about future opportunities and a new
opponent cannot always be found.

An important aspect within this setting is the information
available to the agents regarding their opponent’s bargaining
position. We distinguish between two information conditions
in this paper: the complete information case, where an agent’s
current number of remaining bargaining opportunities is com-
mon knowledge, and the incomplete information case, where
this information is known to the protagonist but hidden from the
opponent.

The complete information condition can be approached the-
oretically using game theoretic subgame perfect equilibrium
(SPE) given reasonable assumptions. The incomplete informa-
tion condition, on the other hand, seems much more difficult
to analyze. We therefore apply computational simulations using
evolutionary algorithms (EAs) to investigate this setting. We
also compare the evolutionary and the theoretical approach in
the complete information case.

In the field of computational economics, evolutionary simu-
lations are increasingly applied to study the dynamic process of
locally interacting, adaptive agents, particularly in the area of
agent-based computational economics [24] and [25]. In contrast
to for instance game theory, the agents are not assumed to be
completely rational. Rather, the agents are naive optimizers act-
ing on limited information. In these simulations, the agents are
also myopic, i.e., they do not have any forward-looking ability or
memory. Nonetheless, the emerging behavior of such adaptive,
“low-rational” agents often corresponds surprisingly well with
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game-theoretic outcomes for completely informed and perfectly
rational agents.

In this paper we present the evolutionary results for the set-
tings described above and a game-theoretic analysis for the
extended game with complete information. Subgame perfect
results predict an extreme split of the surplus similar to the
ultimatum game—the proposer claims the entire surplus and the
responder accepts this deal. The evolutionary outcomes show a
good match with these game-theoretic results if settings are
equal for the proposer and the responder. If however the respon-
der has many more bargaining opportunities than the proposer,
she/he obtains a larger share than predicted game theoretically.

The evolutionary simulation shows that results change signif-
icantly if information about the opponent’s bargaining position
is not available. If the number of bargaining opportunities is
sufficiently high, the responder now obtains the largest share.
This result is achieved even when the number of initial bargain-
ing opportunities is equal for both the players. The outcomes in
the incomplete information case, however, also depend on the
existence of positive search costs. Search costs stimulate agents
to reach agreements early and discourage both the players to ex-
plore additional opportunities. In the evolutionary simulation,
the agreements are then similar to the one-shot ultimatum game.
A similar effect is observed if bargaining is terminated with a
small probability because no new opponent can be found.

This paper is organized as follows. In Section II the bargain-
ing game with multiple bargaining opportunities is described.
Section III provides a game-theoretic analysis of the game in
case of complete information. Section IV outlines the evolu-
tionary simulation and Section V discusses the obtained results
from the simulation. Section VI reflects on the ultimatum game
as a model for bargaining and also contains a short overview of
related work. Lastly, a conclusion is drawn in Section VII.

II. DESCRIPTION OF THE BARGAINING GAME

The modeled market consists of buyers and sellers who ex-
change a single good through bilateral negotiations. At each bar-
gaining opportunity, an ultimatum-like game is played, where
a seller proposes an offer and a buyer can reject or accept the
seller’s offer.2 In our model an offer consists of one or more
issues. If an agreement is reached, both agents obtain a payoff
equal to their utility of the offer.

In case of multiple issues, the utility is calculated as the
weighted sum of the share obtained for each issue. More for-
mally, the seller’s utility us for an offer �o can be written as
�ws · �o =

∑n
i=1 wi

s · oi , where �ws is a vector containing the
seller’s weights for each issue and n is the number of issues.
Similarly, the buyer’s utility function ub = �wb · [�1 − �o], where
�wb represents the buyer’s weights. The utilities of the agents
are normalized between 0 and 1. The differences in weights of
the two players determine the degree of competitiveness of the
negotiations (i.e., to what extent tradeoffs can be beneficial). We

2Alternatively, a more complex bargaining game such as the alternating-offers
game [21] involving multiple rounds can be used. Outcomes are equivalent to
the ultimatum game, if no time pressure exists; agreements are delayed until
in the final round a take-it-or-leave-it offer is made. This deadline effect was
studied in [19] using an EA simulation.

Fig. 1. Two-issue negotiation example in a market where each agent has two
initial bargaining opportunities (mb = ms = 2).

formalize the notion of competitiveness and address this issue
further in Section V-C.

Each seller agent initially has up to ms bargaining opportu-
nities to reach an agreement, whereas a buyer agent has mb bar-
gaining opportunities to start with. In case of a disagreement the
agents are newly matched with randomly selected opponents,
until no more bargaining opportunities remain. An agent’s bar-
gaining position is characterized by the number of remaining
bargaining opportunities, which is known as an agent’s bar-
gaining state. A seller’s and buyer’s bargaining state is denoted
by γs ∈ {0, 1, . . . ,ms}, and γb ∈ {0, 1, . . . ,mb}, respectively.
If an agent’s bargaining state reaches zero, the agent obtains a
disagreement payoff that is set to zero.

An example for a two-issue negotiation is shown in Fig. 1
from a buyer’s perspective. The buyer, whose initial bargaining
state is γb = 2, first encounters a seller, seller 1, with bargaining
state γs = 1. The seller proposes an offer �o = (0.5, 0.5) and the
buyer refuses this offer. Because the seller has no more bar-
gaining opportunities, her/his bargaining game ends and she/he
obtains the disagreement payoff. The buyer, on the other hand,
can continue bargaining when matched with another opponent,
seller 2. In the example this opponent with γs = 2 offers (0.6,
0.6). The buyer now accepts and the bargaining game ends for
both agents.

Note that, even if the agents initially have equal bargaining
opportunities (ms = mb), the matched agents can have differ-
ent bargaining states. Having agents with different states is an
important aspect of the market game, particularly when agents
are unaware of their opponent’s remaining opportunities. Fur-
thermore, once an offer is rejected, agents cannot go back on a
previous offer.3

III. GAME-THEORETICAL APPROACH

This section considers the game-theoretic SPE of the above
game where the agents’ bargaining states (i.e., bargaining po-
sitions) are common knowledge. A game-theoretical analysis
seems to be very difficult if the agents have incomplete infor-
mation of their opponent’s bargaining state. We will, however,
drop the complete information assumption in the evolutionary
approach (Section IV). In the following analysis we assume all
agents of a specific type (i.e., buyer or seller) apply the same
negotiation strategy. This assumption is reasonable since the
preferences are homogeneous for a given type.

In case of a single opportunity, the bargaining game is reduced
to the ultimatum game. The ultimatum game has a unique SPE

3Agents are said to have no recall [26].
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where the seller (here the proposer) claims the total share for
each issue and the buyer (the responder) accepts this take-it-
or-leave-it deal [21]. This result can be obtained by applying
backward induction. Intuitively, a rational buyer will accept any
positive amount, which is always better than obtaining the zero
payoff in case of a disagreement. The SPE is precisely the point
where the buyer is indifferent between accepting and refusing.

We argue that the game with multiple bargaining opportuni-
ties and complete information has an SPE with the same out-
come as the ultimatum game: the seller obtains the entire share
and the buyer receives the disagreement payoff, which is set to
zero.4 Consider a buyer with γb = 1, i.e., with a final bargaining
opportunity remaining. The buyer will then accept any positive
amount offered by the seller. An anticipating seller will then
claim the entire share, as in the ultimatum game, independent
of γs . In SPE, the buyer’s payoff for γb = 1 therefore equals
zero. Note that this holds only if the seller is informed about the
buyer’s bargaining state.

If γb = 2, the buyer has two bargaining opportunities. Follow-
ing the above, we can replace the payoff for refusing the seller’s
offer when γb = 2 by the disagreement payoff. The situation
for γb = 2 is now similar to γb = 1—the buyer is indifferent
between accepting and refusing a value of zero and in SPE
the buyer accepts this deal, independent of γs . By backward
induction the same holds for γb = mb .

We note that, because the agents are indifferent to the bar-
gaining state in which the agreement is reached, actually several
subgame perfect equilibria exist. In all cases, however, the divi-
sions are the same. Note also that the above argument holds only
if the seller is informed about the buyer’s number of remaining
bargaining opportunities. If this information is not available,
a game-theoretic analysis seems much more difficult. An evo-
lutionary simulation, however, is very apt to analyze the case
of incomplete information. We analyze both the completely
informed and the uninformed case in Section V. First, the evo-
lutionary system is described in detail.

IV. EVOLUTIONARY APPROACH

Evolutionary algorithms (EAs) are powerful search algo-
rithms inspired by Darwin’s theory of natural selection [27].
In recent years, the evolutionary approach has been applied
more and more within the field of computational economics
as a model for both social and individual decision making. A
number of related papers have demonstrated that using an EA ar-
tificial agents can learn effective negotiation strategies in similar
negotiation games [19], [28]. An important advantage of EAs is
that they do not assume complete rationality of the agents. Ba-
sically, the fitness (i.e., quality) of the individual agents is used
to determine whether a strategy will be used in future situations.

A. Evolutionary Algorithm

The implementation used is based on a branch within EAs
called evolution strategies (ES) [29], originally developed by
Rechenberg [30] and Schwefel [31]. The ES were developed

4This holds for continuous divisions of the surplus.

Fig. 2. Iteration loop of the evolutionary algorithm.

independently from the well-known genetic algorithms (GAs)
[27], [32], introduced by Holland [33]. While GAs are more
tailored toward binary-coded search spaces, ES are originally
designed for real-encoded representations, which is a more nat-
ural encoding for the type of bargaining strategies we employ
in the simulations.

The evolutionary simulation is depicted in Fig. 2 and works
in the following way. Sellers and buyers are grouped into sep-
arate populations. This way the two types of agents coevolve.
The system starts with randomly initialized “parental” popu-
lations of bargaining agents having random bidding strategies.
The EA is subsequently executed for a number of iterations
or “generations.” An iteration, depicted in Fig. 2, consists of
three consecutive stages: reproduction, fitness evaluation, and
selection.

In the reproduction stage, offspring agents are generated by
first (randomly, with replacement) selecting an agent in the
parental population, and then mutate its strategy to create a new
offspring. The mutation operator is explained in more detail
later.

In the second stage, the outcomes of a series of bargaining
games assess the quality or “fitness” of the agents. The parental
and offspring populations are combined to form the group of
seller and the group of buyer agents. For each bargaining oppor-
tunity, two agents are randomly selected (with replacement) and
play the one-shot game. An agent obtains a payoff in case an
agreement is reached or if no more opportunities are available.
Because an outcome depends on many random factors, each
strategy is evaluated a number of times and the fitness is the
average of r payoff values. The parameter r is called the evalu-
ation frequency. This way the fitness becomes a more accurate
measure of the expected payoff.

Because both buyers and sellers start with the same bargaining
state, in the first periods the opponent’s bargaining states do not
represent an ongoing bargaining society. To prevent so-called
initiatory effects and to model an on-going bargaining society,
a strategy’s fitness is measured only after the first payoff is
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Fig. 3. Strategies of a seller and a buyer for the market game with complete
information about the opponent’s bargaining state. The offers �o(γs | γb ) and
thresholds t(γb |γs ) are conditional on the bargaining state of the opponent,
where γs ∈ {1, . . . , ms} and γb ∈ {1, . . . , mb }.

determined. A strategy is thus evaluated at least r + 1 times.
Furthermore, we model a market situation where the number
of agents remains constant over time, also called a steady-state
market in [20]. Therefore, once the fitness of a strategy has been
established, the strategy can still be selected to play again but
its fitness is no longer affected by the outcome. The bargaining
games are continued until the fitness for each strategy has been
established.

In the third and final stage (see Fig. 2), the fittest strategies
(i.e., with the highest average payoff) from each group are se-
lected as the new parents for the next iteration. This selection
scheme is also known as (µ + λ)-selection for evolutionary
strategies (ES) [29], where µ is the number of parents and λ is
the number of generated offspring. In our simulation, we take
µ = λ.

B. Strategy Encoding

An agent’s strategy is encoded on a so-called chromosome.
The implementation of the EA is based on ES [29], using real-
encoding of the chromosome.5 The chromosome specifies either
an offer or a threshold for each bargaining state, depending on
the type of the agent (i.e., seller or buyer). The threshold deter-
mines whether an offer of the opponent is accepted or rejected.
If the utility falls below the threshold, the offer is refused; oth-
erwise an agreement is reached. A similar representation was
used in [19], [28] for an alternating-offers game.

We distinguish between the complete information setting and
the incomplete information setting (see Section II). The strat-
egy representation for each setting is schematically depicted in
Figs. 3 and 4, respectively. In the incomplete information case
(Fig. 4), an offer or threshold is specified for each bargaining
states of the agent. In case of complete information (Fig. 3), an
offer or threshold is also conditional on the opponent’s bargain-
ing state.

C. Mutation Operator

The mutation operator produces random changes in a chro-
mosome in the following way. Each real value xi on the
chromosome position i is mutated by adding a zero-mean
Gaussian variable with a standard deviation σ [29]. Formally,
x′

i = xi + σNi(0, 1). All resulting values larger than unity (or

5The widely-used GAs are more tailored toward binary-coded search spaces
[27], [32], [33].

Fig. 4. Strategies of a seller and a buyer for the market game, where the
players are uninformed about the opponent’s bargaining state. An offer �o(γs )
or threshold t(γb ) is determined only by an agent’s own bargaining state, since
more information is not available.

TABLE I
DEFAULT SETTINGS OF THE EVOLUTIONARY SIMULATION

smaller than zero) are set to unity (respectively zero). The stan-
dard deviation is initially set to 0.1 and decays exponentially
such that at every t generations their value is reduced to half
the size. We call t the half-life parameter. Although other muta-
tion models such as self-adaptive control of the standard devia-
tions [19], [29] were tried as well, this model showed a closest
match with game-theoretic results. In this paper we show only
the results obtained using the exponential decay model.

V. EVOLUTIONARY SIMULATION RESULTS

The results are organized as follows. First, the game with com-
plete information is studied in Section V-A and the results are
compared to the game-theoretic SPE predictions. Section V-B
studies the incomplete information case. Section V-C introduces
a measure of competitiveness for multi-issue negotiations and
compares results for different levels of integrative negotiations.
Finally, Section V-D considers the effects of fixed search costs
in the market game and uncertainty about future opportunities.

A. Game-Theoretic Validation: The Complete Information
Condition

This section considers a competitive (i.e., single-issue) sce-
nario with complete information of the agents’ bargaining op-
portunities and compares the EA outcomes to SPE predictions.
Default parameter settings for the EA are shown in Table I. Note
that because of random fluctuations, the EA results are averaged
over 30 runs using the same settings.

In SPE, the share of the buyers is zero and the sellers ob-
tain the whole surplus in case the initial number of bargaining
opportunities of the players is finite and the bargaining state of
the opponent is common knowledge (see also Section III). Note
that this result holds for both the symmetric setup and if agents
have an unequal initial number of bargaining opportunities (i.e.,
for mb �= ms).

Fig. 5 shows the EA outcomes for a symmetric setup, where
the initial number of bargaining opportunities is the same for
both sellers and buyers. In the following, we use m to denote
the initial bargaining opportunities in the symmetric case. The
results indicate an almost perfect match between evolutionary
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Fig. 5. Development of the mean fitness (averaged over 30 runs) for complete
information setting with varying initial number of bargaining opportunities
(m = ms = mb ).

Fig. 6. Results after 4000 generations (averaged over 30 runs) in case of
complete information and symmetric settings (m = ms = mb ).

outcomes after 4000 generations and game-theoretic outcomes,
particularly when m is small.

For larger values of m we find that using the same EA pa-
rameter settings the evolutionary outcomes become somewhat
less extreme. Fig. 6 shows the long-term EA outcomes (after
4000 generations) for m up to 10. This is because as m be-
comes larger, the complexity of the problem increases due to a
larger search space, making learning by an EA more difficult.
However, a better match for larger values of m also appears by
adjusting EA parameters, such as the evaluation frequency and
the population size, to handle the increased complexity. Details
on tuning the EA are beyond the scope of this paper. Instead,
we refer the interested reader to previous research [19], [28],
in which different EA settings are systematically studied for
an alternating-offers bargaining game. Henceforth, we present
only experiments using uniform EA settings in this paper.

For the asymmetric case, SPE also predicts an extreme divi-
sion, where the seller obtains the entire share (see Section III).
This holds even for instance when ms = 1 and mb = 5.6

Results using the evolutionary simulation are shown in Fig. 7.
Interestingly, the simulation results deviate from game-theoretic

6To see this, recall that (using backward induction) the disagreement payoff
for the buyer is always zero, independent of her/his bargaining state; the buyer
is therefore indifferent between accepting and refusing. To ensure an agreement
immediately, a seller could bid an infinitely small amount to the buyer, which
the buyer will then accept. In the limit, this amount converges to zero.

Fig. 7. Results after 4000 generations (averaged over 30 runs) in case of
complete information and varying the seller’s initial number of bargaining op-
portunities ms . The buyer’s initial number of bargaining opportunities mb = 5.

outcomes if the buyer has many more opportunities to bargain
than the seller. In the extreme case, where the seller has only a
single bargaining opportunity, the buyer obtains a larger share
on average (note that the standard deviation is very high, around
0.20). The outcomes are robust to other EA settings. To under-
stand why this occurs, recall that the gametheoretic derivation
is based on backward induction, starting at the final state where
γb = 1. When ms = 1, however, the bargaining state γb = 1
is never reached in practice, since the seller always prefers an
agreement immediately. This is confirmed by the experiments
that show that in the long run no agreements are reached in
γb = 1 and γb = 2.

The adaptive agents do not reason forward and never reach
the final state using trial and error. The asymmetric outcomes
are therefore less predictable, which also explains the high stan-
dard deviations. The results seem to be more realistic, however.
The evolutionary approach has lately been proposed as an ex-
planation for the discrepancy between game-theoretic outcomes
and laboratory experiments with human subjects, for instance
in [34]. The evolutionary results could be considered closer to
real-world outcomes, where for instance an extreme split of the
surplus is usually not found [23], [34].

B. Incomplete Information Condition

We now examine the results when the agents do not know
their opponent’s bargaining states; the agents know only their
own bargaining states. Although no explicit information is avail-
able, the agents implicitly learn the distribution of the bargaining
states in the opponent’s population. This distribution is endoge-
nously determined by the strategies of the agents. The strategies,
in turn, adapt to the distribution of the bargaining states. This
complex interaction is one reason why theoretical analysis is dif-
ficult. An EA, on the other hand, is well suited to find outcomes
that emerge from such local interactions.

Results produced after 4000 generations of the EA for the
incomplete information case are shown in Fig. 8, for different
values of m (the initial number of bargaining opportunities).
These results are averaged over 30 runs. The error bars indi-
cate the standard deviation. In the complete information case,
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Fig. 8. Results after 4000 generations (averaged over 30 runs) for incomplete
information settings with various m = mb = ms . The error bars indicate the
standard deviation of the averaged results.

the seller obtains almost the entire surplus, whereas in the in-
complete information case, the responder (i.e., buyer) obtains a
larger share (see Fig. 8). This holds as long as the initial num-
ber of bargaining opportunities are sufficiently large (i.e., ≥5).
Note that these results are obtained even though the buyers’ and
sellers’ initial settings are equal.

The results can be explained as follows. If the buyer is in
her/his final state, she/he will accept any deal (as in the ultima-
tum game). In other states, however, the buyer can try to find a
better deal elsewhere. Consider a seller in her/his last bargaining
state. Because the seller does not know the buyer’s bargaining
state, she/he can no longer anticipate the buyer’s behavior. In
order to prevent a disagreement, the seller will then concede
in the last bargaining state. The expected payoff in case of a
disagreement and the offers in earlier bargaining states will also
then decrease. After many generations, the simulation converges
to an outcome where the seller concedes almost her/his entire
surplus in each bargaining state. We also observe that the seller
concedes slightly less if she/he has more bargaining opportu-
nities remaining, resulting in less extreme deals if m becomes
large, as shown in Fig. 8.

In the incomplete information condition, the first-mover (here
the seller) has no information about her/his opponent. The re-
sponder, on the other hand, can make a relatively more infor-
mative decision based on the seller’s offer. In the ultimatum
game the proposer seems to dominate the outcome, and a more
competitive setting allows the responder to obtain a consider-
able advantage. This result, however, holds only if the number
of bargaining opportunities is finite and equal for both play-
ers. Furthermore, the players incur no costs for refusing a deal.
As we will show in Section V-D, even slight costs completely
change these results.

When the number of initial bargaining opportunities is set
higher than three, a sudden transition in the long-term outcomes
can be observed in Fig. 8. Up to m = 3, the seller obtains almost
all, whereas the buyer obtains the largest share if m > 3. By
increasing m, the number of possible states increases, making
the buyer’s behavior less predictable for the seller. The value for
which the transition occurs depends on game parameters such

Fig. 9. Results after 4000 generations (averaged over 30 runs) for incomplete
information settings with various ms and mb = 5. The error bars indicate the
standard deviation of the averaged results.

as r and the competitiveness of the negotiation. The latter will
be discussed further in the next section.

We also consider the asymmetric case, see Fig. 9. The evo-
lutionary outcomes appear to be in favor of the buyer when
mb > ms , and of the seller when mb < ms . Note that, the out-
comes are “all or nothing” for the buyer or the seller. An inter-
esting case is when mb = ms , where a sudden transition seems
to occur. Although the asymmetric case is very stable, results
for mb = ms are more sensitive to EA parameters such as the
evaluation frequency. The EA also takes longer to converge.

C. Integrative Negotiations

An advantage of bilateral negotiation is the ability to negotiate
complex contracts with several issues. When mutually beneficial
solutions are available, negotiations are called integrative [35].
We consider integrative two-issue negotiations in this section
and introduce the notion of competitiveness. We show that the
information in the integrative case has a very similar impact as
in the competitive case. Because of the increased complexity,
however, the evolutionary results are less extreme when the
number of bargaining opportunities is large.

The utility of an offer is an additive, weighted function of
the share obtained for each issue (see also Section II). The
weights for sellers and buyers for the two issues are �ws = (0.5−
α, 0.5 + α) and �wb = (0.5 + α, 0.5 − α), respectively, where
α ∈ [0.0, 0.5] is the so-called degree of competitiveness. When
the parameter α is set equal to 0, negotiations are purely com-
petitive; if α = 0.5, there is no competition at all. Note that the
maximum social welfare, i.e., the maximum total utility that a
seller and a buyer can achieve together equals 2(0.5 + α), where
each agent obtains (0.5 + α).

Results for α = 0.2 are shown in Fig. 10. The results show
that, as in the competitive case, a transition occurs to a buyer-
dominated outcome for sufficiently large m and incomplete
information. We find, however, that this transition already occurs
when m = 2 (see Fig. 10). Only two bargaining opportunities
are needed to obtain an advantage for the responder, as opposed
to four in the single-issue game (Fig. 8).
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Fig. 10. Mean long-term outcomes for two-issue negotiations, α = 0.2, and
m = ms = mb .

Fig. 11. Mean long-term outcomes for m = ms = mb = 5 and different
values for the competitiveness (α).

Fig. 10 also shows a less extreme split compared to competi-
tive negotiations, particularly for large m. This occurs since the
strategy search space is increased (a value for each issue needs
to be learned), making learning more difficult. Moreover, the
win–win possibilities are fully exploited: if one of the agents
slightly concedes, the other agent can obtain a relatively large
gain by negotiating a Pareto-efficient deal. As shown in Fig. 11,
this effect becomes stronger as α increases. In the extreme case,
where α = 0.5, both agents can obtain the full surplus without
any concession.

Note that the EA parameters are fixed for the various game
settings. As we mentioned in Section V-A we can adjust the
parameters to handle more complex bargaining settings as a
result of a larger m and an increased number of issues. By
increasing the population size and adjusting other parameters
of the EA, we obtain results that are closer to game-theoretic
predictions.

D. Search Costs and Premature Termination

We further extend the bargaining game in two ways. First, we
introduce search or negotiation costs each time an offer is re-
fused and agents engage in a new negotiation. Subsequently, we
consider the case where there exists uncertainty about whether a
new bargaining opponent can be found. While we have assumed

Fig. 12. Mean long-term results as a function of the search costs (β) for
m = ms = mb = 5.

until now that the number of bargaining opportunities remains
fixed, there can be external factors that influence the number
of opportunities (e.g., if a seller has in the meanwhile sold the
good to another buyer). This is modeled as a probability that
negotiations terminate prematurely, i.e., before the final number
of bargaining opportunities is completely exhausted.

Search costs can represent the amount of money, time, or
effort that an agent may incur for finding a new opponent. It
is shown theoretically that if buyers have search costs, the sell-
ers charge monopolistic prices in equilibrium [36, Ch. 7]. We
consider the impact of search costs on the bargaining game
where both buyers and sellers have equal search costs β. The
final utility is reduced by fixed search costs β for each new bar-
gaining opportunity. Only the first bargaining opportunity has
no costs.

Evolutionary outcomes for the complete and incomplete in-
formation settings with different search costs are depicted in
Fig. 12. Negotiations are competitive and buyers and sellers
each have five initial bargaining opportunities. Search costs
seem to have little impact on the fitness in the complete infor-
mation case; variations are not statistically relevant. Although
the fitness does not change, the actual behavior of the agents
does—most agreements are now reached immediately. Without
search costs, agreements reached are distributed over the various
bargaining states.

In the incomplete information case, on the other hand, even
small search costs have a drastic impact on the fitness of the
agents (see Fig. 12). The sellers claim almost the entire share
even if search costs are very small (e.g., 0.01) and equal for both
agents. Results are robust for different settings of the EA. These
outcomes are consistent with economic theory, which states that
prices become monopolistic even if search costs are infinitely
small.

As in the complete information case, both buyers and sell-
ers are stimulated to reach agreements early in case of search
costs. The final opportunity of the seller is therefore almost
never reached, removing the advantage for the buyer. The game
changes from a game with incomplete information to a game
where almost all players complete a deal in their first bargaining
opportunity. Now the seller can again claim the entire surplus
as in the one-shot game.
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Fig. 13. Long-term fitness values for m = mb = ms = 5 and incomplete
information, when negotiations are discontinued with a certain probability after
each disagreement.

Similar outcomes are observed when bargaining for a buyer
and/or a seller is discontinued with a certain probability after
each disagreement.7 Fig. 13 shows the long-term outcomes for
different probabilities of premature termination after each bar-
gaining opportunity. The probability is set equal for buyers and
sellers, and for each bargaining opportunity, but drawn indepen-
dently. As with search costs, the seller obtains the largest share
if the probability is sufficiently high.

Note that, the effect of premature termination is less extreme,
however, this is because search costs also affect the utility if
an agreement is not reached, providing an additional incen-
tive to reach agreements (otherwise, a negative utility is ob-
tained). In case of premature termination, on the other hand,
an agent is indifferent between termination after the first bar-
gaining opportunity and a disagreement in the last bargaining
opportunity.

VI. DISCUSSION AND RELATED RESEARCH

The ultimatum game is frequently applied in economic and
social literature and is an elegant model of negotiation. Despite
its apparent simplicity, it captures the essence of negotiation—
the division of a surplus between two players that can be created
through cooperation. A more extensive model and well-known
model is the Rubinstein–Ståhl alternating-offers game consist-
ing of several rounds where offers and counter offers are ex-
changed [37]. In absence of any time pressure, however, the
division of surplus in subgame-perfect equilibrium is equiva-
lent to the ultimatum game—the player that has the opportunity
to make the offer in the final round obtains the entire surplus.
We therefore opted for the more simple ultimatum game as the
basic model for negotiation, which allows us to focus on the
aspect of multiple opportunities and the information condition
of the participants.

In this paper, we have implicitly assumed that the size of
the surplus is known to both the players and is equal for each
negotiation game. These are typical assumptions made both in
the ultimatum and alternating-offer game (e.g., in [20] this as-

7This is analogous to discount factors or a probability of break down in case
of multiround bargaining, as used in [19].

sumption is also made within a market-like setting, see also
below). In case of price negotiations, e.g., this implies that the
reservation prices of both players are common knowledge (the
surplus is then the difference between the reservation price of
the buyer and the seller). Although an estimate of the surplus can
usually be made, in practice there is often uncertainty about the
precise value. In recent years, an increasing amount of research
is performed on bargaining with incomplete information about
the size of the surplus, see e.g. [38]. Incomplete information
provides a likely explanation for the occurence of inefficiencies
such as costly delays and disagreements. While in this paper
the focus is on multiple opportunities and uncertainty regard-
ing the opponent’s bargaining position, an interesting direction
for future research is to include also uncertainty about the size
of the surplus and to use evolutionary simulations to investi-
gate situations where the surplus differs at various bargaining
opportunities.

Closely related to our research is the work in [20, Part 2],
and the references therein, where various market models are
presented and a market equilibrium is calculated using the so-
called sequential equilibrium solution concept; especially the
model described in [20, Sec. 8.2] corresponds to our model in
a number of ways. More specifically, as in our case, buyers and
sellers are randomly matched, after which the ultimatum game
is played to divide a known surplus. In their model, however, the
proposer is selected randomly, whereas in our model the seller is
always the proposer. Furthermore, an important aspect of their
model is that buyers and sellers are matched simultaneously
and that there are fewer sellers than buyers (thus not all buyers
are matched). The matching period is equal for all buyers and
sellers. As a result, in equilibrium all agreements are reached
immediately and the seller obtains the entire surplus.8 By con-
trast, in our model, buyers and sellers are matched sequentially
and each agent can be in a different period or bargaining state.
This makes an analysis much more difficult. Moreover, we also
consider the symmetric case where the initial number of bargain-
ing opportunities is equal for all agents, and we investigate the
effects of search costs and uncertainty about future opportuni-
ties. Furthermore, we find that an important factor determining
the outcome is whether a player is informed about the oppo-
nent’s bargaining state (i.e., the number of remaining bargaining
opportunities).

In our earlier work [19], [28], we investigated evolutionary
simulations of the alternating-offers game, using a related ap-
proach. Although the focus in these papers is on isolated games
between two agents, in [19] we also present initial results of the
market-like setting with multiple opportunities as an example
of the applicability of evolutionary simulations. Only results
where players are not informed about their opponent’s bargain-
ing state are discussed, however. In this paper, we delve deep into
the aspect of multiple opportunities itself and present a much
more extensive analysis, such as a game-theoretic solution for
the complete information case and a comparison between two

8There are actually many equilibria, since there is no time pressure and a
seller always has the opportunity to bargain in the next matching period in case
of a disagreement.
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information conditions. Furthermore, in this paper we extend
the results to the asymmetric case (i.e., where the initial number
of bargaining opportunities varies for a seller and a buyer) and
we investigate a model where uncertainty exists about future
opportunities.

A number of related papers investigate situations of bargain-
ing using an evolutionary computation approach. The ultimatum
game is investigated in [34] using an EA. Oliver [39] was the
first to demonstrate that a system of adaptive agents can learn
effective negotiation strategies using EAs in the alternating-
offers game. More elaborate strategy representations are pro-
posed in [10]. Offers and counter offers are generated in this
model by a linear combination of simple bargaining tactics
(time-dependent, resource-dependent, or behavior-dependent
tactics). The parameters of these different negotiation tactics
and their relative importance weightings are calculated using a
GA. The time-dependent tactics are further investigated in [40]
using GAs, for the case that negotiating agents have different
time preferences. GAs are also used in [8] to search for ap-
propriate (counter) offers during negotiation. Whether an offer
is appropriate depends on various social, environmental, and
cognitive traits of the agents. The traits determine, e.g., the
type of concession tactics, knowledge of opponent preferences,
cost of delaying settlement, and the magnitude of initial of-
fers. These papers study the basic negotiation game between
two players, but do not consider market-like settings where
buyers and sellers may have several opportunities to reach an
agreement.

Bilateral bargaining within a market-like setting is studied
in [13]–[15] by introducing so-called market-driven agents.
Rather than using fixed strategies, these agents are able to flex-
ibly adjust their strategies according to changing market con-
ditions, such as the number of trading opportunities and the
amount of competition. In a buyer’s market, supply is greater
than demand and a market-driven buyer will make relatively
small concessions, whereas in a seller’s market the opposite
holds. Concessions also depend on the negotiators’ desire to
trade or eagerness: if an agent is eager to reach an agreement,
he/she makes relatively large concessions to increase the proba-
bility of an agreement. An indifferent agent, on the other hand,
is more willing to risk a conflict and tries to get a better deal
instead. Other factors that impact the concessions made are time
pressure and the gap or spread between the utility of the offers
made by the negotiating agents. In [13], a theoretical analysis
is provided of how these market-driven agents respond to dif-
ferent market conditions, and in [14] the market-driven strategy
is also assessed using computational simulations. The market-
driven strategy is augmented in [15] by using fuzzy rules to
guide agents in relaxing their trade conditions (e.g., aspiration
or reservation price) in the face of intense negotiation pressure
(e.g., due to very stiff competition). The strategies described
in [13]–[15] are based on heuristics for determining the conces-
sion and, although flexible, the agents do not learn from past
experience. This differs considerably from our work, where the
strategies are adapted using an EA. Also, in this paper we ap-
ply game-theoretic analysis to validate our simulation approach.
Furthermore, we explicitly study the impact of future bargaining

opportunities, whereas in [13]–[15] the focus is on concurrent
opportunities (and competition).

VII. CONCLUSION

We studied the evolutionary dynamics of a market-like game,
where a seller sells a single good and has several opportunities
to do so. At the same time, a buyer wishes to buy an item by
trying several sellers. The terms of an agreement are negotiated
using an ultimatum-like game, where the seller proposes an
offer and the buyer can choose to accept or reject the offer.
The game is extended to allow for multiple opportunities for
both the seller and the buyer if the deal is rejected. This way
a competitive market is modeled. We also investigated multi-
issue integrative negotiations and the effects of search costs and
premature termination if a disagreement occurs.

The game-theoretic outcome using SPE for the one-shot
ultimatum game predicts an extreme split of surplus: The seller
obtains the whole surplus, whereas the buyer obtains her/his
disagreement payoff. We extended the analysis for multiple
bargaining opportunities with complete information of the
opponent’s remaining number of bargaining opportunities or
bargaining state and find an equivalent outcome. However, a
theoretical analysis seems to be very difficult, however, if the
bargaining states of the agents are not common knowledge. An
evolutionary simulation, on the other hand, is very well suited
to investigate such games with incomplete information.

We first compared the evolutionary results with the game-
theoretical outcomes for the game with complete information to
validate the evolutionary approach. If the initial number of bar-
gaining opportunities is small and equal for both players, a very
good match is found. In larger games or when the negotiations
become less competitive, the EA shows somewhat deviating
outcomes due to larger search space and the limited computa-
tional capacity of the EA. This can be improved, however, by
adjusting EA settings. An interesting discrepancy from SPE also
occurs when buyers have many more bargaining opportunities
than do sellers. Although SPE outcomes are similar to the sym-
metric case, the EA results are more in favor of the buyer. These
more realistic outcomes occur because the final state, where the
buyer has exhausted all bargaining options, is never reached in
the experiments. The theoretical outcomes, however, are based
on backward induction from this final state.

The evolutionary simulation shows a large impact of the ad-
ditional bargaining opportunities if the agents have no informa-
tion on their opponent’s number of future opportunities. In the
complete information game, the seller dominates the market,
whereas the buyer is better off in the incomplete information
setting, provided that the buyer has at least as many oppor-
tunities as the seller and as long as the number of bargaining
opportunities is sufficiently high. By increasing the initial num-
ber of bargaining opportunities a sudden transition is observed
where the buyer obtains the largest share instead of the seller.
This occurs because the seller can then no longer anticipate the
buyer’s response and gives in to avoid a disagreement. In case
the seller has more bargaining opportunities, however, the seller
agent obtains the entire surplus.
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Similar outcomes were found for two-issue integrative nego-
tiations. At the same time, integrative negotiations produce less
extreme evolutionary outcomes, both in the game with complete
and incomplete information, particularly if the number of ini-
tial bargaining opportunities is large. This mainly occurs since
the space of possible deals increases. Moreover, the agents find
win–win situations, which benefit one agent without affecting
the payoff obtained by the opponent.

An integrative setting also affects small games with incom-
plete information. We find that for certain settings, a transition
from a seller to a buyer-dominated payoff occurs even in case
both agents merely have two initial bargaining opportunities,
whereas in the competitive case more bargaining opportunities
are needed to achieve the same result.

We also studied the effect of search or negotiation costs in
case a negotiation fails and the agent needs to find a new oppo-
nent. Search costs induce players to reach an agreement in the
very first bargaining opportunity. This changes an incomplete
information game into an ultimatum-like game with only a sin-
gle bargaining opportunity. Even very small search costs result
in an extreme split where the seller obtains almost the entire
share, similar to the ultimatum game outcome. This is consis-
tent with the economic theory, which states that even infinitely
small search costs produce monopolistic prices. The outcomes
are similar, but less extreme if search costs are replaced by a
probability that bargaining is discontinued after a disagreement.
This models the situation where uncertainty exists about future
opportunities.

In this paper, we have shown that evolutionary simulations
are extremely useful to investigate negotiations with incomplete
information, which are unwieldy to analyze theoretically. Using
EAs, we can simulate complex interactions involving a large
number of agents, as is the case in bargaining with multiple op-
portunities. It is interesting to further refine the model to specific
real-world settings, where for instance agents have incomplete
information about their own future number of bargaining op-
portunities or about the size of the negotiated surplus. Another
interesting extension is allowing agents to return to previously
encountered opponents.
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