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Equilibrium Selection in Alternating-Offers Bargaining Models —
The Evolutionary Computing Approach

D.D.B. van Bragt E.H. Gerding J.A. La Poutré
{bragt,egerding,hlp } @cwi.nl

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

A systematic validation of evolutionary techniques in the field of bargaining is presented. For this purpose, the
dynamic and equilibrium-selecting behavior of a multi-agent system consisting of adaptive bargaining agents is
investigated. The agents’ bargaining strategies are updated by an evolutionary algorithm (EA), an innovative
computational method to simulate collective learning in societies of boundedly-rational agents. Negotiations
between the agents are governed by the well-known “alternating-offers” protocol. Using this protocol, the
influence of various important factors (like the finite length of the game, time preferences, exogenous breakdown,
and risk aversiveness) is investigated.

We show that game theory can be used successfully to interpret the equilibrium-selecting behavior observed
in computational experiments with adaptive bargaining agents. Agreement between theory and experiment
is especially good when the agents experience an intermediate time pressure. Deviations from classical game
theory are, however, observed in several experiments. Violent nonlinear oscillations may for instance occur in the
single-stage ultimatum game. We demonstrate that the specific evolutionary model governing agent selection
is an important factor under these conditions.

In multiple-stage games, the evolving agents do not always fully perceive and exploit the finite horizon of
the game (even when time pressure is weak). This effect can be attributed to the boundedly-rational behavior
of the adapting agents. Furthermore, when the agents discount their payoffs at a different rate, the agent with
the largest discount factor is not able to exploit his bargaining power completely, being under pressure by his
impatient opponent to reach an early agreement.

Negotiations over multiple issues, a particularly important aspect of electronic trading, are studied in a
companion paper [8]. We are currently investigating the behavior of more complex and powerful bargaining
agents.
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1. INTRODUCTION

Recently, interest in the development of trading and negotiating agents has surged among economists
and computer scientists [4]. A nice example of the potential of automated negotiation is given in [5].
This paper describes a system in which a utility agent (acting on behalf of an electricity company) is
negotiating with consumer agents to prevent excessive peaks in the demand for electricity. Another



example is the agent-based heating system of the Xerox company. In this climate control system
each agent controls an office thermostat and the allocation of resources is market-based. Practical
applications of distributed multi-agent systems are surveyed in [24, Ch. 9].

The rapid establishment of a global communication network (in the form of the Internet) together
with the development of standard negotiation protocols [15] will certainly result in a fast proliferation
of systems of this kind. The complexity of large multi-agent systems increases strongly, however, if the
negotiating agents are not using fixed decision rules but adapt their strategies to deal with changing
opponent strategies and changing user preferences. Two important and fundamental questions should
therefore be raised: (i) which complex dynamic behavior will emerge in this kind of complex adaptive
systems, and (ii) to which state will these systems converge over time (if a stable steady state is
reached at all).

We address these two issues in a computational setting by using evolutionary algorithms (EAs).
EAs, inspired by Darwin’s theory of evolution, are an attractive tool to model collective learning in
societies of boundedly-rational agents [14, 6]. In an evolutionary setting, the adaptive agents learn in
three different ways: (i) learning by imitation (by reproduction and selection of successful strategies),
(ii) communication and exchange of strategic information (by recombining or “crossing over” genetic
information), and (iii) random experimentation (by “mutating” their strategies).

Oliver [12] was the first to demonstrate that a system of adaptive agents can learn effective nego-
tiation strategies. Computer simulations of both distributive (i.e., single-issue) and integrative (i.e.,
multiple-issue) “alternating-offers” negotiations are presented in [12]. Binary-coded strings represent
the agents’ strategies. Two parameters are encoded for each negotiation round: a threshold which
determines whether an offer should be accepted or not and a counter offer in case the opponent’s offer
is rejected. These strategies were then updated in successive generations by a genetic algorithm (GA).

More elaborate strategy representations are proposed and evaluated in [9]. Offers and counter offers
are generated in this model by a linear combination of simple bargaining tactics (time-dependent,
resource-dependent, or behavior-dependent tactics). As in [12], the parameters of these different
negotiation tactics and their relative importance weightings are encoded in a string of numbers.
Competitions were then held between two separate populations of agents, which were simultaneously
evolved by a GA.

We intend to bridge the gap between computer experiments as performed in [12, 9] and the analysis
of bargaining by game theorists [20, 17, 13, 11]. This connection is not far-fetched. Consider first
how agents in the computer experiments learn to bargain in an evolutionary model. Initially, agents
will typically use a random strategy. As a consequence, many different paths through the game tree
will be explored (i.e., many subgames will be sampled). Only the agents with relatively successful
strategies in many different subgames will be selected as parents for the next generation of agents. In
each successive generation, this process of variation and selection is then repeated and more and more
robust strategies evolve in the long run.

Now consider the key equilibrium concept used by game theorists to analyze extensive-form games:
the subgame-perfect equilibrium (SPE) [18, 19]. Two strategies are in SPE if they constitute a Nash
equilibrium in any subgame which remains after an arbitrary sequence of offers and replies made
from the beginning of the game. Rubinstein successfully applied this notion of subgame-perfection to
bargaining games [17]. His main theorem states that the infinite-horizon alternating-offers game has
a unique SPE in which the agents agree immediately on a deal.”

Recent work in evolutionary game theory illustrates the link between subgame-perfectness and
(mathematical) evolutionary models. A nice example is given by Binmore et al. [3]. They consider
an evolutionary model in which finite-state machines play Rubinstein’s infinite-horizon bargaining
game against each other. For such a system, Binmore et al. prove that if both agents use a so-
called “modified evolutionarily stable strategy” a Nash equilibrium is constituted in which immediate

1

IThat is, games with a tree structure [2].
2The finite-horizon variant of Rubinstein’s game (which we use in our computer simulations) has been analyzed
earlier by Stahl [20].



2. Alternating-Offers Bargaining Models 3

agreement is reached. Furthermore, each agent’s share of the surplus is bounded between the shares
received by the two agents in the SPE of the infinite-horizon game.

Hence, the results in [3] indicate that agents with a bounded rationality may actually display
subgame-perfect behavior in the evolutionary alternating-offers game. Our computational experiments
confirm this point. Moreover, we encounter phenomena beyond the reach of classical game theory. For
example, if the agents’ discount factors are very small (i.e., when time pressure to reach an agreement
is extremely large) strongly nonlinear behavior is occasionally observed (depending on the specific
evolutionary selection scheme). If discount factors are large, on the other hand, (i.e., when time pres-
sure is weak) the finite horizon of the game is not fully exploited by the agents. Significant deviations
from game-theoretic predictions are also observed if the agents discount their payoffs at a different rate.

The remainder of this paper is organized as follows. Section 2 gives an overview of the bargaining
models that we investigate. A description of the setup of the computational experiments is then given
in Section 3. Sections 4-8 provide an overview and discussion of the main results.

The finite-horizon variant of Rubinstein’s alternating-offers model [17] is analyzed in Sections 4
through 6. In Section 4 the agents have symmetrical time preferences (i.e., their discount factors
are identical). If the agents’ discount factors approach zero in this model (i.e., when the bargaining
surplus completely vanishes after one round), this game becomes payoff-equivalent with the well-
known ultimatum game. This limiting case is studied in detail in Section 4.1. Another extreme case
is obtained if the agents’ discount factors approach unity (i.e., when the bargaining surplus remains
constant over time). This situation is investigated in Section 4.2. The general case (i.e., discount
factors in between zero and unity) is analyzed in Section 4.3. The robustness of the experimental
results with respect to changes in the evolutionary model is assessed in detail in Section 5. The
influence of asymmetric time preferences (i.e., unequal discount factors) is evaluated in Section 6.

Section 7 considers a variant of Rubinstein’s model in which there exists a risk of premature break-
down during the negotiations. Extending this model, the behavior of risk averse agents is examined
in Section 8. Section 9 concludes.

2. ALTERNATING-OFFERS BARGAINING MODELS

We consider several variants of the alternating-offers game in this paper, ranging from the very simple
ultimatum game in Section 4.1 to a multiple-stage game with breakdown and risk averse agents
in Section 8. Before presenting these models in more detail, we like to mention that the existing
literature on alternating-offers bargaining [13, 11] mainly considers infinite-horizon games. However,
in our computational experiments bargaining obviously cannot continue for arbitrary lengths of time.
We therefore perform a game-theoretic analysis of finite-length games in Appendix 1. For games with
a very long horizon, correspondence with existing results for infinite-length games is shown.

It is also important to note that we assume in the game-theoretic analysis of Appendix 1 that
the bargaining agents behave fully rational and have complete information (for instance about their
opponents’ preferences). Both assumptions are obviously not valid for the evolving agents in our
computational experiments (who learn by trial-and-error instead of abstract reasoning). However,
the (subgame-perfect) equilibrium behavior of fully rational agents will serve as a useful theoretical
benchmark to interpret the behavior of the boundedly-rational agents considered in Sections 4-8.

The ultimatum game (Section 4.1) The ultimatum game is the most simple bilateral bargaining
game with perfect information. Agents bargain over the partitioning of a given bargaining surplus.
Without loss of generality, we can set the size of this surplus equal to unity. We also assume that the
agents have opposite preferences. One agent (which is denoted in this paper as “agent 1”) then starts
the play by demanding a certain fraction x; of the surplus. The other agent (“agent 2”) has only two
options: he can either accept or reject agent 1’s proposal. In case the offer is accepted agent 1 receives
x; and agent 2 the remainder (i.e., 1 — z1). Both agents receive nothing if the offer is rejected.



Multiple-stage games (Section 4.2) In the multiple-stage variant of the ultimatum game, the agents
again bargain over the partitioning of a constant surplus. Offers are now made at discrete points in
time: namely, at times ¢ = 0, ..., (n — 1), where n is the maximum number of stages of the bargaining
game.> The two agents bargain in an alternating fashion. At ¢ = 0, agent 1 makes an offer. Agent 2
then accepts or rejects this initial offer. If the initial offer is rejected, agent 2 makes a counter offer in
the next round (at ¢ = 1). This alternating process of making proposals then continues until an offer
is accepted or until the bargaining deadline is reached (at t = n). If no agreement has been reached
before the deadline (that is, for ¢ < n) both agents receive nothing.

Model with time preferences (Sections 4.8 through 6) Agents are now under time pressure because
they prefer to reach an agreement early. Following Rubinstein [17] we model the time preferences of
agent ¢ = 1,2 with a discount factor §;, with 0 < §; < 1. In case of an agreement, agent i’s discounted
payoff is equal to z;0¢, where z; is the share of the surplus agent i receives (recall that the time interval
between two rounds is equal to unity). This model is in fact the finite-horizon variant of Rubinstein’s
well-known alternating-offers protocol [17].

Two special cases of this model can be identified directly. When §; = §; — 0 the entire bargaining
surplus vanishes after a single round. This game is therefore equivalent (in terms of payoff) with the
abovementioned ultimatum game (see Section 4.1). The special case in which the agents’ discount
factors approach unity (§; = d2 — 1) is studied in Section 4.2.

Model with a risk of breakdown (Section 7) The alternating-offers game with a risk of breakdown
is examined next. This model is also an extension of the model studied in Section 4.2. However,
negotiations do not always proceed to the next stage in this case. Instead, continuation of the bar-
gaining process occurs with a probability p < 1. Breakdown of the negotiations may occur in reality
when agents get dissatisfied as negotiations take too long, and therefore walk away from the nego-
tiation table, or when intervention of a third party results in a vanishing bargaining surplus. When
a negotiation is broken off prematurely both agents receive nothing. In the game-theoretic analysis
(see Appendix 1), the continuation probability p plays a similar role as a common discount factor §
(= 01 = J2) in the above model with time preferences.

Model with risk averse agents (Section 8) This model extends the previous one by introducing risk
averse agents. In this case, agent i’s payoff at time ¢ is equal to u;(x;)p?, where the degree of risk
aversiveness is reflected in the shape of the (concave) utility function u;. The preferences of the risk
averse agents are modeled in this paper with an elementary power-law function, i.e., u;(z;) = 2}’
(with 0 < r; < 1 and ¢ = 1,2). The degree of risk aversiveness of agent i is then controlled by the
“risk coefficient” r;.

3. EXPERIMENTAL SETUP

We use an evolutionary algorithm (EA) to evolve the negotiation strategies of the agents. Section 3.1
gives an outline of the EA, and discusses how such a system can be interpreted as a model for social
or economic learning processes. Our implementation is based on “evolution strategies” (ES), a branch
of evolutionary computation that traditionally focusses on real-coded problems [1].* The “genetic”
representation of the agents’ strategies is presented in Section 3.2. The main components of the EA
(selection, mutation, and recombination) are discussed in more detail in Sections 3.3 through 3.5.

3.1 The Evolutionary Algorithm

Our evolutionary model consists of two separate populations. Agents in population 1 always start
the game (i.e., they are of the “agent 1” type); agents from population 2 are of the “agent 2” type.
During a fitness evaluation, an agent plays against a group of opponents who are drawn at random

3The time interval between two stages is set equal to unity in the simulations.
4The widely-used genetic algorithms (GAs) are more tailored toward binary-coded search spaces [10].



3. Experimental Setup 5

(without replacement) from the other population. The agent’s fitness is then equal to the mean utility
obtained against these opponents.

This model with two coevolving populations is appropriate if one group of agents has the privilige
to open the negotiations. In reality this situation frequently occurs when a potential client wants to
buy something from a professional seller. Normally, the seller takes the initiative: he or she can either
refer to the indicated price on the product, or propose an initial price.

The EA updates the agents’ strategies in successive iterations (also called “generations”). The
different stages within one generation are depicted in Fig. 1. First, the fitness of the parental agents

Parental reproduce Offspring New parental

Population 1 Population 1 Population 1

Offspring New parental
Population 2 Population 2 Population 2

reproduce

Figure 1: Iteration loop of the evolutionary algorithm (EA). Two populations of agents are evolved
separately. Agents in population 1 always start the bargaining process. In the fitness evaluation, both
the offspring and the parental agents compete against agents in the two parental populations. The
best candidates of the union of parents and offspring are then selected to be the parents in the next
iteration.

is determined by competition between the agents in the two populations. In the next stage (see
Fig. 1), “offspring” agents are created. An offspring agent is generated in two steps. First, an agent
in the parental population is (randomly, with replacement) selected. This agent’s strategy is then
mutated to create a new offspring agent (the mutation model is specified in detail in Section 3.4). The
fitness of the new offspring is evaluated by interaction with the parental agents. A social or economic
interpretation of this parent-offspring interaction is that new agents need to be able to compete with
existing or “proven” strategies before they gain access to a market.> In the final stage of the iteration
(see Fig. 1), the fittest agents are selected as the new “parents” for the next iteration (see Section 3.3
for more details). This final step completes one iteration of the EA.

All relevant settings of the evolutionary system are listed in Table 1. Pseudo-code of the EA can
be found in Appendix 2.

3.2 Genetic Representation

Each agent’s strategy is encoded as a sequence of real-coded genes (together called a “chromosome”).
Assume that agent i from population 1 competes against agent j from population 2. At t = 0,
agent i then starts the bargaining game and reads the first gene on his chromosome. This “offer”
gene, denoted as o;(t = 0), contains agent i’s initial proposal to partition the surplus (i.e., agent i
demands a fraction of o;(t = 0) of the bargaining surplus). Agent j evaluates this offer by inspecting
his first gene, which contains the “threshold” value 7;(¢t = 0). Agent j accepts agent i’s proposal if

5In an alternative model, not only the parental agents are used as opponents, but also the newly-formed offspring.
This leads to a much more diverse collection of opponents. The fitness of the agents therefore becomes more subject to
noise.



Encoding of chromosome Real coding

Length of chromosome (1) n

Mutation Zero-mean Gaussian (o = 0.1)
Recombination No recombination (see Section 3.5)
Selection (e + A)-ES

Parent population size () 100
Offspring population size (A) 100
Number of opponents 25

Table 1: Default settings of the evolutionary model.

uj(0;(t = 0)) > 7;(t = 0). Otherwise, the bargaining process continues. Roles then switch and agent j
inspects his second gene, which contains a (counter) offer 0;(t = 1). Agent i evaluates this proposal
by inspecting his second gene, which contains a threshold value 7;(t = 1). If u;(0;(t = 1)) > 7(t = 1),
agent i accepts the counter offer. Agent j then receives a share of 0;(t = 1) (and agent ¢ the remainder).
Otherwise, play continues in an alternating fashion until an agreement occurs or until the deadline is
reached (after n rounds).

Note that the length [ of each agent’s chromosome is equal to n. Because the agents bargain over a
surplus of size 1, the offers and thresholds are restricted to the unity interval. The agents’ strategies
are initialized at the beginning of each EA run by drawing a random number in the unit interval for
each gene (from a uniform distribution).

3.8 Selection Scheme

Selection is performed using the (u + A)-ES selection scheme [1]. In conventional notation, u is the
number of parents and A is the number of generated offspring (u = A = 100, see Table 1). The pu
survivors with the highest fitness are selected from the union of parental and offspring agents. This
selection scheme is therefore an example of an “overlapping generations” model, in which successful
agents can survive for multiple generations. A nonoverlapping generations model, in which all parents
are discarded after one generation, is investigated in Section 5.1. A probabilistic variant of (u + \)-ES
selection is studied in Section 5.4.

An offspring agent is generated in two steps. First, an agent in the population is (at random, with
replacement) selected to be a parent. The chromosome of this parental agent is then mutated to
generate a new offspring agent (the mutation model is specified below in Section 3.4). By default the
parent-to-offspring ratio is set equal to unity (i.e. u = A). In Section 5.2 we report several experiments
in which this ratio is not equal to unity, to determine the influence of the selection intensity.

In an economic context, selection can be interpreted as imitation of behaviour which seems promis-
ing. In general, EAs use two additional operators: mutation and recombination. These operators are
explained in detail below.

3.4 Mutation Model

Mutation can be interpreted as undirected exploration of new strategies, or as mistakes made during
imitation. In the default mutation model, the offspring’s genes x; are created by adding a zero-mean
Gaussian variable, with standard deviation o; = 0.1 [i.e., N;(0,0.1)], to each corresponding gene x;
of the parent.” All offspring genes with a value larger than unity (or smaller than zero) are reset
to unity (respectively zero). A mutation model with self-adaptive standard deviations is studied in
Section 5.5.

6The notation N;(.,.) denotes that the random variable is drawn again for each value of the index i.

"Notice that the symbol x; is used in two different meanings. ; denotes the share received by the i-th agent in
bargaining literature and an agent’s i-th gene in the field of evolutionary computing. Which usage is appropriate can
be inferred easily from the context.



4. Model with Symmetric Time Preferences

3.5 Recombination Model

Communication between the agents is often modeled by a recombination (or “crossover”) operator,
which typically exchanges parts of the parental chromosomes to produce new offspring. Recombination
of genetic information has proven to be a very effective search operator if the individuals are binary-
coded [10]. Following this lead, several recombination models have also been proposed for evolutionary
models with real-coded individuals [1].

We performed experiments with two recombination models frequently used in the field of ES: discrete
recombination and intermediate recombination [1, pp. 73-78]. However, we did not find a significant
change of the fitness of the evolving agents if recombination was allowed (compared to experiments
with mutation only). We therefore focus on mutation-based models in this paper.

4. MODEL WITH SYMMETRIC TIME PREFERENCES

All agents have identical discount factors in this section (i.e., ;1 = d2). Results for §; # J are
presented in Section 6. Unless indicated otherwise, the negotiations are terminated after 10 rounds
in our experiments (i.e., n = 10). Figure 2 shows the SPE partitioning of the bargaining surplus for
a 10-stage game as a function of the common discount factor § (see Table 2 in Appendix 1). SPE
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changes in our evolutionary model (e.g., different selection schemes, selection intensities, etc.) on the

predictions is assessed in Section 5.

4.1 6 = 0 (The Ultimatum Game)
Figure 3 shows the evolution of the mean

fitnesses of the agents in population 1 (the proposers) and

population 2 (the responders) in the ultimatum game. Notice that the fitness of agents in population 1
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is indeed clearly visible in"Fig. 5, even for games as long
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Most agreements also occur just before the deadline in the long run. Consider for instance the
10-stage game. In the first few generations of the evolutionary process, nearly all agreements are
reached quickly (= 97% of all agreements occur in the first five rounds) and virtually no deals are
delayed until the very last round. However, after 25 generations the mean percentage of last-round
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Figure 5: Evolution of tHie ndean fitness of agen%s in Ig)i)ulation 1 in n-stage alternating-offers games
without payoff discounting. When the agents in p§p1§§tlon 1 have the opportunity to make the last
offer (i.e., when n is odd) they receive the largest§h3ﬁe of the surplus in the long run. E(@ly the
opposite happens when agents in population 2 are?;hé} Emst in turn (i.e., when n is evgn

g o ;U Q
N m:z
2 TUSs
agreements has already maeased to 42 + 16%. After 500 generations this percentage }%52 increased
even further to 80 + 3%.: f,merestmgly, this deadline- a@)roachlng behav10r has also be n_—hbi served in
bargaining experiments it ith humags [16]: S e

Figure 5 furthermorgs %ﬁiws tha&the standa Viations in
run for short games (g,?g;; mall né This pffgdt h served before in %?Ctlo 431* where it
was attributed to unstagvgei opulat%) %ﬁa_ si icinity Qﬁg’e SPE. Fbt ultip L:;gﬁames
the mechanism trlggergéé ese tragsients ig pimi amely, agents who increase their th olds for

t = n—1), but the resultlng changFin fitness a latively small when n > 1. Major fitness collapses

L(l

26!
RSy

mﬁﬂa

as detected in the ultimatum gamegare for i ce not occurring in this case.

Partly, stability increases in muligple-stag] s (in comparison with the ultimatum game studied
in Section 4.1) because convergeng towimr me SPE behavior takes longer for larger n (see 1
Fig. 5). Recall that agents with ag}on zZer fop,25 n — 1 can only invade the population
if the SPE is actually reached (see@ection 4.L) uter experiments also show that when the
SPE is reached temporarily more ggree up/fi ier ré\mdk. The timing of the agre ents
changes because the proposers in the lastTqu re nd resﬁz)i% eanher rounds 1
in order to avoid the occurrence of! isagree elits in . In the u tlma um game
proposers do not have this opportusity. is leave
of disagreements (i.e., rapidly increasing g amount tlﬁyooffer to t%@ opponengfdo 400
4.30<0<1 generation

Figure 6 shows that the fitnesses of the two populations converge very rapidly to a steady state
if § = 0.6. Game theory predicts that the agents agree immediately on a deal if the agents are
under time pressure (see Appendix 1). The computational experiments indeed show that the agents
hasten to reach a deal. Initially, 51 £ 4% of all agreements are reached in the first round. After 25

500
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Figure 6: Evolution of th n fitness for 501;%
(with § = 0.6). A very rapld convergence of t
partitioning for n = 10 is also indicated.
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ations in the 10-stage alternating-offers game
nesses is visible. For comparison, the SPE
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generations this percentage has already increased
is essentially unchanged @‘ﬁbi 5%). Notd tha
the postponement of agr@@rglents) ford =1in Sectlon 4&2 .

This suggests that the zsp:eed of converggnce is affected significantly by Hltl%&
of the agents’ strategleé,“:&o%he beglnma%of each EA run. As noted beforéﬁéiﬁctla% .
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hand, if 4 = 1 the random 1n1tla]@at10n leads to a far from optimal timing (because initially almost
no agreements are reached in thdfast round). The evolving system therefore converges slowly to a
steady state [compare the slow trghsied#éir Fig. 5 (for n. = 10\r with the rapid convergence in Fig. 6]. ]
The SPE partitioning of the gplus i: a; Tjgghg%aktedxmxﬁﬂgg X@ fog( ;QQQIPa @QQ QQQ@&Q&;& th(;‘k ] L
SPE prediction accurately predi P

Luqu
L“%guew

the sHare- of the Surplus that @geuts Jl]fhpcplﬂaﬁlﬁ)m 1 réceivel inl |

our experiments. The evolving a%ent@_'gl ipopulation 2 receive less than predicted by game theory, ]

however. The total share divided by the |evolving agents is smaller than unity in the experiments,

because some agreements (~ 10% of all dgals) are not reached in the first round. Taking this effect

into account, it becomes clear from Fig, § that the agents in population 1 receive a relatively large

share of the (partlally discounted) surplusQCompared tfddle agents %qopulationﬁ?oo 4%% 500
We study the partitioning of the surplus for a wider range of discount factors in Figs. 7 and 8. ese

figures again show that agents in population 1 receive more than gamgeﬂ%ép}p'ﬂredlcts (see Fig. 7),

whereas agents in population 2 negotiate relatively poor deals (see Fig. 8). This effect is particularly

clear in case of strong time preferences (for instance when § =~ 0.3). An explanation might be that

rejecting offers in the first round has a strong negative effect on the fitness of agents in population 2 if §

is small. Agents in population 2 will therefore strongly prefer to reach an agreement in the first round.
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This tendency can subsequently be exploited by agents in population 1 by demanding a relatively
large share of the surplus (as in the ultimatum game discussed in Section 4.1). This hypothesis is
supported by the experimental observation that almost all agreements are reached immediately (after
500 generations, more than 98% of all agreements are reached in the first round for 6 = 0.3). This
means that in almost all cases a very short game is played (only one stage).

Figures 7 and 8 furthermore show that in case of weak time pressure (for instance when ¢ ~ 0.9) the
bargaining outcome deviates significantly from the SPE prediction for n = 10. Figure 8 for instance
shows that the agents in population 2 do not fully exploit their last-mover advantage under these
circumstances (their mean fitness is far below the SPE level). This effect can be explained by the
boundedly-rational behavior of the adaptive agents. These agents do not reason backwards from the
deadline (as is done in game theory, see Appendix 1), but focus on the first few rounds, where expected
utility is relatively high. This means that only few agreements are reached in later rounds. As a result,
the deadline of the game is not perceived accurately by the evolving agents.

In fact, the experimental results agree much better with SPE predictions for longer games. Almost
perfect agreement is for instance obtained (for large 0) if we compare the experimental results with
SPE predictions for a 30-stage game. This lends more support to Rubinstein’s analysis of an infinite-
horizon game: in reality an infinite game length may be a good modeling assumption if the agents
do not perceive the finite deadline of the game. Figures 7 and 8 indeed show that the experimental
outcome is predicted quite well (for ¢ up to 0.9) by theoretical predictions for an infinite-horizon game.

5. ALTERNATIVE EVOLUTIONARY MODELS
The specific choice of settings for an evolutionary model can affect the obtained results substantially.
A telling example has recently been given for the evolutionary prisoner’s dilemma, [21]. In particular, it
was shown in [21] that the course of evolution in a multi-agent system can be very sensitive to modeling
choices like (i) whether successive generations of agents overlap or not, or (ii) the selection intensity
in the population. The influence of these two factors will therefore be investigated in Sections 5.1
and 5.2. In addition, we evaluate the influence of the population size in Section 5.3. Section 5.4
investigates an alternative selection model, in which selection is probabilistic instead of deterministic.
Finally, Section 5.5 investigates a model in which the agents can adapt their own mutation step-sizes.
Figure 9 summarizes results for the model variants considered in the remainder of this section. This
figure shows the long-term fitness of agents in population 1 (measured after the initial transients have
died out). Predictions of the default selection scheme [the (100 4+ 100)-ES model, see Table 1] are
indicated with a solid line.

5.1 Owverlapping vs. Nonoverlapping Generations Models

As we mentioned before in Section 3, the (u + A)-ES selection scheme is an “overlapping generations”
model in the sense that well-performing agents can survive for extended periods of time. As an
alternative, we also consider a “nonoverlapping generations” selection scheme proposed in the field
of ES. In this (u, A)-ES model [1] u parents produce A > p offspring. All parents are discarded after
one period and only the p best offspring are transferred to the next generation. Unless indicated
otherwise, we set A equal to 2u = 200 in this model. Hence, the number of agents competing for
survival is the same as in the experiments with the default (100 + 100)-ES model.

Figure 9 shows that predictions of the (100, 200)-ES model differ significantly from those obtained
with a (100 + 100)-ES scheme. Differences become especially large for 6 — 0 and § — 1. Under these
circumstances, the agents basically play the ultimatum game: either in the first round (when § — 0)
or in the last round (when 6 — 1).

As an example, we investigate the limiting case § — 0 in more detail. In this situation, game theory
predicts (see Appendix 1) that the agents in population 1 demand the whole bargaining surplus in
the first round (i.e., at ¢ = 0). This behavior is not observed in the evolutionary experiments: the
offer gene o(t = 0) of the agents in population 1 evolves to a value of 0.90 £ 0.04.° The threshold gene

9The standard deviation is a measure of how widely the offers (at ¢ = 0) of the agents in population 1 are dispersed
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(for n = 10). Apart from the (100,200)-ES modelZa
deviations for the (100,200)-ES model become espe
standard deviations are not shown.)
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agents is therefore significantly lov%ar than the extreme offer of 1.0 predlcted by game theory SAs Ay
result, the fitness of the proposing®ggents converges to a level below unity.'°
Based on the above discussion e ntk4 expect that the agents’ behavior agrees better with SPE
predictions if their mutation step Q_es o; bpcome sHefalt: € %Qé +400)-ERial £ 0.025 (in the default
model o; = 0.1, see Table 1), o(t & 0) corjverges to a val
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by setting A equal to 4u (instead of 2u), 6 0) conveégzzs to a vaqu: of 0.96 £ Q) . This leaél to a
long-term fitness of & 0.93 for the agents in population 1. When A/u ecomes lar for instance when
A/p = 7, a common setting for the (u, A)-ES model [1]) the evolvm Ofpproach the SPE.

from the mean.

10Convergence to an equilibrium which is not subgame-perfect in the ultimatum game has been reported before in
the field of evolutionary game theory [7]. In [7] the evolution of strategies for the ultimatum game is governed by a
nonoverlapping generations variant of the replicator dynamics [2, Ch. 9].
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Under these circumstances relaxation oscillations occur, for reasons pointed out before in Section 4.1.

Note that the assumption that successive generations of agents do not overlap is essential to explain
the convergence to equilibria which are not subgame-perfect in the ultimatum game. In overlapping
generations models only well-performing offspring can enter the populations of proposers and respon-
ders.!! This means that offspring submitting low offers will not gain access to the next generation.
The same holds for offspring with a relatively high threshold. These will not gain access to the popu-
lation of responders (except when the SPE is actually reached), because such agents cause relatively
many disagreements and therefore earn a lower payoff than their parents.

5.2 Influence Selection Intensity

We now further investigate the (default) (u+A)-ES model. Figure 9 shows that decreasing the selection
intensity in this model, by setting A equal to 50, does not affect the mean results (in comparison with
the default model in which A = 100, see Table 1). The same conclusion holds if we increase the
selection intensity by setting A equal to 150. The mean results in Fig. 9 may, however, mask sudden
collapses in fitness when § — 0, as we noticed before in Section 4.1. Individual experiments for § — 0
show that these collapses occur more frequently if A is increased to 150. Unstable behavior disappears
almost completely, on the other hand, if A = 50. Inspection of individual runs shows that major
collapses in fitness only occur if all agents adopt subgame-perfect behavior (see Fig. 4). This explains
the impact of the selection intensity on stability: a population is more likely to converge to a uniform
state if the selection intensity becomes large.

5.8 Influence Population Size

The above discussion suggests that evolutionary stability might deteriorate for § — 0 in undersized
populations, because in this case genetic diversity is rapidly lost as a result of natural selection.
This effect is indeed observed in additional experiments. Small populations converge more quickly
toward SPE behavior initially, but are very unstable in the long run. The fitnesses of the coevolving
populations even start to oscillate with a period as short as 25 generations if the population size is
reduced to 25 (and § — 0). This oscillation period becomes much larger (a2 5000 generations) if the
population size is increased to 200. Relaxation oscillations are therefore most likely to occur in small
populations of adaptive agents.

5.4 Deterministic vs. Probabilistic Selection

One may argue that selection in economic markets is often of a probabilistic nature. The assumption
in deterministic models that the worst agents are never selected (“imitated”) can for instance be con-
sidered as an idealization: in reality imperfect selection occurs in actual market situations. Selection
of the agents may also be based on a limited number of comparisons with other competitors. Such a
“tournament setting” introduces additional uncertainty in the selection process. Inferior agents can
for instance survive if they are paired with even weaker competitors, whereas relatively fit agents can
be eliminated in a tournament with top-performers.

We investigate the influence of these stochastic processes by considering a probabilistic variant of
the (u+\)-ES selection scheme. This alternative scheme has been proposed in the field of evolutionary
programming (EP) [1, pp. 96-99]. In this model, denoted here as (1 + p)-EP selection, the parental
and offspring populations have an equal size u (i.e., A = u). Each agent is evaluated against ¢ agents
from the union of parents and offspring. These opponents are selected at random (with replacement).
A typical setting for the tournament size ¢ is 10 (or smaller) [1, p. 102]. If an agent’s fitness is larger
than (or equal to) his opponent’s fitness, he is attributed a “win”. The p agents with the largest
number of wins are transferred to the next generation. It has been shown in [1, p. 96-99] that this
tournament scheme selects the same agents as the deterministic (u + p)-ES if ¢ — oo.

Figure 9 shows that predictions for the (100 + 100)-EP model (with ¢ = 10) are in first approxima-
tion rather similar to results obtained with the deterministic (100 + 100)-ES model. Slight deviations

I Assuming that selection is strictly deterministic. See Section 5.4 for a further discussion.
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occur, however, for 6 — 0 and § — 1. To explain these differences, we study the situation in which
d — 0 in more detail. We observed earlier in Section 4.1 that under these (ultimatum game) condi-
tions the evolving system can actually reach the SPE in individual runs. This state was subsequently
undermined by responding agents with nonzero thresholds. In case of probabilistic selection this desta-
bilizing process might actually start before the SPE is reached. An additional effect of probabilistic
selection is, however, that the selective pressure decreases. This has a stabilizing effect, as we pointed
out in Section 5.2.

Inspection of individual runs (for § — 0) shows that the latter (stabilizing) effect is dominant. The
evolving system converges to a rather stable state which is close to, but removed from, the SPE. We
can therefore conclude that relaxation oscillations are less likely to occur when selection is stochastic
instead of deterministic.

More extreme cases (viz., ¢ = 2 or ¢ = 100) have also been studied in additional experiments.
As expected, results for ¢ = 100 are very similar to predictions of the deterministic (100 + 100)-ES.
If ¢ = 2, significant deviations from SPE predictions occur (especially if § — 0 or § — 1). The
mean long-term fitness of the agents in population 1 is for instance equal to 0.83 = 0.01 for 6 — 0,
significantly below the SPE prediction of 1.0. Inferior agents in population 1 remain in the population
with a relatively large probability in this case. This leads to a spread in the offers submitted by these
agents in ultimatum game situations. Their mean offer therefore converges to a value below the SPE
level (follow the similar discussion in Section 5.1).

5.5 Fized vs. Self-Adaptive Mutation Step-Sizes
The default mutation model studied in this paper, see Section 3.4, sets the standard deviations of all
agents to a common value. This value then remains constant during the course of evolution. A more
natural approach would be to enable individual agents to control the magnitude of the mutations
in their genetic code. An elegant mutation model which can be used for this purpose has been
described in [1, pp. 71-73]. This model allows an evolutionary self-adaptation of both the genes and
the corresponding standard deviations at the same time. More formally, an agent consists of object
variables [z, ..., ;1] and strategy parameters [og, ...,0;—1] in this model.

The mutation operator first updates an agent’s strategy parameters o; into oj-values in the following
way:

o} := o;exp[T'N(0,1) + 7N;(0,1)], (5.1)

where 7/ and 7 are the so-called “global” and “individual” learning rates. We use commonly recom-
mended settings for these parameters.!? After the strategy parameters have been modified, the object
variables are mutated: z} := x; + o}N;(0,1).

The initial standard deviations ¢;(0) are set to a value of 0.1 (the same value as in the default
mutation model) to close this mutation model. The particular value chosen for ¢;(0) is not expected
to be crucial, because the self-adaptation process rapidly scales the step sizes into the proper range.
To prevent complete convergence of the population, we force all standard deviations to remain larger
than a small value e, = 0.025 [1, pp. 72-73]. Note that this self-adaptive model reduces to the default
mutation model with fixed standard deviations if we set the learning rates 7/ and 7 equal to zero.

We observe in the experiments with this self-adaptive mutation model that the agents in general
reduce their mutation step-sizes in the course of evolution (i.e., their search in the strategy space
becomes more local instead of global). Figure 9 nevertheless shows that the prediction of the mean
fitness is very similar to the prediction of the model without step-size control. This indicates that the
(1 + A)-ES selection scheme successfully discards less successful mutants in the mutation model with
constant step-sizes.

We demonstrated in Section 5.1 that the proliferation of inferior offspring leads to significant devi-
ations from SPE behavior in a (i, A\)-ES model. It can be expected that these discrepancies become

12Namely, 7/ = (v2[)~! and 7 = (V2VI)~! [1, p. 72].
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smaller in such a model if the agents are able to reduce the magnitude of the mutations and produce
more similar offspring. This is indeed the case. If we use a (100, 200)-ES and let 6 — 0, the mean
long-term fitness of the agents in population 1 is & 0.93 (compared to &~ 0.87 in the experiments with
fixed mutation step-sizes, see Section 5.1). This value is indeed in better agreement with the SPE
prediction of 1.0.

6. MODEL WITH ASYMMETRIC TIME PREFERENCES
We now continue our experiments with the default evolutionary model specified in Table 1. Figure 10
shows the long-term performance of the evolving agents in case of asymmetric time preferences. For
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Figure 10: Long-term fitn agents in p@p& and population 2 in case of asymmetric time
preferences. The discount factor for agents in po;ﬁllaimn 2 (d) is varied between zero and unity in
this figure. Agents in population 1 have a fixed dlsaﬁmt factor (6; = 0.6). Notice that(g}nts in
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Agents in population 2 who try to exploit their bargaining power by delaying agreements will
therefore encounter opponents with random strategies in later rounds. This deprives these agents
partly of their bargaining power: they cannot force their indifferent opponents to adjust their behavior
in later rounds. In fact, exactly the opposite occurs in the evolutionary system. In an attempt to
avoid the occurrence of disagreements, the agents in population 2 reduce their offers and thresholds
in later rounds.!*

Experiments with the alternative models discussed in Section 5 lead to similar results for d5 > d;.
Hence, the deviations from game-theoretic predictions in the computational experiments cannot be
attributed to the specific settings of the (100 + 100)-ES (which was used to generate Fig. 10).

7. MODEL WITH A RISK OF BREAKDOWN

Our bargaining model with stochastic breakdown generates exactly the same game-theoretic solutions
as the model studied in Section 4 if the continuation probability p is set equal to ¢ (see Appendix 1). It
is therefore instructive to compare the experimental results in Fig. 11 with those reported previously in
Figs. 7 and 8. This comparison shows that the long-term behavior of the evolving agents is different for
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8. Model with Risk Averse Agents 19

Additional experiments with alternative overlapping generations models (e.g., with a different se-
lection intensity, or with a self-adaptive mutation model) lead to very similar results as those reported
in Fig. 11. Simulations with the nonoverlapping generations (100, 200)-ES model show, on the other
hand, that significant deviations from the SPE predictions occur if p is either close to zero or close
to unity. This is not surprising, however, because letting p — 0 in the model with breakdown yields
exactly the same bargaining model (viz., the ultimatum game) as by letting 6 — 0 in the model with
time preferences. In a similar fashion we can identify p — 1 with § — 1. We already explained
in Section 5.1 why the evolutionary system can converge to equilibria that are not subgame-perfect
under these extreme conditions.

8. MODEL WITH RISK AVERSE AGENTS
Figure 12 shows the effect of risk aversiveness on the respective shares received in a 10-stage game with

breakdown (with p = 0.6). In Fig. 12 the risk coefficient of one of the agents is varied between zero
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agent 1 becomes more risk averse, this has a relatively small effect on his share, whereas if agent 2
becomes more risk averse, this agent rapidly loses share to his opponent. Figure 12 shows that this
subtle effect is also detected by our evolutionary system. The trends predicted by game theory are in
fact followed very closely for a wide range of risk coefficients.

These results indicate that it is feasible to investigate the influence of an agent’s attitudes toward
risk in an evolutionary setting. The evolutionary system correctly predicts that an agent’s share of the
bargaining surplus diminishes if he becomes more risk averse. We also identified a more subtle second-
order effect, namely that the impact of risk aversion on an agent’s negotiated share is depending on
the bargaining order (i.e., whether the agent can start the negotiations or not).

9. CONCLUSIONS

We study equilibrium selection in evolutionary bargaining models. Computational experiments are
performed using evolutionary algorithms (EAs). Negotiations between the adaptive agents are gov-
erned by a finite-horizon version of Rubinstein’s well-known “alternating-offers” protocol. Besides Ru-
binstein’s standard model (with exponential payoff discounting) an alternative model with stochastic
breakdown in negotiations is examined. Using this model variant, the influence of risk aversion on the
behavior of adaptive agents is assessed.

This paper shows that game-theoretic approaches are very useful to interpret equilibrium-selecting
behavior in evolutionary systems of adaptive bargaining agents. The adaptive agents are boundedly
rational because they only experience the profit of their interactions with other agents. Nevertheless,
they display behavior that is surprisingly “rational” and fully informed in many instances. Agreement
between theory and experiment is especially good when the agents experience an intermediate time
pressure.

In extreme situations (i.e., when time pressure becomes either extremely strong or negligible) more
significant deviations from game-theoretic predictions emerge. We demonstrate that the specific evo-
lutionary model governing agent selection is an important factor in this case. In “overlapping gener-
ations” models, the evolutionary system rapidly converges to subgame-perfect behavior (but highly
nonlinear transients can occur in this case). In “nonoverlapping generations” models, on the other
hand, convergence to equilibria which are not subgame-perfect is observed.

Two other experimental observations should be mentioned here. First, the finite horizon of the
negotiations is not always fully exploited by the last agent in turn (even if time pressure is rather
weak). In fact, the boundedly-rational agents often act as if the length of the game is actually much
longer. This lends more support to the “infinite-horizon” assumption frequently employed in game-
theoretic work. This approximation may yield surprisingly accurate results in evolutionary systems
when the agents do not perceive the deadline of the negotiations. Second, we observe (and explain)
discrepancies between theory and experiment if the agents are asymmetric (i.e., when they discount
the bargaining surplus at different rates).

More in general, this work presents a systematic validation of evolutionary and computational
techniques in the field of bargaining. As a promising line of research we are currently studying
adaptive agents with more complex bargaining strategies. Another important aspect of electronic
trading, negotiations over multiple issues, is discussed in a companion paper [8].

1. ALTERNATING-OFFERS GAMES: ANALYSIS
Subgame-perfect equilibrium strategies for the finite-horizon models considered in Sections 4-8 are
derived below by applying the following basic principle [2, pp. 199-200]:

In (subgame-perfect) equilibrium, a proposer always plans to offer the responder an amount
that will make the responder indifferent between accepting and refusing. In equilibrium,
the responder always plans to accept such an offer or better, and to refuse anything worse.

This principle will be used first to analyse the one-stage ultimatum game. Subgame-perfect equilibrium
strategies for multiple-stage games (with complete information) are then derived by using a backward-
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induction approach [22, Ch. 1]. It is assumed in this appendix (as has been done throughout this paper)
that the size of the bargaining surplus is equal to unity at ¢ = 0.

The ultimatum game (Section 4.1)  Applying the above principle to the ultimatum game, we im-
mediately find that there is a unique SPE in which the proposer (i.e., agent 1) demands 1, and the
responder (i.e., agent 2) accepts this offer (and therefore receives nothing). Note that there does not
exist a SPE in which agent 2 rejects this extreme proposal. A clear justification of this (at first sight
somewhat counterintuitive) result can be given by analyzing a finite version of the ultimatum game,
in which offers should be made in multiples of a smallest monetary unit € [2, pp. 200-201]. In this
game there actually exist two SPEs (viz., a SPE in which agent 1 demands 1 and agent 2 accepts all
proposals, and a second SPE in which agent 1 demands 1 — € and agent 2 accepts all demands except
1). However, these two solutions converge to the single SPE of the limiting game with continuous
offers if € becomes very small.

Multiple-stage games (Section 4.2) Both agents are indifferent between accepting a deal sooner or
later in this model. Hence, the last agent in turn has the opportunity to reject all proposals from his
opponent and demand the entire surplus in the last round (which the other agent then accepts). If
the maximum number of rounds n is odd, agent 1 will therefore receive the entire surplus, whereas
agent 2 receives all in case n is even.

Model with time preferences (Sections 4.8 through 6) This game has a unique SPE which can be
calculated as follows. If the maximum number of rounds n is even, agent 2 will be the proposer in the
last round (i.e., at t =n —1). Agent 2 will then demand the whole surplus (of size 1 at the beginning
of play, but only of size 6371 in the last round) and agent 1 will receive nothing. This division of
the surplus would yield agent 2 a payoff which is equal to 6371. In equilibrium, at t = n — 2 agent 1
should propose agent 2 a payoff-equivalent deal. This implies that agent 1 requests a fraction 1 — §o
at t = n — 2. This division of the surplus would yield agent 1 a payoff equal to 67 2(1 — &5). This
procedure is then repeated until the beginning of the game is reached (at ¢ = 0). The same line of
reasoning holds if the number of rounds is odd (simply switch the roles of agent 1 and agent 2). In
equilibrium, agent 1 then demands a share of 27 (n) in the first round and agent 2 immediately accepts
this proposal [receiving z5(n) = 1 — z5(n)].

The SPE partitioning (21, %) as a function of the game length is listed in Table 2. To be expected,
this partitioning of the surplus converges to the partitioning derived by Rubinstein for the infinite-

horizon game [17]. In Rubinstein’s model agent 1 receives 11—7515?52 and agent 2 receives the remaining
part of the surplus.

n SPE share of agent 1 (z7) SPE share of agent 2 (z3)

1 1 0

2 [1-6, 02

3 | 1-6801-46) §2(1 —4y)

4 | 1—=02(1=01(1—0d2)) d2(1 = 61(1 — d2))

5 | 1=062(1=01(1—02(1—61))) 62(1 = 01(1 = 02(1 — 61)))

6 | 1—=02(1—01(1—02(1=061(1—102)))) | 02(1 —61(1—d2(L —01(1 —62))))
oo | (1-8)/(1—5,6) 51— 8,)/(1— 6,6)

Table 2: Subgame-perfect partitioning of the surplus as a function of the maximum number of stages n
of the alternating-offers game. When the game becomes very long, i.e., when n — oo, the partitioning
of the surplus converges to the partitioning derived by Rubinstein for the infinite-horizon game [17].
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Model with a risk of breakdown (Section 7)  For risk neutral agents the expected utility of agent i
at time ¢ is equal to x;p’ in this model. If we compare this with the payoff agent i receives in the
model with time preferences (z;6¢, see above), it becomes straightforward to identify the unique SPE
strategies for both agents. In particular, the SPE partitioning is given by Table 2 if we replace d;
and d2 by the continuation probability p. According to Table 2, agent 1 receives ﬁ (and agent 2
the remainder) if n becomes very large. This partitioning is in agreement with predictions for the
infinite-horizon game with breakdown [11, pp. 74-77]. Finally, note that the agents agree on an equal

split if p — 1 in the infinite-horizon model.

Model with risk averse agents (Section 8) In this case, agent i’s payoff at time ¢ is equal to u;(z;)p’,
where u; is a concave utility function modeling agent i’s attitudes towards risk. In order to calculate
the agents’ SPE strategies, we repeat the earlier analysis based upon backward induction. The final
result is that the SPE partitioning (z},z3) is given by Table 2 if we replace §; with u; '(p) and d»
#% of the surplus (and agent 2
the remainder) if n becomes very large (in agreement with [11, pp. 77-80]). The corresponding
partitioning in terms of utility is given by the pair (uj(x7), ua(z3)).

with uy'(p).'> Agent 1 therefore receives a fraction of

2. THE EVOLUTIONARY ALGORITHM

The pseudo-code of the evolutionary algorithm is given in Table 3. The computer program is written
in the Java software language (version 1.2.2). Parameter settings for this algorithm are taken from
Table 1. Variants of this algorithm [e.g., (1, A) selection instead of (u+A) selection] can be implemented
easily.

. . . —1
!5The inverse function of u; is denoted as u; *.
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begin program MAIN
generation = 0
Generate two populations (pops.) of u = 100 agents
parents’ = list of agents in pop. i € {1,2}
Initialize the chromosome of each agent in parents® for i = 1,2
Calculate fitness parents
for i = 1,2 do calculateFitness(parents’)
Report results
Start main iteration loop
generation := generation + 1
Generate offspring
of fspring® = list of offspring for pop. i € {1,2}
for i = 1,2 do generateOffspring(parents?)
Calculate fitness offspring
for i = 1,2 do calculateFitness(of fspring®)
Collect survivors (parents for the next generation)
for i = 1,2 do parents® := selSurvivors(parents’,of fspring?)
Recalculate fitness parents (context has changed)
for i = 1,2 do calculateFitness(parents?)
Report results
Repeat 7 through 12 until the maximum number of generations is reached
end program MAIN

procedure calculateFitness(agents)
Select an agent from agents
Select opponents (from the other pop.)
if agent € {parents®,of fspring'} context := parents?,
else context := parents’
Select subset of 25 opponents from context
Play bargaining game against these opponents
Fitness agent is mean utility obtained in these 25 games
Repeat 1-4 for all agents in agents

procedure generateOffspring(parents®)

Select parent from parents’

Form offspring by mutating this parent
Repeat 1 and 2 until A = 100 offspring have been formed
Gather all offspring in list of fspring®

procedure selSurvivors(parents,of f spring)
Return p fittest agents from union of parents and of fspring

23

Table 3: Pseudo-code for the evolutionary algorithm. Model settings are the same as in Table 1.
Names for populations of agents are indicated in italics.
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