
Centrum voor Wiskunde en Informatica

Transmission function models of infinite population genetic algorithms

C.H.M. van Kemenade, J.N. Kok, H La Poutré, D. Thierens

Software Engineering (SEN)

SEN-R9838 December 31, 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301640261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Report SEN-R9838
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Transmission Function Models of Infinite Population Genetic Algorithms

Cees H.M. van Kemenade
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Joost N. Kok
LIACS, Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

Han La Poutré
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ABSTRACT

The so-called transmission function framework is described, and implementations of transmission function

models are given for a broad range of genetic algorithms. These models describe GA’s with a population

of infinite size. An actual implementation of these models for a non-trivial problem involving deception is

given, these models are traced, and the results are visualized by means of population flow diagrams. These

diagrams show that cross-competition between different parts of the optimal solution takes place.
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1. Introduction

Altenberg used transmission functions to model generational genetic algorithms [Alt94]. We have
extended these transmission function models to a broad range of genetic algorithms. Tracing
these probabilistic models corresponds to running a genetic algorithm with an infinite popula-
tion. The results obtained by tracing these models can be regarded as an upper bound on the
probability that the optimum is found for the corresponding “real” finite population genetic al-
gorithms when using large populations. Tracing of probability models for a simple GA was done
by Whitley [Whi93]. Kok and Floréen traced probabilities using a model based on bit-products
and Walsh-products [KF95]. Altenberg used a transmission function model to model generational
genetic algorithms [Alt94]. All these models correspond to genetic algorithms involving an infinite
population. Here, a broad range of genetic algorithms is modelled with transmission functions.
Extensions of these models such that genetic algorithms with finite population can be modelled
were investigated [KKPT98]. We also treat elitism: in an elitist GA the parents can be propagated
directly to subsequent generations, this in contrast to the generational GA where the parents are
always discarded after producing enough offspring to populate the next generation. Theoretical
analysis has shown that a canonical GA will not converge to the global optimum in general, but a
GA that maintains the best solution will converge [Rud94, BKdGK97] and a GA involving elitism
will converge to the optimum too [Rud96, BKdGK97]. Maintaining the best individuals means



2. Selection schemes 2

keeping these individuals in the population without allowing them to reproduce, while in case of
elitism an individual is allowed to reproduce throughout its lifetime.

The outline of the rest of this report is as follows. In section 3 the transmission function models
for different types of genetic algorithms are introduced. Section 4 describes how such transmission
function models are used to model the behaviour of genetic algorithms with infinite population size.
When restricting ourselves to functions of unitation, a formulation in terms of equivalence classes
can be used to get a more efficient computation, as described in section 5. Section 6 introduces
the cross-competition problem, which is used as an example of the application of the transmission
function models. Population flow diagrams are introduced in section 7. These diagrams are used
to visualize the simulation results for the different GA’s. Conclusions are presented in section 8.

2. Selection schemes

The selection scheme enforces a selective pressure by adjusting the fertility and the viability of
individuals based on their fitness. The selection scheme determines who is allowed to reproduce,
how often individuals are allowed to reproduce, and which individuals are allowed to survive and
thus are propagated to the next generation. Here, we discriminate between three types of selection
schemes: the generational schemes, the steady-state schemes, and the local competition schemes.
A separate subsection is devoted to each of these schemes.

2.1 Generational selection schemes
In generational evolutionary algorithms a sequence of generations is created. The individuals in
generation Gt are the parents of the individuals in the next generation Gt+1. There is no overlap
between subsequent generations in the sense that none of the individuals of generation Gt are
transferred to the next generation, and thus all individuals in generation Gt+1 are obtained by
application of the evolutionary operators to the parents selected from generation Gt. We use three
different types of generational schemes: the selection scheme of the canonical genetic algorithm,
the generational genetic algorithm with tournament selection, and the (µ, λ) selection scheme.

In a generational genetic algorithm, a selection method is used to select a number of parents.
Next, a recombination operator is applied to these parents to get two offspring individuals. The
mutation operator is applied to these offspring. These mutated offspring are put in the population
Pt+1. This process is continued until the next population is completely filled.

Usually recombination is only applied with a certain probability given by the crossover probabil-
ity, often denoted by pc. If no crossover is applied, then the parents are duplicated, and mutation
is applied to the resulting copies, to get the offspring.

During the selection step, the generational genetic algorithm needs a selection method. Two
fitness-based selection methods are discussed here. The first is the fitness proportional selection.
When using this type of selection, the probability that an individual x is selected is proportional
to its fitness. So given the average fitness f̄ over the population Pt, the number of copies of
individual x is f(x)/f̄ . The process of the selection of an individual can be visualized by means of
a roulette-wheel with a pointer. The roulette-wheel is divided in a number of parts, one for each
individual; The part corresponding to individual x covers a fraction f(x)/f̄ of the roulette-wheel.
Now a single individual is selected by turning the roulette-wheel. When the rotation stops, the
pointer points at a certain part, and the corresponding individual is selected. If we have to select n
individuals, then one has to spin the wheel n times. On average, individual x is selected nf(x)/f̄
times, but in practice it can be selected more often, or less often. This spread in the number of
copies is a sampling error during selection. The sampling error of fitness proportional selection can
be reduced by using “Stochastic Universal Sampling” [Bak87]. This selection method is obtained
by means of a small modification to the previous method. Instead of one pointer, this method
use n pointers, where the angle between two subsequent pointers is 2π/n; Now, a single spin of
the wheel results in the selection of all n individuals. The sampling error is much lower now. The
actual number of copies of an individual cx in this case is bounded by

�nf(x)/f̄� ≤ cx ≤ �nf(x)/f̄�.

Fitness proportional selection is a non-deterministic selection method. This selection method only
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modifies the probability of selection of the different individuals. The fitness proportional selection
requires that the fitness of individuals is given by positive values, because the probabilities of
selecting an individual are proportional to fitness, and these probabilities cannot be negative.
Furthermore, the fitness proportional selection is not invariant under scaling of fitness values. For
example, if the fitness of all individuals is changed by adding a large positive constant a, then
the average fitness is increased by a, and the selective pressure of fitness proportional selection is
decreased. Due to the same effect the selective pressure of fitness proportional selection decreases
when most individuals in the population have a near-optimal fitness.

An example of a generational genetic algorithm with fitness proportional selection is the canon-
ical genetic algorithm that was introduced by Holland [Hol75]. It is also described by Gold-
berg [Gol89] under the name simple genetic algorithm.

Another fitness-based selection scheme is tournament selection. A form of tournament selection
was already studied in Brindle’s dissertation [Bri81]. A tournament selection with tournament
size k, where k ≥ 2, is obtained by selecting k individuals uniform at random from the population.
The best out of these k individuals is selected. After tournament selection the best individual
is expected to have k copies, the median individual is expected to have (1/2)k−1 copies, and the
worst individual is expected to have no copies. Larger values of the tournament size k result
in a stronger selective pressure and therefore in more duplicates of the best few individuals.
Tournament selection is a non-deterministic selection method. In this selection scheme it is possible
to reduce the sampling error during selection by means of an intermediate population. Given
that a single recombination operation uses two parents to produce two offspring, an intermediate
population of size kn is generated by duplicating all individuals in the parent population k times.
Now a parent is selected by drawing k individuals without replacement from this intermediate
population and setting up the k-tournament. The sampling error is reduced as each individual
participates in exactly k tournaments.

The (µ, λ) selection scheme from evolution strategies is a generational scheme too. A parent
population of size µ is used to generate λ offspring. Next, the µ best individuals out of the λ
offspring are used as parents for the next generation. This selection scheme is deterministic. In
this selection scheme it is also possible to reduce the sampling error during selection by means
of an intermediate population. This intermediate population is filled with the number of parents
needed. Next, the actual parent pairs are selected without replacement from this intermediate
population. Now given that a single recombination operation uses two parents to produce two
offspring, the number of times a parent is selected for reproduction is bounded by �λ/µ� ≤ cx ≤
�λ/µ�. A similar selection scheme is the T%-truncation selection, which is a deterministic selection
scheme that retains the T% best individuals. Truncation selection is used in Breeder Genetic
Algorithm [MSV94].

2.2 Steady-state selection schemes
Steady-state selection schemes typically replace only a limited number of individuals. So there is an
overlap between subsequent generations, and an individual can live for more than one generation.
A steady-state selection scheme requires a selection method and a replacement method. The
selection method determines which individuals are allowed to reproduce. The resulting offspring
has to be added to the population. In order to keep the population size constant, the offspring will
replace individuals from the population. The replacement method determines which individual
is replaced. So the selection method determines the fertility of individuals, while the reduction
scheme determines the viability of the individuals. Both the selection method and the reduction
method can be used to obtain a selective pressure. An example of the usage of the selection method
is a selection scheme where tournament selection is used to select individuals for reproduction,
and the individual to be replaced is obtained by a uniform selection. In this selection scheme the
replacement is not by a fitness-based selection, and therefore the selective pressure is solely due to
the selection method. Another example is a selection scheme where a uniform selection over the
population is used to obtain the individuals that are allowed to reproduce, and the replacement
method always replaces the worst individual of the population. In such a selection scheme, the
selective pressure is solely enforced by the replacement method. Steady-state genetic algorithms
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are used in Genitor [Whi89, WS90] and several other genetic algorithm [Sys89, vKKE95].
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Figure 1: Schematic representation of triple-competition selection

A different steady-state scheme is the triple-competition selection scheme [vK97b]. Figure 1
shows how the next population Pt+1 is produced from the current population Pt. On the left
we see the current population Pt, where each box represents a single individual. The values in
the boxes denote the fitness of the corresponding individuals. An intermediate population Ps

is generated by doing a random shuffle on Pt. Population Ps is partitioned in a set of triples.
Within each set of three individuals the two best performing individuals are allowed to create one
offspring. This offspring replaces the third individual. This modified triple is propagated to the
next generation. So two-third of the individuals are propagated unmodified to the next generation.
The best two individuals are never lost when using this selection scheme. It has been observed
that triple-competition selection tends to result in relatively fast convergence of the population.

The (µ + λ) selection of evolution strategies is considered to be a steady-state selection scheme
too. A parent population of size µ is used to generate λ offspring. Next, the best µ individuals
out of the µ parents and the λ offspring are used as parents for the next generation.

2.3 Local competition selection schemes
Local competition evolutionary algorithms use a local competition between the parents and their
direct offspring. The winners of this competition are transferred to the next population. An
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Figure 2: Schematic representation of Elitist recombination

example of a local competition selection scheme is the Elitist recombination [TG94]. It selects
parents by creating random pairs of individuals. Because all parents have exactly the same prob-
ability of being selected this corresponds to a uniform selection. The sampling error during this
selection is reduced because each individual participates exactly once in a competition during a
single generation. Figure 2 shows how the next population Pt+1 is produced from the current
population Pt. On the left we see the current population Pt, where each box represents a single
individual. The values in the boxes denote the fitness of the corresponding individuals. An inter-
mediate population Ps is generated by doing a random shuffle on Pt. Population Ps is partitioned
in a set of adjacent pairs and for each pair the recombination operator is applied to obtain two
offspring. Next, a competition is held between the two offspring and their two parents, and the two
winners are transferred to the next population Pt+1. In the example one parent and one offspring
are transferred to Pt+1. Elitism is used because parents can survive their own offspring. Elitist
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recombination has been shown to be more efficient than some other GA’s on a problem involving
a high-order building block [vK97a].

Deterministic crowding uses a local competition between parents and offspring [Mah92]. This
selection scheme is quite similar to elitist recombination. The only difference is the way in which
the local competition is set up. In order to get a competition two pairs are formed, each consisting
of one parent and one offspring. These pairs are formed such that the similarity between the
individuals in the pairs is maximized. For each pair a competition is held, and the winner is
propagated to the next generation. Due to the similarity based matching of parent-offspring pairs,
a too rapid duplication of well-performing individuals is prevented. Deterministic crowding is likely
to converge slower than elitist recombination, but it is less sensitive to premature convergence.

Other selection schemes that use a local competition are parallel simulated annealing [MG92,
MG95], and the Gene Invariant GA (GIGA) [Cul93].

3. Transmission models of selection schemes

We model the canonical genetic algorithm [Hol75], the generational genetic algorithm using
tournament selection [Gol89], (µ, λ) and (µ + λ) selection [BHmS91, Rec94, Sch95], triple-
competition [vK97b], and elitist recombination [TG94]. Furthermore, the Breeder genetic al-
gorithm [MSV94] and the CHC algorithm [Esh91] are discussed.

A selection scheme selects the parent pairs for generation Gi+1 from the individuals in generation
Gi. A detailed description of selection schemes can be found in section 2.

To describe the different models we use transmission functions. Altenberg gives the following
short description [Alt94]:

“It is the relationship between the transmission function and the fitness function that
determines GA performance. The transmission function “screens off” [Sal71, Bra90]
the effect of the choice of representation and operators, in that either affect the dy-
namics of the GA only through their effect on the transmission function.”

The general form of transmission-selection recursion was used at least as early as 1970 by Slatkin
[Sla70].

A transmission function describes the probability distribution of offspring from every possible
pair of parents. For a binary genetic operator, the transmission function is of the form T (i ← j, k)
where j and k are the labels of the two parents and i is the label of the offspring. To be more
specific, let S be the search space; then T : S3 → [0, 1]. We have

∑
i T (i ← j, k) = 1 for all

j, k ∈ S, because T (i ← j, k) represents a distribution for fixed j and k. For a symmetric operator
we have additionally T (i ← j, k) = T (i ← k, j).

Here, the transmission function model is used to model the selection schemes. The following
notation is used. The distribution of the current population is denoted by �x, and the newly
generated population is denoted by �x′. In order based selection schemes, like tournament selection,
it is the fitness-based rank in the population that determines the probability of being selected as
a parent. The function frac<(j, �x) gives the fraction of individuals in distribution �x that have a
fitness strictly smaller than the fitness fj of the individual labelled j, let frac=(j, �x) be the function
that yields the fraction of individuals that have a fitness equal to fj , and let frac>(j, �x) be the
function that yields the fraction of individuals that have a fitness strictly larger than fj .

3.1 Canonical Genetic algorithm
The canonical genetic algorithm is a generational GA using fitness proportional selection. The
dynamical system that describes a transition from a current population to a new population is
given by [Alt94]:

x′
i =

∑

j,k

To(i ← j, k)
fjfk

f̄2
xjxk,

where xi is the frequency of the individual labelled i, and x′
i is its frequency during the next

generation, fi is the fitness of the individual labelled i, f̄ is the average fitness, and To is the
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transmission function describing the actual interaction between genetic operators and representa-
tion. The probability that a parent of type j is selected is given by xjfj/f̄ , so the probability that
parents have labels j and k under a fitness proportional selection scheme is

fjfk

f̄2
xjxk.

3.2 Deterministic n-tournament selection
The only difference between the canonical genetic algorithm and the generational genetic algorithm
with tournament selection is the method used to select the parent individuals. This results in

x′
i =

∑

j,k

To(i ← j, k)P (n)
tour(j, �x)P (n)

tour(k, �x),

where P
(n)
tour(j, �x) describes the probability that an individual with label j is selected from a

population with distribution �x during a n-tournament. A n-tournament selection is performed
by choosing n individuals uniform at random from the population and selecting the one with the
highest fitness. In case of a tie, the individual which was chosen first, wins. Given the distribution
of the current population, the probability P

(n)
tour(j, �x) is computed by following the choices that

lead to the selected individual:

P
(n)
tour(j, �x) =

n∑

t=1

frac<(j, �x)t−1xj (frac<(j, �x) + frac=(j, �x))n−t
.

The tth term of this sum is the probability that the first (t− 1) selected individuals have a fitness
smaller than the individual with label j, that the tth individual has label j, and that all subsequent
(n − t) individuals have a fitness smaller than or equal to the fitness of the individual with label
j. The sum over all possible values gives the probability that an individual with label j wins the
n-tournament.

3.3 Evolution strategy (µ, λ) and BGA selection
When using (µ, λ)-selection, a parent population containing µ parents is used to generate λ off-
spring. To generate an offspring, two parents are selected uniform at random from the parent
population and recombination is applied. The best µ offspring are used as the parents for the next
generation, so λ ≥ µ.

First we introduce the truncation operator Tr : Rn×R→ Rn. This operator takes a distribution
�p and a parameter α ∈ [0, 1] as inputs and returns a new distribution containing the α fraction
of best individuals out of the original distribution. The operator selects a pivot individual i such
that frac<(i, �p) < (1 − α) and (frac<(i, �p) + frac=(i, �p)) ≤ 1 − α. If more than one value of i
satisfies these constraints, then an arbitrary choice among these i is taken. The operator Tr(�p, α)
is defined by:

Tr(�p, α)j =






1
αpj fj > fi

1
α

α − frac>(i, �p)
frac=(i, �p) fj = fi

0 fj < fi

.

Given this truncation operator the formula for the (µ, λ)-selection is:

�x′ = Tr(�y,
µ

λ
),

where the elements of �y are given by

yi =
∑

j,k

To(i ← j, k)xjxk.

The combination of the last two formulae gives the desired model.
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Figure 3: Schematic representation of triple-competition

The Breeder Genetic Algorithm uses T% truncation selection, which means that the T% best
individuals of the current population are allowed to reproduce. Out of these T% best individuals,
the parents are selected uniform at random, and a new population is generated. Typically T is
between 10 and 50. This selection scheme corresponds to the (µ, λ)-selection where µ = λT/100.
When applying BGA the best individual found so far will always be retained.

3.4 Evolution strategy (µ + λ) and CHC selection
The (µ + λ)-selection scheme is quite similar to the (µ, λ)-selection scheme. The only difference
is that in the (µ + λ)-selection scheme, the µ new parents are obtained by selecting the best µ
individuals from both the µ parents and the λ offspring:

�x′ = Tr
(

Bl
(

�x, �y,
µ

µ + λ

)

,
µ

µ + λ

)

,

where Bl(�x1, �x2, β) computes a weighted average of vectors �x and �y:

Bl(�x1, �x2, β) = β�x1 + (1 − β)�x2.

The vector �y is given by
yi =

∑

j,k

To(i ← j, k)xjxk.

The CHC algorithm uses unbiased selection of parents. Given a parent population of size N , a
set of N offspring is produced. The next parent generation is obtained by selecting the N best
among the N parents and their N offspring. This selection scheme corresponds to (µ+λ)-selection,
where µ = λ = N .

An additional feature of the CHC selection scheme is the so-called incest-prevention. CHC does
incest prevention using the Hamming distance between the two parents. If the Hamming distance
is below a certain threshold, then the pair of parents is not allowed to reproduce. Typically
CHC starts with a threshold L/4, where L is the length of the bit-string. We did not use this
incest prevention scheme in our model because it requires knowledge about the Hamming-distances
between the different types. However, for problems where this type of information is available the
modelling of the incest prevention is relatively straightforward.

3.5 Triple-competition selection
The triple-competition selection is an elitist genetic algorithm that uses a tournament-like selection
of the parents, and parents can be propagated to the next generation. Figure 3 shows how
generation Pt+1 is generated from generation Pt: a single box corresponds to an individual, a
number in a box is its fitness, and a stack of such boxes corresponds to a population. The first
step involves a random shuffle of the individuals in population Pt resulting in a randomly ordered
population Ps. The population Ps is partitioned in sets of three individuals, and each triple
is ordered such that the best individuals are on top in each triple, resulting in an intermediate
population P ′

s. The two top-ranked individuals of each triple are allowed to recombine to generate
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Figure 4: Schematic representation of Elitist recombination

a single offspring. Next, the two parents and their offspring are added to the population Pt+1, so
only the lowest ranked individual of each triple is replaced. During a single step of this algorithm
N/3 offspring are generated, where N is the size of the population. This algorithm is modelled as
follows

x′
i =

1
3

∑

j,k

To(i ← j, k)P (j, k, �x) +
2
3

∑

k

P (i, k, �x),

where the first sum corresponds to the distribution of the newly generated offspring, and the
second sum corresponds to the distribution of the surviving parents. The distribution �x′ of the
new population consists for one third of newly generated offspring and for two third of surviving
parents. The function P (j, k, �x) gives the probability that the individuals j and k are selected
as parents, where the individual labelled j is selected first. To compute this probability one
differentiates between the cases (fj = fk) and (fj 
= fk), and for each of these two cases one
distinguishes between the case that fitness of the third individual is smaller and the case that its
fitness is equal to the fitness of the worst individual out of j and k.

P (j, k, �x) =
{

3 (frac<(j, �x) + frac=(j, �x)/3)xjxk if (fj = fk)
3 (frac<(Sm(j, k), �x) + frac=(Sm(j, k), �x)/2)xjxk otherwise.

Here, the function Sm(j, k) selects the label corresponding to the individual having the smallest
fitness of j and k. The factor 3 in both formulas corresponds to the number of possible orders of
the three involved individuals given that j is selected before k.

Triple-competition selection as defined above uses elitism because the best individual is always
transferred to the next generation. However, it is still possible that newly produced offspring has
a lower fitness than the individual that is replaced by this new offspring.

3.6 Elitist recombination
Elitist recombination [TG94] selects parents by a random pairing of parent individuals. Figure 4
shows how the next population Pt+1 is produced from the current population Pt. Just like in triple-
competition selection, a random shuffle is applied. The resulting population Ps is partitioned in a
set of adjacent pairs, and for each pair the recombination operator is used to obtain two offspring.
Next, a competition is held among the two offspring and their two parents, and the best two
out of these four are propagated to the next population Pt+1. In Figure 4 one parent, having
fitness 9, and one offspring, having fitness 7, are propagated to population Pt+1. When using
elitist recombination it is possible, but not guaranteed that parents will survive, so parents are
only preserved in the case that their fitness is larger than the fitness of the offspring. The dynamical
system representing elitist recombination is:

x′
i =

∑

j,k

Ter(i ← j, k)xjxk.

The selection of individuals that enter the next population is not visible in this model. This
selection mechanism consists of a local competition between parents and their direct offspring,
and therefore is located inside the transmission function Ter. Outside the transmission function,
it is not visible which parents were used.
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Here, a generalization of elitist recombination that creates a fixed number of offspring n ≥ 2
is modelled. The original definition of elitist recombination uses n = 2. Creation of a number of
offspring and accepting only the best few has been suggested by Altenberg [Alt94] under the name
soft-brood selection. For the elitist recombination and its generalization a modified transmission
function Ter(i ← j, k) is used, because the selection of survivors is done by means of a local
competition between parents and offspring. This in contrast to the usual selection mechanisms that
operate on the complete population. Such a local selection scheme can be modelled by modifying
the original transmission function To(i ← j, k) that describes the interaction between the operators
and the representation used. Each column of the new transmission function Ter(i ← j, k) can be
computed independently. Assuming that we have C different elements with labels in the range 0
to C − 1, then the transmission function To(i ← j, k) can be represented by a matrix having C

rows and C2 columns. Let
−→
tjk
o denote the column with index (jC + k) of the matrix To(i ← j, k).

This column represents the probability distribution of the offspring when applying recombination
to parent of respectively type j and type k.

In the rest of this report the binomial distribution is denoted by Bin(n, k, p) where n is the
total number of experiments, k is the number of successful outcomes, and p is the probability of
a successful outcome.

The auxiliary function Paccept(P<, P=, n, a) gives the probability that an offspring individual
is accepted. Accepting an offspring means that the offspring is among the best two during the
tournament between the two parents and their offspring. The parameters of Paccept(P<, P=, n, a)
are as follows: P< is the proportion of offspring having smaller fitness than the individual under
consideration, P= is the proportion of offspring having equal fitness, n is the number of additional
offspring generated, and a is the number of offspring that can be accepted apart from the current
offspring. This function is computed by first considering the number of superior offspring followed
by considering the number of offspring having equal fitness:

Paccept(P<, P=, n, a) =
∑a

l=0 Bin(n, l, 1 − P< − P=)
∑n−l

m=0 Bin
(
n − l,m, P=

P<+P=

)
min{1, a−l+1

m+1 }.

Here, l denotes the number of offspring having a fitness larger than the fitness of the individual
under consideration, and m denotes the number of offspring that have exactly the same fitness.
The first binomial distribution gives the probability that l out of the n other offspring have a
larger fitness than the current individual. The proportion of these individuals is (1− P< − P=).
The second binomial distribution computes the probability that m out of n − l offspring have a
fitness equal to the individual under consideration. At this point it is know that all n− l offspring
have a fitness lower than or equal to the fitness of the current individual; Therefore the proportion
of offspring that have equal fitness is P=/(P< + P=). Given the values of l and m, the probability
that the current individual is accepted is equal to min{1, (a− l + 1)/(m + 1)}.

A column of the matrix describing To(i ← j, k) represents the probability density function over
the space of all possible offspring i for a given pair of parents j and k. The offspring can be divided
among three sets. Assume that fk ≤ fj (otherwise exchange the roles of j and k). We take

SI = {i ∈ S : fi ≥ fj},
SII = {i ∈ S : fk ≤ fi < fj},

SIII = {i ∈ S : fi < fk}.

Given a column
−→
tjk
o of To(i ← j, k) the corresponding column from Ter(i ← j, k) is computed as

follows. Let the unnormalized distribution of the offspring (i.e. we do not require that the sum of
the probabilities equals one) be denoted by �o, let the distribution of the surviving parents denoted
by �s, and let the probability that an offspring of type i is obtained by recombination be denoted by
tjk
i . Now, the probability that the offspring is also accepted when applying elitist recombination

with n offspring for each pair of parents depends on whether offspring i belongs to set SI , SII , or
SIII . If i ∈ SI , then the offspring is accepted when at most one of the other offspring has a larger
fitness,

oi = tjk
i nPaccept(frac<(i,

−→
tjk
o ), frac=(i,

−→
tjk
o ), n − 1, 1),
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where frac<(i,
−→
tjk
o ) is the fraction of individuals in the distribution

−→
tjk
o that have a lower fitness

than an individual of type i. If i ∈ SII , then the probability that the offspring is accepted depends
on the number of offspring in SI :

oi = tjk
i n

∑1
l=0 Bin(n − 1, l, 1− f<(j,

−→
tjk
o ))

Paccept

(
frac<(i,

−→
tjk
o )

frac<(j,
−→
tjk
o )

,
frac=(i,

−→
tjk
o )

frac<(j,
−→
tjk
o )

, n − l − 1, 0
)

.

Here l denotes the number of other offspring located in SI , the binomial distribution gives the
probability of having l offspring in this region, and Paccept computes the probability that the
offspring of type i is accepted given that n− l − 1 other offspring also have a fitness below fj . At
most one offspring from SII is selected. If i ∈ SIII , then oi = 0 because the individual i is always
rejected.

Now, the distribution of the offspring is known. Next, the distribution of the surviving parents,
denoted by �s, has to be computed. Parent k is only retained when all offspring belong to SIII , so

sk = Bin(n, n, frac<(k,
−→
tjk
o )).

Parent j is retained when all offspring is in SII ∪SIII or when one offspring is in SI and the other
offspring are in SIII . This probability is

sj = Bin(n, n, frac<(j,
−→
tjk
o ))+

Bin(n, n − 1, frac<(j,
−→
tjk
o )) Bin

(

n − 1, n− 1,
frac<(k,

−→
tjk
o )

frac<(j,
−→
tjk
o )

)

.

Here, the first term corresponds to the case that all offspring have a fitness lower than fj, and the
second term corresponds to the case that exactly one offspring has a fitness larger than or equal to
fj while all other offspring are located in region SIII . In that case the superior offspring replaces
parent k instead of parent j.

The vector �o+�s describes the unnormalized probability distribution of the two individuals that
will be propagated to the next generation. Using these two vectors the column with index jC + k
of Ter(i ← j, k) is given by the formula

−→
tjk
er =

1
2
(�o + �s).

By applying this procedure to every column of To(i ← j, k) the matrix representing Ter(i ← j, k)
is obtained.

4. Infinite population models

Given that a single application of the crossover operator produces one offspring, the transmission
function model computes the expected distribution of this offspring given the distribution of the
parents.

Based on the transmission function, the evolution of a genetic algorithm with an infinite popu-
lation size can be modelled by iterated application of the transmission function. Let us denote a
single application of the transmission function by means of the operator F : P → P . The initial
population G0 is usually obtained by drawing a uniform random sample. Using a transmission
function, the distribution after one step of the evolution is G1 = F(G0), the distribution after two
generations is G2 = F(G1) = F(F(G0)), or more generally after t generations is Gt = F t(G0),
where the superscript t denotes iterated application of the function.

Due to the law of large numbers the transmission function models the behaviour of a genetic
algorithm with an infinite population size. To see this, let us assume that a population of size N

is used, and let X
(j)
i be equal to one if sample i is of type j, and zero otherwise. The strong law

of large numbers states that if X1, X2, ... are independent identically distributed random variables
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Figure 5: The probability distribution describing the number of individuals in the population
containing the optimal building block for d = 3 and n = 40 (left) and the fraction of individuals
containing the optimal building block for d = 3, and n = 20, 40, 80, 160, 320 (right)

and EXi = µ, where µ is the probability of an individual of type i in the offspring distribution,
then

1
n

n∑

i=1

Xi → µ almost surely, when n → ∞.

Hence, the proportion of individuals of type j converges to the proportion predicted by the dis-
tribution when n → ∞, and the actual distribution of an infinitely large offspring population
corresponds to the distribution predicted by the transmission function model.

5. Equivalence classes

Next, the transmission function models are used to trace the evolution of genetic algorithms.
Tracing the evolution of requires a lot of computation. A single application of the transmission
function involves |S|3 computational steps, where |S| denotes the cardinality of the set S. When
tracing the evolution for a specific problem more efficient methods can sometimes be obtained by
mapping the original search space S to a more compact space V where each element of V represents
an equivalence class containing elements from S. Next, the transmission function is lifted to the
space of equivalence classes V, and the transmission function model is applied to V instead of S.
Equivalence classes should satisfy the following two conditions:

(1) all elements of an equivalence class have the same fitness, and

(2) the distribution over the elements of an equivalence class is known and constant.

The first condition is necessary because then all individuals in a single equivalence class behave
identical under selection. The second condition is necessary because then the distribution in the
original space S can be reconstructed solely based on knowledge of the distribution in V.

Srinivas et al. [SP93] used such an equivalence-class approach to model GA’s with infinite
populations. Their approach assumes that the optimization problem for the GA is a single function
of unitation. If the size of a string from the search space S is l bits, then S can be modelled by
means of (l + 1) equivalence classes. The operation of an infinite population GA can be modelled
exact by means of what they call a Binomially Distributed Population. The time complexity of
algorithm derived from this model is O(l3), a significant improvement over previous models with
exponential time complexities [SP93].

If the search space is divided over the equivalence classes based on the number of one-bits, then
all details with respect to the distribution of one-bits are ignored; In fact, within an equivalence
class all loci are assumed to have the same probability of containing a one-bit. This is not
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a limitation when tracing a genetic algorithm with an infinite population, and even for genetic
algorithms with a small population this holds when the results are averaged over a large number of
runs, because all bits within a part behave identical. However, within a single run the probability
of finding a one-bit at a specific locus can easily deviate from the expected probability due to
genetic drift. Because this type of deviation is ignored when using the equivalence-classes, the
model actually considers a genetic algorithm without genetic drift.

In the rest of this report a problem that consist of a concatenation of functions of unitation is
studied. Assuming that the problem consist of a concatenation of n functions of unitation, where
subfunction i has a length of li bits, the total length is l =

∑n
i=1 li.

The space V has cardinality |V| =
∏n

j=1(li + 1). A mapping from S into V is

F : S → V =
n∑

i=1

ui

i−1∏

j=1

(lj + 1),

where ui is the number of one-bits in part i and li is the maximal number of one-bits in part i.
Given an element v ∈ V the number of one-bits in part k is

α(v, k) =
v

∏k−1
i=1 (li + 1)

mod(lk + 1).

When using a random initial population the distribution over V is

P (v) =
1
|S|

n∏

j=1

(
lj

α(v, j)

)

.

If we apply uniform crossover to two parents that contain respectively j and k one-bits, then
the probability that the offspring contains i one-bits is given by the recursive formula

p(j, k, i, l) = (1 − j
l )(1 − k

l ) p(j, k, i, l − 1)+
(1 − j

l )
k
l

1
2 (p(j, k − 1, i, l − 1) + p(j, k − 1, i− 1, l − 1))+

j
l (1 − k

l )
1
2 (p(j − 1, k, i, l − 1) + p(j − 1, k, i− 1, l − 1))+

j
l

k
l p(j − 1, k − 1, i − 1, l − 1),

where p(j, k, i, n) represents the probability that an offspring string with i one-bits is obtained from
two parent string having respectively j and k one-bits, and l is the number of bits in this subfunc-
tion. The boundary conditions are p(1, 1, 1, 1) = p(0, 0, 0, 1) = 1, p(1, 0, 1, 1) = p(0, 1, 1, 1) =
p(1, 0, 0, 1) = p(0, 1, 0, 1) = 1

2 , p(0, 0, 1, 1) = p(1, 1, 0, 1) = 0, if j < 0, k < 0, or i < 0, then
p(j, k, i, n) = 0, and due to the symmetry of the uniform crossover p(j, k, i, n) = p(k, j, i, n).

The transmission function T (i ← j, k) can be represented by a (n × n2)-matrix of transmission
probabilities where n denotes the cardinality of |V|. Because the different partitions evolve inde-
pendently under uniform crossover the probability of an outcome is given by the product of the
probabilities for each of the parts, which results in

To[i, j · k] =
n∏

m=1

p(α(i,m), α(j,m), α(k,m), lm).

6. Cross-competition problem

Given a problem that contains building blocks, the compatible building blocks can be involved
in a cross-competition in order to get more copies in the population. Cross-competition between
building blocks can strongly influence the reliability of a GA.

In order to study this kind of effects we use a mixture of an oneMax function of length l and
a deceptive trap function of length d [Gol89], so a single individual is represented by a string of
length (l+d) bits. The bits are partitioned in two sets O and D. The first partition is the oneMax
part. The fitness contribution of this partition is fO(b) = uO(b), where uO(b) is a function of
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Figure 6: Tracing one evolutionary step for the canonical genetic algorithm

unitation. This function counts the number of one-bits in the partition O of string b. The fitness
of the deceptive part is given by the formula,

fD(b) =
{

αd if uD(b) = 0
uD(b) otherwise

where α > 1. The global optimum of the deceptive part contains only 0-bits, which results in a
fitness contribution of αd.

The fitness of a string is determined by the sum of the fitness values of the two partitions
(f = fO + fD). The global optimal solution contains one-bits in the partition O and 0-bits in
partition D and has a fitness of l + αd. The second best solution is given by the string containing
one-bits only that has fitness l + d.

The actual linkage of the bits of the different partitions is unknown, so the loci occupied by the
two partitions can be spread over the bit-string. Problem instances of the defined problem class
contain one building block of order d, which is represented by the optimal schema for partition D.

This problem has been designed to compare the mixing capabilities of different genetic algo-
rithms when confronted with a problem containing one large building block, and a set of bits that
can be optimized independently of each other. The cross-competition between the building block
and the bits in partition O is investigated.
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Figure 7: Tracing one evolutionary step for the generational genetic algorithm with tournament
selection

7. Population flow diagrams

Here, the models described in section 3 are used to study the behaviour of a genetic algorithm
when optimizing the cross-competition problem described in section 6. We use a problem instance
with l = 6, d = 6, and α = 1.5.

To study the behaviour of the transmission function models population flow diagrams are in-
troduced. Let us assume that the population represented by distribution �gt is transmitted to
distribution �gt+1 after a single step of evolution. A population flow diagram contains a low-
dimensional mapping of the space with all possible populations as its elements. Within a flow
diagram a population is represented by a point. Many populations map to the same point. How-
ever, given a point one can construct the most typical population corresponding to this point. This
population is determined by computing the distribution with the highest probability that adheres
to the restrictions imposed by po and pd. In case of the equivalence class model, a distribution is
represented by a vector with (no ·nd) elements, where no and nd correspond to the total number of
loci in the given partition. The probability-density assigned to the class labelled (ko, kd) is given
by

f(ko, kd) = Bin(no, ko, po)Bin(nd, kd, pd),

where ko and kd correspond to the number of one-bits for the corresponding part.
At each point a flow can be computed. To do so, one constructs the typical population by

computing the corresponding distribution with the largest probability. This corresponds to a
uniform distribution under the restrictions imposed by po and pd. Let us denote this population
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Figure 8: Tracing one evolutionary step for (µ, λ)-selection (BGA)

by �g0. Next, the corresponding point �g1 is computed by means of the finite population model. A
flow is now represented by a square at �g0 and a line connecting �g0 and �g1. Note, that this flow
corresponds to the transition made by a typical population where the proportion of individuals in
a class is determined by the (ko, kd).

Figure 6 shows a flow diagram for the application of the canonical GA to the cross-competition
problem. Along the horizontal axis the probability of having a one-bit in the oneMax-part is
given, and along the vertical axis the probability of a one-bit in the deceptive part is given.
The population containing optimal individuals only corresponds to the point (1, 0), which is the
right-bottom corner of the diagram.

The most typical distribution �g0 is computed for 121 different points. The corresponding �g1 is
obtained by applying a transmission function model.

A uniform initial distribution corresponds to the coordinate (0.5, 0.5). The diagram contains a
trace of evolution as computed by the infinite population model, denoted by the dotted line. The
nth bullet on the line is the point corresponding to the population after n steps of evolution.

The results for the canonical GA are shown in Figure 6. Given a uniform initial distribution
the trace converges relatively slowly to the suboptimal solution. The convergence slows down as
the distribution gets closer to the fixed-point. This could be expected because the relative fitness
differences in the population get smaller. Convergence to the optimal solution can be obtained
with a pd below 0.4. When using a small population the initial population can deviate from the
uniform distribution, and there is a chance that convergence to the optimum is obtained. The
canonical GA closely follows the directions predicted by the flows in the plot.
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Figure 9: Tracing one evolutionary step for (µ + λ)-selection (CHC)

Figure 7 shows the results for the generational genetic algorithm with tournament selection.
This GA converges faster than the canonical GA. This GA also closely follows the flow as given in
the diagram. To get convergence to the optimal solution, pd has to drop below 0.3. The probability
that an initial population is in the region where convergence to the optimum is obtained, is even
smaller than in case of the generational genetic algorithm with fitness proportional selection.

Figure 8 shows the results for (µ, λ)-selection. This selection scheme has a high selective pres-
sure, resulting in large steps being taken. The (µ, λ)-selection initially converges to the suboptimal
solution, but after three steps of evolution the trace changes direction. Next, pd drops fast to the
optimal value of zero while po decreases slightly. Here the cross-competition is clearly present.
Recall that the flows predict the direction for a relatively uniform distribution. The strong se-
lective pressure of this selection results in correlations between loci, and therefore in populations
that are far from uniform. To get optimal building blocks in the deceptive part, the average fit-
ness of the oneMax part is decreased. Once the deceptive part has converged to the line where
pd = 0, the oneMax part starts to converge again. After seven steps of evolution almost the com-
plete population consists of optimal strings. However, recall that the (µ, λ)-selection uses seven
times as much offspring during a single generation as the generational GA’s. After three steps
of evolution the population is moved to (9.2, 7.9) under (µ, λ)-selection. A uniform distribution
with these parameters would converge to the suboptimal solution. However, the distribution of
this population does not have to be uniform when applying selection. The population flow dia-
grams are two-dimensional mappings, while the actual model corresponds to a computation over
a high-dimensional space. When using a high selective pressure non-uniform distributions can be
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Figure 10: Tracing one evolutionary step for triple-competition

obtained after a few generations.
Figure 9 show the results for (µ+λ)-selection. This selection scheme initially convergence to the

suboptimum too, but after some steps the trace bends and moves towards the optimal solution.
The (µ + λ)-selection converges more slowly than the (µ, λ)-selection.

The results for triple-competition, shown in Figure 10, are roughly the same as for (µ + λ)-
selection.

Figure 11 shows the results for Elitist recombination. Again an initial convergence to the
suboptimal solution is observed, but later the trace moves slowly towards the optimal point.
Elitist recombination converges slowly, because it is difficult for an optimal individual to generate
copies of itself.

Figure 12 shows the probability of obtaining an optimal solution, when generating a single
offspring according to the distribution given by a point in the flow diagram. The probability that
an individual drawn uniformly at random from the initial population is the optimal solution is
approximately 2.4 · 10−4.

Figure 13 shows a comparison of the different selection schemes by observing the evolution of the
proportion of optimal solutions as a function of number of generations (top), and as a function of
the equivalent number of function evaluations (bottom). The equivalent number of function eval-
uations is computed by scaling the number of generations proportional to the number of function
evaluations used per generation. In most selection schemes the number of function evaluations is
proportional to the population size. The only two exceptions are the (µ, λ)-selection, that uses
7N evaluations per generation, and triple-competition, that uses N/3 evaluation per generation,



8. Conclusions 18

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1
Probability one-bit in oneMax-part

P
ro

ba
bi

lit
y

on
e-

bi
t

in
de

ce
pt

iv
e-

pa
rt

◦
•

•
•

•
•

•
•
• •

••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Figure 11: Tracing one evolutionary step for elitist recombination

where N is the population size. The canonical genetic algorithm and the generational genetic
algorithm with tournament selection are hardly visible in this plot, because these two methods do
not converge to the optimal solution. In the upper plot the (µ, λ)-selection converges very fast.
It is followed in sequence by (µ + λ)-selection, triple-competition, and elitist recombination. The
bottom plot shows the number of equivalent function evaluations. Here, the triple-competition
converges fastest, followed in sequence by (µ + λ)-selection, (µ, λ)-selection, and elitist recombi-
nation. The shapes of the curves of (µ + λ)-selection, (µ, λ)-selection, and triple-competition are
basically the same. Initially, after a small proportion of optimal individuals is detected, a rapid
convergence to a population consisting of only optimal individuals is observed. So, once an indi-
vidual is detected that significantly outperforms all other individuals in the population, copies of
this individual rapidly fill the complete population. The shape of the curve for elitist recombi-
nation is quite different. It moves only slowly upward. This is a result of the direct competition
between parents and their offspring. As a result of this competition, it is difficult for an individual
to create many duplicates, because a well-performing offspring is likely to replace the parent, and
therefore does not result in an increase of the number of copies of this parent.

8. Conclusions

Transmission function models have been given for the canonical genetic algorithm, the gener-
ational genetic algorithm with tournament selection, the (µ, λ)-selection, the (µ + λ)-selection,
triple-competition, and elitist recombination. We showed how these models can be used to trace
the evolution of a genetic algorithm with an infinite population size. We discussed under what
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Figure 12: Equi-probability lines showing the chance that an optimal individual is obtained when
drawing a random individual according to the distribution corresponding to the given points.

conditions such models can be traced more efficiently by means of a problem definition in terms
of equivalence classes, and we presented a formulation in terms of equivalence classes for prob-
lems consisting of a concatenation of functions of unitation. Implementations of the models for
a problem consisting of two functions of unitation were given. The results of tracing the models
were visualized by means of population flow diagrams. Using these diagrams, it is possible to
see which selection schemes are able to locate the optimum reliably. These population flow dia-
grams were also used to visualize the run of the infinite population genetic algorithms with the
different selection schemes. For three models, i.e. the (µ, λ)-selection, the (µ + λ)-selection, and
triple-competition, a cross-competition between the two parts of the problem was observed.
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