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ABSTRACT

Most image classi�cation methods are supervised and use a parametric model of the classes that have to be

detected. The models of the di�erent classes are trained by means of a set of training regions that usually

have to be marked and classi�ed by a human interpreter. Unsupervised classi�cation methods are data-driven

methods that do not use such a set of training samples. Instead, these methods look for (repeated) structures

in the data.

In this paper we describe a non-parametric unsupervised classi�cation method. The method uses biased

sampling to obtain a learning sample with little noise. Next, density estimation based clustering is used to �nd

the structure in the learning data. The method generates a non-parametric model for each of the classes and

uses these models to classify the pixels in the image.
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1. Introduction

Classi�cation in remote sensing involves the mapping of the pixels of an image to a (relatively small)

set of classes, such that pixels in the same class are having properties in common.

Until recently, most satellite imagery was at a relative low-resolution, where the width of a single

pixel was between 10 meters and 1 kilometer. Nowadays new satellites come into orbit that produce

imagery with high spatial resolution. Such high-resolution images o�er new opportunities for applica-

tions. In theory, a better classi�cation is possible, as high-resolution images o�er more information.

In practice, lots of new problems appear. Due to the high spatial resolution, many objects that are too

small to locate in low-resolution images are visible in high-resolution images. As a result, the number

of di�erent classes that can be detected increases, and the discrimination between classes becomes
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more di�cult. In case of low-resolution imagery one often assumes that a pixel value consists of the

spectral vector of the underlying ground cover class plus some Gaussian distributed noise component.

It is questionable whether this model is still applicable for high-resolution imagery. Therefore, we use

non-parametric models. These models are more exible with respect to the shapes of the distributions

modeled.

Apart from the spectral information, there is also spatial information available in the image. This

spatial information is heavily used by the human interpreter but is not used during a purely spectral

classi�cation. So, these methods disregard the similarities between neighboring pixels during classi-

�cation. Incorporation of the properties of the neighboring pixels means, that we try to exploit the

spatial structure present in the image.

The outline of this paper is as follows. In section 2 we discus (non-)parametric unsupervised

classi�cation methods. The outline of our approach is given in section 3. The selection of the learning-

sample is discussed in section 4. Section 5 gives a brief introduction on density estimation, followed by

a discussion of the curse of dimensionality in section 6. A more detailed investigation of the application

of density estimation in the remote sensing domain in section 7. The density-based clustering method

is given in section 8. Details about the usage of these methods for remote sensing are given in section 9.

Conclusions and directions for further research follow in section 10.

2. Unsupervised non-parametric classification

We have developed an unsupervised non-parametric classi�cation method. This classi�cation method

uses a clustering method to �nd the structure in the data. A good introduction on clustering is given

in Kaufman and Rousseeuw [8], and in Ripley [11]. First we explain the di�erences between supervised

and unsupervised classi�cation method, next the di�erences between parametric and non-parametric

methods are discussed. At the end of this section, some examples of some other unsupervised clustering

methods are given.

In case of a supervised classi�cation method, a human interpreter has to do a pre-classi�cation of

part of the image, during which a set of regions is marked and each marked region is classi�ed by the

interpreter. Next, the supervised method can use these classi�ed regions to obtain models that are

used to classify the other parts of the image. During unsupervised classi�cation we do not use a set

of pre-classi�ed training-samples. The method has to �nd a classi�cation of the image just based on

the image itself, although some general assumptions about images can be used.

A clustering methods can either be parametric or non-parametric. Parametric models usually

assume a spherical or Gaussian model for the shape of a class. Let us assume that the noise contribution

is mainly determined by small size objects that have a spectral vector that di�ers signi�cantly from

the spectral vector of its surroundings. During classi�cation, we have to detect the class of the most

important ground cover in the pixel. In case of low-resolution imagery, a single pixel can contain many

di�erent small objects, and their combined surface will usually be relatively small. If the sub-pixel

objects belong to di�erent classes, then a further cancellation of their spectral contributions is likely.

The combined noise contribution can be modeled by a Gaussian distributed noise component. In case

of high-resolution imagery, a pixel will only contain a small number of these disturbing objects. It is

then questionable whether the Gaussian noise model is applicable, and even if it is applicable, then

the variance is likely to be much larger as the disturbing objects are likely to cover a signi�cant part

of the pixel. A further complication stems from the fact that we have to discriminate between many

more clases in case of high-resolution imagery.

A parametric method will �t the free parameters to the actual data as good as possible. If the

model matches the actual data, then these parametric methods can provide fast and e�cient ways of

obtaining the actual clustering of the data. If the data does not match the model, then the quality

of the clustering can decrease severely. A method for this type of problem is the isodata clustering

procedure [5, 6]. This method does a minimization of the sum of the squared distances between the

points and the corresponding cluster center. This corresponds to the assumption that the clusters are

approximately spherical.
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Figure 1: Schematic representation of the classi�cation method

More exible modeling of data is possible when applying non-parametric clustering methods. We de-

velop a non-parametric clustering method that is based on density-estimation [12, 13]. Non-parametric

methods are more general in the sense that less prior information with respect to the actual shape of

clusters are made. The resulting problem is more complex since the search for a good clustering of the

data now involves both model selection and model �tting. Unfortunately, these two modeling phases

cannot be performed separately. A model selection has to be performed before the model �tting can

take place. But model �tting is required to assess the quality of the selected model. In fact, the model

selection and model �tting often are so tightly integrated that we often cannot di�erentiate between

these two anymore.

3. Outline of the method

We use a classi�cation method that is based on density-estimation. The output of the method is a

non-parametric clustering of the set of input points. A parametric clustering will assume a certain

pre-speci�ed model of the clusters, where an instantiation of this model can be described by a (small)

number of parameters. Figure 1 gives a schematic representation of the unsupervised classi�cation

method introduced in this paper. On the left we see the unclassi�ed image, on the right we have a

classi�ed image. The four steps of the method are:

Sample selection: A biased training-sample is selected from the image. The bias is used to reduce

the amount of noise and the fraction of mixed pixels in the sample. During this selection, spatial

information is used. The training sample consist of the spectral vectors of the selected pixels.

Clustering: An unsupervised non-parametric clustering method is used to �nd the clusters. This

clustering method is based on density estimation in the sample-space

Analysis: The clusters are analysed. For each cluster, the principal component is determined, and

the distribution of the pixels when mapped at this principal component is investigated

Pixel classi�cation: Using cluster information and the original image, a classi�ed image is gener-

ated.

The sample selection is discussed in section 4 the clustering method is given in section 8. The last

two steps are discussed briey in section 9.

4. Biased sampling of pixels

We develop a biased sampling method, where the bias is directed towards the selection of pixels

containing primarily one ground cover, and with little noise. We use it in our �nal algorithm inside a

strati�ed random sampling framework. In this section, we �rst describe a strati�ed sampling procedure

for images. Next, the local spatial homogeneity assumption is presented. A similarity measure that

compares pixels to their neighborhood is introduced, and it is shown theoretically that this similarity
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measure allows a biased sampling procedure that reduces the noise in the sample for a one-class

problem. By means of an example, it is shown that this sampling procedure also works for multiple-

class sampling problems. Finally, we apply the sampling procedure to a set of real images.

In case of large images, we have to select a limited sample of pixels from an image for learning.

We would like this learning-sample to be representative for the complete image. Therefore we select

a strati�ed sample by means of the following procedure. If we want a sample of size N , we partition

the complete image in a set of N rectangular regions of approximately equal size. Next we select a

pixel at random from each of these square regions. Using such a procedure guarantees that the points

in the learning-sample are distributed uniformly over the complete image. Especially in the case that

N is small, such a procedure is important.

The human eye is very sensitive to spatial structure in an image. We almost never observe individual

pixels. Instead we observe regions of pixels that are relatively similar. Within these regions the pixels

have approximately the same spectral vectors, or the region shows a texture that is quite apparant.

We call this property the local spatial homogeneity of images. This homogeneity is due to the fact

that pixels close to one another are likely to have the same primary ground cover. Next, we show how

to use the local spatial homogeneity to reduce noise in the sample.

If a region contains a single ground-cover, it is possible to get a sample with pixels that contain

little noise by means of biased sampling. Here, the probability that a pixel is selected is determined by

a similarity measure. We introduce a similarity measure that computes the similarity sim(p) between

a pixel p and the pixels in its neighborhood N(p). We show that the set of pixels with sim(p) � �, i.e.

the pixels that are relatively similar to their neighbors, comprise a biased sample of pixels containing

relatively little noise. Let the function d(~s1; ~s2) denote the spectral distance between two pixels. A

similarity measure can be obtained by calculating d(�; �) for all neighbors. Furthermore, the rank with

respect to their distances is given by r(i). The similarity measure we use is:

sim(p) =
X

i2N(p)

Wr(i)d(~sp; ~si)

where p is the current pixel, N(p) is its neighborhood, and ~W is a weight vector such that j ~W j = 1.

The best choice of ~W will depend on the structures one is interested in. If thin structures should be

detectable, such as rivers or roads that have a width comparable to the width of a pixels, then W1 and

W2 should be the only non-zero values. If one is not interested in such thin structures, it is better to

have Wk > 0 for higher values of k, as this puts a stronger emphasis on the similarity of a pixel with

respect to its neighbors, and therefore a stronger emphasis on the homogeneity of the pixel. In the

theoretical analysis that follows, we assume that we have a set of t pixels that are drawn according to

the same distribution. From this set of pixels, the biased sampling method should select those pixels

that contain relatively little noise, without knowing the center of the distribution. This analysis is

mainly a proof of the principle for the biased sampling. In case of such a nice uni-modal distribution,

it is also possible to estimate the location of the center by statistical methods, and select pixels that

are close to this center. But such a simple approach fails in case of a multi-modal distribution. If

all peaks of the multi-modal have approximately the same density, then it would be possible to select

pixels in regions of high density, to get a set of relatively noise-less pixels. When densities of peaks

di�er strongly, a peak can only be recognized by the fact that its local spectral density is higher than

the spectral density in a spectral neighborhood.

4.1 Theoretical analysis of a one-class problem

A theoretical analysis is possible for the case that Wk = 1, for a certain k. This corresponds to the

case where sim(p) equals the distance to the kth nearest neighbor. Assume that the spectral vector of

a pixel is composed of the the spectral vector of the primary ground cover within the area of this pixel

and Gaussian distributed noise with variance �. Given a spatial region containing a set of pixels that

have the same primary ground cover, we can observe the distribution of these pixels in the spectral
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Figure 2: Density functions of samples obtained by using a series of values for k before (left) and after

(right) normalization
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Figure 3: Density functions of samples obtained by using a series of values for � before (left) and after

(right) normalization

space. Let the distribution of pixels in the spectral space be given by the density function f(~s). We

select pixels p such that sim(p) � �. Now the distribution g(x) of te obtained sample is given by the

formula

g(~s) = f(~s)

tX
j=k

B (t; j; p(~s; �))

where: p(~s; �) =

Z
Sphere(~s;�)

f(~s)d~s:

Here B(n; k; p) is the binomial distribution, where 0 � k � n, t is the number of pixels in neighborhood

N(p), and Sphere(~s; �) denotes a d-dimensional ball of radius � around the point ~s. So, after performing

the sampling step we get the original density multiplied by a factor that depends on the averaged local

density around spectral point ~s. The value of k can be varied between one and t. The case k = 1

corresponds to computing the distance to the nearest neighbor, while the case k = t corresponds to

computing the distance with respect to the most dissimilar neighbor. Large values of k correspond to

a stricter criterion for homogeneity and therefore result in the selection of less pixels.

We computed the curves for one-dimensional data and a Gaussian noise model. We assume that

the noise is given by the Gaussian distribution with � = 0, � = 10. The neighborhood N(p) consist

of the 8 adjacent pixels. Figure 2 shows the unnormalized and normalized plots of the formula in one

dimension for varying values of k and � = 0:5. Along the horizontal axis the distance between the

actual value and the noise-less value d(x; a) is shown. This value can be interpreted as the amount of
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f(s)

Figure 4: A square region containing two types of ground cover and the corresponding density function

obtained when mapping all pixels to the spectral space.

noise in a pixel. The vertical axis corresponds to the probability that a corresponding pixel is selected.

As k increases the probability of selection decreases rapidly, so the size of the sample gets smaller.

When normalizing the results, it can be observed that the distributions tend to be more strongly

peaked as k increases. So the selection is biased towards relatively noiseless pixels.

The threshold � can vary between 0 and 1. By increasing � the selection criterion is weakened

and more pixels are included. In the limit of � ! 1 all pixels are selected, and the distribution will

converges to the Gaussian. Figure 3 shows the unnormalized and normalized plots for di�erent values

of � and k = 1.

4.2 Discussion of a multi-class problem

In section 4, a biased sampling method was introduced, and in the previouys subsection, it was shown

that this method is able to select a set of relatively noiseless pixels in case of a one-class region. Now,

we show intuitively that the sampling procedure also works in case of multiple classes, and hence in

case of a multi-modal density function of the pixels. Figure 4 shows a region containing two classes,

i.e. two types of ground cover. The Figure also shows the density function obtained when mapping all

pixels from the square patch to the spectral space. The arrows show the locations of three di�erent

pixels in the density-plot. The peak on the left of the graph corresponds to the main ground cover

within the square patch. The peak on the right corresponds to the other ground cover. The ridge

inbetween these two peaks corresponds to the mixed pixels, that are located on the boundery of the

two sub-regions. When computing the similarity measure sim(�) for these three pixels, it is likely

that the two non-mixed pixels have a relatively low value of sim(�), as these pixels are surrounded

by other pixels with the same primary ground cover. The mixed pixel probably has a high value of

sim(�). Therefore the two pixels containing a single ground cover are more likely to be selected than

the mixed pixel.

To summarize, the local spatial homogeneity is exploited by means of the assumption that pixels in

the spatial neighborhood N(p) of point p are likely to belong to the same class as point p. Pixels with

lots of noise and mixed pixels are both likely to have a large value of sim(p). So, if a biased sample

is selected according to the rule sim(p) � �, then this sample is likely to contain the pixels with little

noise and containing only a single ground-cover.

Next, we describe the results of applying the biased sampling method to a number of real images,

and compare it with a strati�ed random sample. All images are three-band images, with a sample size

of 4000 pixels. The strati�ed random sample is taken by dividing the image in a set of non-overlapping

rectangular areas, and taking a random pixel from each area for the real images. The distribution in

spectral space of such a random sample is compared to the distribution when using a biased sampling.

During the biased sampling a weightvector with W3 = 1 is used. The value of � was adapted such

that exactly 4000 pixels were selected, so in fact we select the 4000 most homogeneous pixels. The

results are shown in Figures 5, 6, 7, and 8. In each of these Figures, the left graph corresponds to
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Figure 8: Results for image 4 with strati�ed random sampling (left) and biased sampling with k = 3

(right)

the strati�ed random sample, and the right graph corresponds to the biased sample. In all cases, the

biased sample is reveals more structure than the random sample. This shows that the biased sampling

method is able to highlight the cluster structure in the image-data.

5. Density estimation

As a basis for our clustering method we need a density estimation method [12, 13]. Assume that a set

of points is drawn according to an unknown distribution. A density estimation method constructs a

density function based on this data-set, that explains the distribution of the data-points. This density

function is related to a distribution function, which should approximate the original, but unknown,

distribution function that generated the data.

This method has to be able to handle multi-dimensional data. Furthermore, it is important that it

operates fast, as the density estimation method is used as part of the clustering method. The oldest

method for density estimation is the histogram method. In a univariate case a range of data-values

is split up in a number of bins, and the number of data-points in each of this bin is counted and

used as an estimate of the local density. The width of the bins is called the window size. Histogram

methods do not perform well in high-dimensional spaces, as the number of bins rises exponential with

the dimension, so one either needs an excessively large number of data-points, or one should use a

large window size, which results in a very coarse estimation of the density function.

Most modern density estimation methods are based on kernel estimators. The basic kernel estimator

may be written compactly [12] as

f̂(x) =
1

nh

nX
i=1

K

�
x� xi

h

�
=

1

n

nX
i=1

Kh(x� xi);

where Kh(t) = K(t=h)=h. In this formula x is the point where the density is estimated, n is the

number of data points, h is the window size, xi are the actual data points, and Kh(t) is the kernel

of the density estimation function. This kernel determines how points at distance t from the point x

inuence the density at point x.

We use a density estimation method with an adaptive window size hx that is based on the distance

to the kth nearest neighbor, the k-NN estimator [13]. The k-NN method and the kernel discrimination

were �rst given by Fix & Hodges [2], according to Ripley [11]. This method is fast, it performs good in

high dimensional spaces, and it �ts well within the framework of the classi�cation method described in

section 8. Let the distance to the kthnearest neighbor be denoted by dk(x; fxig), where fxig denotes
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Figure 9: Example of a kd-tree on a two-dimensional dataset. On the left the data-points and the

hyperplanes that subsequently split the dataset are shown, and on the right the corresponding kd-tree

is shown.

a list with all data-points. Now the local density at a query point x can be estimated by the assuming

a uniform density over a sphere centered at x with radius dk(x; fxig), which leads to the formula

f̂(x) =
k

dk(x; fxig)dNVd(1)
;

where N is the sample size and Vd(1) is the volume of a d-dimensional sphere with radius one. This

formula �ts within the kernel-based framework, mentioned earlier in this section, with an adaptive

window width. The window width depends upon the local density. If the local density increases, then

the window width decreases. Adaptive window widths become important as the dimension of the data

increases. The k-NN estimator is seen to outperform the �xed kernel estimator when the dimension

is larger than or equal to �ve [12].

The k-NN density estimator requires a method to �nd the kthnearest neighbor. To compute the

kth nearest neighbor, we use an advanced data structure, viz., the kd-trees introduced by Friedman

et al. [3, 4] and Bentley [1]. We use these trees because a brute-force computation of the nearest

neighbors in a data set of size N will require N � 1 distance computations, while by means of kd-

trees the same computation will only take a number of steps proportional to logN . The kd-tree is a

multi-dimensional extension of the binary tree, where each level of the tree uses a di�erent dimension

to obtain the discriminator. Figure 9 shows an example of a kd-tree for a two-dimensional dataset.

On the left we see the set of data-points, given by the circles and the partitioning hyperplanes, given

as lines. Hyperplane 1 partitions the data-set in two sub-sets of equal size along the x-axis. These

subsets are partitioned by the hyperplanes 2a and 2b along the y-axis. The third set of hyperplanes

will partition the resulting 4 sub-sets along the x-axis again. On the right side of Figure 9 we see

the corresponding tree. In each node, the location of the hyperplane is stored. Given this kd-tree we

can check in a number of steps proportional to logN whether a point is in the data-set, where N is

the number of data-points. To perform this check one starts at the root of the tree, and compute on

which side of hyperplane 1 the point is located. If the x-value of the point is smaller or equal to the

value of hyper-plane 1, then we know the point is located in the left branch, otherwise it is located

in the right branch. Assuming the point is in the right branch we go one level down in the tree and

compare y-value of the point against hyperplane 2b. As the depth of the tree is O(logN), a leaf is

reached in a number of steps proportional to logN . If the point is in the tree, then it is equal to the

point located in this leaf.
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Figure 10: Fraction of points in sphere(~�; r) (left) and average uniform density over this sphere (right)

for di�erent numbers of dimensions d.

Construction of the kd-tree takes O(N logN) time, where N is the size of the data set. A query for

the kthnearest neighbor takes O(logN) time. For our application we used the optimized kd-tree [4].

In these trees the discriminating dimension is computed for each node separately, so di�erent nodes at

the same level can use a di�erent discriminator, this contrary to the standard kd-tree. The optimized

kd-tree performs better in practice, but the theoretical time-complexities for building the tree and

searching an element are the same for both types of kd-trees.

6. Curse of dimensionality for density estimation

In this section we investigate the requirements for a cluster to be detectable by means of k-NN density

estimation method. We �rst look at the estimated density of the center of a cluster, and next we take

a look at a two cluster problem, to investigate conditions under which a two classes are separable.

First, a one-class problem is studied. Let the pixels of the class be distribution according to

the Gaussian distribution with variance �, denoted by G(x; �; �). This corresponds to a spherical

symmetric distribution, so the probability of �nding a pixel with spectral vector ~s is only dependent

upon the distance j~s� ~�j, where ~� is the noise-less spectral vector of the pure ground cover this class

corresponds to. We compute the distance to the kthnearest neighbor in a d-dimensional space. To

do so, we need the volume of a d-dimensional hyper-sphere of radius r, which is given by the formula

Vd(r) = Vd(1)r
d. Here Vd(1) is the volume of the unit-sphere in d dimensions, which is given by the

formula

Vd(1) =
�
d
2

�[d
2
+ 1]

where:

�[n] =

Z
1

0

xn�1e�xdx:

Without loss of generality, assume that � = 1, and ~� = ~0. So, the plots correspond to the scaled

distance, where distances are scaled with respect to the actual �. The fraction of pixels that fall

within a sphere of radius r around the pure spectral vector ~� is given by the formula

cd(r) =

R
r

0
G(x; 0; 1)

@Vd(x)

@x
dxR

1

0
G(x; 0; 1)

@Vd(x)

@x
dx

The left graph of Figure 10 shows the curves cd(r) for dimensions ranging from one to seven. This
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Figure 11: Density as a function of the fraction of points in the k-NN sphere for di�erent numbers of

dimensions d (left), and the function density as function of the distance G(r; 0; 1) (right).

graph shows the curse of dimensionality. In a one-dimensional space, 50% of the points are located

within a sphere with radius 0.68. In seven dimension only 0.01% of the points is such a sphere, and

a sphere of a radius of 2.6 is required to cover more than 50% of the points. So, if the dimension

increases, then the densities get lower and a larger fraction of the points is located in the tail of

the distribution. We can also compute the average uniform density over sphere(~�; r) by the formula

f̂d(r) =
cd(r)

Vd(r)
: The right graph of Figure 10 shows this density as a function of the radius of this

sphere. These densities have been normalized, such that the integral over the densities is one. So, if

a class covers only a fraction � of the image, then these normalized densities should be multiplied by

�, to get the actual density.

The k-NN density estimator uses the uniform density over a k-NN sphere as a density estimate.

Let a class contains n sample points, and k be given. Now the k-NN sphere around the center of the

class contains a fraction k=n of the sample points that belong to this class. Using the above results,

the estimated density over this k-NN sphere is computed. The results are shown in the left graph

of Figure 11. Note that the y-axis is logarithmic. The density decreases rapidly as the dimension

increases, so as the dimension increases, it becomes more di�cult to detect a class. Furthermore,

the curves show a downward slope. This e�ect gets stronger as the dimension gets higher. Classes

with relatively few samples, require a large k-NN sphere. Therefore such classes are more di�cult to

detect in high-dimensional spaces. For example, let use assume that we have two classes. The sample

contains 10k points that belong to the �rst class and 5k points that belong to the second class, so the

fraction of samples in the k-NN sphere is respectively 0.1 and 0.2. Now, graph in Figure 11 is used to

�nd the normalized densities of the peaks of the clusters that belong to these two classes. In case of

a one-dimensional data-set the normalized peak-density is 0.398 for the �rst class and 0.395 for the

second class. So a one-dimensional space, the two peak-densities of the corresponding clusters di�er

approximately by a factor two. In case of the seven-dimensional space the peak-densities are 0.0056

and 0.00039. These densities di�er a lot, and therefore the class with fewer sample points is more

di�cult to detect, and much more likely to disappear in the background noise.

Next, we take a look at the separability of two classes. The right graph of Figure 11 shows the

normalized density as a function of the distance to the center of a cluster, denoted by G(r; 0; 1). Let

us take two clusters, where the �rst cluster contains n sample-points, and the second cluster contains

�n sample-points, for 0 < � � 1. The left graph of Figure 11 can be used to �nd an approximation

of the normalized density at the center of the second cluster. Multiplying the obtained value by �

gives the relative density with respect to the �rst cluster. Now given this density, the right graph

of Figure 11 is used to determine the distance with respect to the center of the �rst cluster, where
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the tail-density of the �rst cluster corresponds to the peak-density of the second cluster. To give a

concrete example. Let us image a 7-dimensional space where the �rst cluster contains 10k points, and

the second cluster contains 5k points. Using these values � becomes 0.5. Now using the left graph we

�nd that the normalized density at the center of the second cluster is approximately 4 �10�4. We have

to multiply this value by � to get the relative density when comparing to the �rst cluster, so the value

becomes 2 �10�4. Using the right graph it can be seen that the density of the �rst cluster is 2 �10�4 at

a scaled distance of 3.9 from the center of this cluster. Doing the same exercise for the 1-dimensional

case shows that the comparable density is then attained at a scaled distance of approximately 1.2.

Density estimation becomes more di�cult as the number of dimensions increases. Given a set of

points drawn according to a Gaussian distribution, an increasing fraction of the points is located in

the tails of the distribution as the dimension of the space increases. As a result densities decrease

rapidly. When using a k-NN density estimator, a uniform distribution over a k-NN sphere is assumed.

As a result the peak-density of small clusters will be underestimated, because the the k points in the

k-NN sphere form a signi�cant fraction of all points in case of a small cluster. The underestimation of

peak-density for small classes gets more severe as the dimension increases. As a result, small clusters

are more likely to disappear in the tail one of the larger clusters.

7. Density based sampling for Remote Sensing

In section 6 we investigated the inuence of the dimensionality of the data-set on the detectability

of clusters. Here we investigate the consequences in case of a remote sensing application. We show

that the number of sample-points belonging to the di�erent classes are likely to di�er strongly. As a

result the classes that cover only a small part of the image are di�cult to detect, as the densities of

the peaks of the corresponding clusters will be relatively low. Next, a variant of the biased sampling

procedure is introduced. This sampling method takes relatively many samples of classes covering only

a small part of the image.

7.1 Density estimation in Remote Sensing

By means of a simple example, we show that the number of pixels assigned to di�erent types of ground

cover, are likely to di�er strongly. Let us imagine an image consisting of 1000� 1000 pixels, that is

mainly covered with green grass. The image also contains a grey road with a width of 3 pixels and

10 red houses, each having dimension 10 � 10 pixels. If we compute the number of pixels that are

assigned to each type of ground cover, the following �gures are obtained. The road covers 0.3%, the

houses cover 0.1%, and the grass covers the remaining 99.6% of the image. In many applications

of remote sensing, it is important to detect such structures that cover only a very small part of the

complete image.

Given the image described above, the human eye can easily discover the structure. In a split

second, we observe groups of pixels that are close together and have roughly the same color, even in

the presence of noise. So, the usage of the local spatial structure in the image seems to be the key

to the human visual recognition. If we map pixels to the spectral space, then the spatial information

gets lost. In section 6, it was noted that detection of small clusters gets increasingly more di�cult

as the dimension of the space increases. Our method does a spectral clustering on a sample. During

the sampling step, spatial information is available. Next, we show a sampling method that uses this

spatial information to get a sample containing relatively many points that belong to the clusters that

cover only a small part of the image.

7.2 Using local density estimates during sampling

We introduce a sampling method that incorporates spatial information. To do so, the method makes

a comparison of local and global density estimates. Pixels are selected based on the ratio between

the local and the global density estimates. Our goal is to get a sample that contains a more even

distribution of points over all classes. This means that pixels belonging to the classes that cover a

small part of the image, should get a relatively high probability of being selected.
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Figure 12: Search for high density region by iterated taking of k-neighborhoods around median points.

To get the local density estimates, we use small patches from the complete image. Within such a

patch the diversity is much smaller than in the complete image. This is a result of the limited number

of pixels in the patch, but the e�ect is magni�ed by the local spatial homogeneity. As a result, it is

relatively easy to discover the di�erent classes in such a small patch. Furthermore, the ground-covers

present in such a small patch, tend to cover a relatively large part of the patch. In the example image

mentioned above, if a patch contains part of a house, then the proportion of the patch �lled by the

house is likely to be much larger than the overall 0.1%. So, the local proportion of houses is likely

to be much larger than the global proportion of image, which was 0.1%. To get the global density

estimates the method �rst draws a random sample Sg from the image. This sample will contain a

high density in regions corresponding to spectral features of the most important ground covers in the

image.

We select the learning sample by means of the following procedure. To select a single point we

extract a l � l patch of pixels from the image. From this patch, a pixel is selected at random. Given

the spectral vector of this pixel, the nearest peak in the density landscape has to be located. We

need to �nd this peak in order to get reliable comparisons of the local and global density estimates.

This peak is likely to correspond to a relatively noise-less pixels containing only a single ground cover.

So, locating this peak results in a reduction of noise. Furthermore, we need to locate this peak in

order to get a reliable estimates of the local and global density estimates. The location of this peak

is detemined by the following procedure. The kl neighborhood of the point in the spectral space is

taken, and the median point of the kl pixels in this neighborhood is computed. A median point is

determined by computing the median value for each dimension, so this median point does not have

to correspond with a real point in the data-set. Next, the kl neighborhood of this median point is

computed, resulting in a new median point. This process is continued until a kl-neighborhood is

obtained, containing only contains points that where visited already. The median point now is likely

to correspond to a local maximum in the density landscape. Figure 12 gives a graphical example of

this procedure. The curve represents the density in spectral space. The circle denotes the location of

the random starting point int the spectral space, and the numbered lines below the �gure correspond

to the subsequent kl neigborhoods that are computed. The vertical marker on each line denotes the

location of the median point of the sample. These median points are likely to be located on the side

of the neighborhood that corresponds to the highest density. The �fth neighborhood does not contain

any new points, and thus the iterated search is terminated. Now given this median point, we compute

the the ratio between the local density, and the global density around this median point, both in

spectral space. The local density is computed by means of the kth
l
nearest neighbor of the median

point over all pixels in the patch, the global density is computed by means of the kth
g
nearest neighbor

in sample Sg .

Given a l� l patch this whole procedure of extracting a random pixel, computing the nearest peak,

and estimating the ratio between local and global density is repeated � times. The median point with

the largest ratio is selected, and used as a sample point. The selected point typically has a ratio in the

range 102 to 104. The whole procedure is embedded within a strati�cation framework. We stratify

the image by covering the image with N non-overlapping rectangular regions, where N is the size of
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Figure 13: Density based hierarchical clustering

the learning sample. Each rectangular region provides one l� l patch, and therefore provides a single

sample point.

A pixel belonging to a ground cover that covers a small part of the image has a small global density.

Therefore, taking the ratio between the local and the global density is large. For a ground cover that

covers large part of the image the global density is high, and therefore the ratio gets smaller. Noise

reduction is obtained by searching for the peaks in the density landscape. It is possible that we select

a noisy point that is located within a transitively closed neighborhood. The median point now is close

to this point. Probably the the local density is roughly equal to its global density and therefore the

ratio is relatively small. As the typical ratios are larger than 102, such a noisy pixel is still unlikely

to have the largest ratio amongst the � pixels that are selected from the patch.

8. Hierarchical clustering

In this section a detailed description is given of the hierarchical clustering method we developed. This

method takes a set of points as an input and produces a set of clusters. Simultaneously, it computes a

measure for the separability of all the clusters. We start with a rather intuitive example, to sketch the

basic approach of the clustering method. Next, we are going to describe the method more in detail.

8.1 Water-level model

The operation of the hierarchical clustering method can be though of as method that counts the

number of islands when the water-level of the lake is decreasing. If the water-level drops, then a new

peak that surfaces increases the number of islands by one. It can also happen that the region inbetween

two islands gets dry when the water-level drops. In that case the number of islands decreases by one.

A graphical representation is given in Figure 13. The left side of this �gure shows a density curve

over a one-dimensional space. This density curve has three local maxima. The left peak corresponds

to the highest density. The horizontal line in Figure 13 represents the decreasing threshold, used by

the method. On the left of the �gure the threshold is still high. Each connected region above the

threshold results in two separate cluster, so in this case we have two clusters, denoted by the solid

line-segments below the graph. On the right side of Figure 13, the threshold is lowered. The density

in the region inbetween the two clusters is above the threshold. As a result the two clusters have been

merged into a single cluster. If we lower the threshold even further, then the points corresponding to

the third peak will be detected. In practice we do not known the density function of a data-set, but

by means of density estimation methods we can approximate the density function.

8.2 Hierarchical clustering method

After this brief outline of the approach given in the previous subsection, we now give a detailed

description of the algorithm. The algorithm keeps track of three lists. The �rst list contains all

data-points, the second list contains all clusters, and the third list contains delayed cluster merge

operations. Initially, the last two lists are empty. For each of the points the local density is estimated,

and the list of points is ordered on decreasing density. So, a position closer to the start of this list
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corresponds to a higher density estimate. If the data is distributed according to the density given in

Figure 13, then the sample-points close to center of the left cluster will be at the start of this list.

If we process a sample-point s, then we set the current threshold equal to its local density estimate.

Before actually processing the point, we �rst process all delayed merge operations that have to be

performed at the current threshold. Once an operation is performed, it is removed from the merge

operation list. Next, we generate a new cluster containing sample-point s only, and we add this new

cluster to the list of clusters. Now, we have to determine when this new cluster can be merged with

any of the other clusters. The computation for a single cluster C is shown in Figure 14. The new

cluster consist of a single point denoted by the small circle. The cluster C is denoted by the grey

region. The density at which this merge operation can be performed is computed as follows. The

nearest neighbor of s in C is located, let us denote this point by c. Now the joint density of s and c is

taken as an estimate for the density at which the cluster containing s is merged with C. This density

is computed by constructing the cylindrical envelope of the k-NN neighborhoods of point s and c.

The cylindrical envelope is a cylinder with rounded sides. The shape resembles the shape of a pill. A

detailed description of the computation of the volume is given later in this section. Given the volume

of this cylindrical envelope and the fact that it contains at least 2k points, we can compute the density

over this volume. Using this approach, the separability of two clusters is determined by the density

of the densest connection between these two clusters. When using this approach, the algorithm will

be sensitive to the minimal allowed density during the clustering process. If this density is too low,

all clusters are likely to be merged in a single cluster, if this density is too high, then low density

clusters, corresponding to classes of ground cover that are relatively seldom in the image, will not be

detected. If the dimension of the spectral space increases, its sensitivity with respect to the minimal

density will increase. Therefore, we introduce a second measure for the separability of two clusters,

and use this measure to put an additional restriction on the merge of two clusters. The new measure

is the separation measure, given by the formula

v

minfpk; plg
;
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where pi is the maximum of the density in cluster i, and v is the density inbetween the two clusters.

This measure determines the density ratio between the peak density of the low-density cluster, and

the density inbetween the clusters. An example is given in Figure 15. This �gure shows a density

function over a one dimensional search space. The dashed line denotes the current densityThreshold.

The solid horizontal line denotes density 0. The value of the separation measure is between zero and

one. A value close to one means that the low-density cluster has a density that is close to the density

of the region inbetween the clusters. As the densities we are working with are estimated densities,

we can merge the two clusters in this case. If the value is close to zero, then the low-density peak

has a signi�cant higher density than the region inbetween the two clusters, and it is likely that the

low-density cluster corresponds to another class. Thus, no merge is performed.

8.3 Pseudo code of the hierarchical clustering method

In the full description of the algorithm the following data-types are used.

point p = [x; radius];

cluster c = [fpjg; topDensity];

mergeOperation m = [xk; xl; density];

The point p consist of a spectral vector denoted by x and the radius of the sphere, centered at x, that

contains exactly k � 1 other points. A cluster c consists of a list of points denoted by fpjg and the

highest density within this cluster topDensity. A mergeOperation mi consists of the two points that

can be merged xk and xl, and the density. The density determines when the merge operations has

to be performed. A merge means that the clusters containing xk and xl are combined into a single

cluster.

The complete algorithm is as follows:

hierarchicalClustering(fxig, minimalDensity, separation)

points : list of point;

clusters : list of cluster;

mergeOperations : list of mergeOperation;

## compute the nearest neighbors of all points

for j = 1 to n do

xk = k-NearestNeighbor(xj , fxig);

radius = d(xj ; xk);

if (sphereDensity(radius; k) � minimalDensity) then

add [xj ; radius] to list points;

�

od

## sort all point on decreasing density (increasing radius)

## so the �rst point of the list has the highest density (after sorting)

sortradius (points);

clusters = fg;

mergeOperations = fg;

## process all elements pj of list points in sequence

for j = 1 to n do

densityThreshold = sphereDensity(pj :radius, k);
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## process all operations above the threshold

processOperations(mergeOperations, densityThreshold, separation);

## create a new cluster containing point pj only

cj = newCluster(pj :x, densityThreshold);

add [pj :x; densityThreshold ] to list clusters;

## compute all possible merge operations

## and store them in the list of mergeOperations

for k = 1 to jclustersj do

pl = �ndNearestPoint(ck; pj ;minimalDensity);

density = jointDensity(pl; pj ; 2k);

minDensity = min fthreshold, density g;

if minDensity > minimalDensity then

add [xl; xk;minDensity] to list mergeOperations;

�

od

od

## process all operations above the threshold

processOperations(mergeOperations, densityThreshold, separation);

end

The function processOperations(mergeOperations, densityThreshold, separation) processes all opera-

tions in list mergeOperations, that have a density larger than densityThreshold. Here the separation

determines a lower bound on the separability of the clusters, as shown in Figure 15. The list mer-

geOperations is used to store merge operations that can not be applied yet, as their density is below

the densityThreshold. This list is implemented as an priority-queue such that the element with the

highest density can be extracted in a number of steps proportional to mboxlog N) [9].

The function �ndNearestPoint(ck; pj ;minimalDensity) searches for the point in cluster ck that is

closest to the point pj . The additional parameter minimalDensity is used to increase the e�ciency of

the search, as one only has to look for points that are close enough to the point pj . Close enough here

means that the joint density is higher than minimalDensity. Using the upper bound on the distance,

the search can be limited to a subset of all points by means of a variant of the kd-tree algorithm.

To determine when to merge two clusters, we have to estimate the density in the region between

the two clusters. We estimate this density by computing the joint density of a point and its nearest

neighbor within another cluster. The joint density of two points is computed by constructing a

cylindrical envelope, described earlier in this section, that encloses the kthnearest neighborhoods of

both points. Figure 16 shows the construction of the cylindrical envelope for a point y and its nearest

neighbor in a cluster denoted by point x. The volume of a cylinder is Vd�1(1)lR
d�1; where l is the

length, R is the radius, and d is the dimension of the space. Vm(1) denotes the volume of the unit

sphere in a m-dimensional space. The jointDensity(pk; pl;m) is computed by the following program.

jointDensity(pk; pl;m)

l = d(pk:x; pl:x) + pk:radius + pl:radius ;

R = maxfl=aspectRatio; pl:radiusg;

if l < 2R then

V = Vd(R);

else

V = Vd(R) + (l � 2R)Vd�1(1)R
d�1;

�

jointDensity = m=V ;
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where the aspectRatio is used to put a lower bound on the ratio l=R. This bound is needed to take

care the the joint density scales proportional to ld. We use aspectRatio = 4, which corresponds to the

ratio of a cylinder containing two toughing spheres of equal radius.

We also state that the theoretical estimated time complexity can be quanti�ed as � d � (NClogN)

steps for some constant d, where N is the number of data-points and C is the maximal number of

clusters that exist simultaneously.

When the hierarchicalClustering methods is applied to a data-set, it produces an output which is

shown in Figure 17. The left graph shows the number of points that have been classi�ed as a function

of the density. The right graph shows the actual number of clusters obtained as a function of the

density. If we choose a new density threshold that is larger than the current minimalDensity, then

the corresponding classi�cation can be generated almost instantly, based on an internal data-structure

generated by the hierarchicalClustering method. This in contrast to most other clustering methods,



9. RS application 19

that require that one determines the number of clusters beforehand, and where a change in the number

of clusters requires a new run of the method.

9. RS application

The hierarchical clustering method produces a set of classes. A pixel-classi�cation method is needed to

assign all pixels to a class. The clustering method can produce classes that correspond to non-convex

regions in the spectral space. Therefore, the pixel-classi�cation method should be non-parametric.

We use a nearest-neighbor classi�er. A pixel is classi�ed by �nding the (spectral) nearest pixel in the

learning-sample, and assigning the class of this pixel. We use a kd-tree to �nd the nearest neighbor

of a pixel in a number of steps proportional to logN , where N is the size of the learning sample.

As this operation has to be repeated for each pixel, this pixel classi�cation method turns out to be

slow on large data-sets, where only a small fraction of the pixels is in the learning sample. As an

alternative we implemented a method that does a principal component analysis, by means of singular

value decomposition [7], on each of the clusters. Next each cluster is reduced to a line-segment. The

direction of the line-segment is determined by the direction of its primary principal component, the

center of the line-segment is determined by the center of the cluster, and the length of the line-segment

is set equal to two times the standard-deviation along the primary principal component [7]. Now a

pixel is classi�ed by mapping it on the line-segment of each of the clusters and selecting the cluster

that corresponds to the nearest line-segment. The position of the mapping of the point on the line-

segment, is used as luminance-value in the output of the image. The time needed for the classi�cation

of a pixel now is proportional to the number of clusters.

We have applied the methods presented in this paper to remote sensing data. We have tested the

method on a high-resolution three-band aerial photograph of 500� 538 pixels and on 7-band Landsat

scene with 960 � 1130 pixels. In case of the Landsat images the sixth band, which corresponds to

thermal emission, was removed from the data-set, following [10]. In both cases we used a sample of

4000 points for learning. The tests were performed on a SUN workstation running at 180 MHz. The

sampling method used during this experiment involves the computation of local and global density

estimates. In case of the three-band image the generation of the biased sample took approximately

33 seconds, and a classi�cation containing 13 clusters was obtained in approximately 16 seconds. In

case of the six-band image the generation of the biased sample took approximately 95 second, and a

classi�cation containing 26 clusters was obtained in approximately 59 seconds. When using a sample

containing 11,000 points for the 7-band image the sampling step takes 460 seconds, and the clustering

step takes 421 seconds.

In case of the 7-band Landsat scene we also had a map, showing the results of a supervised clas-

si�cation of the land usage of part of this region. The resolution of the map and the Landsat scene

were di�erent, and geometric corrections were applied to the map. Therefore, we can only give a

qualitative comparison between the map and the classi�cation obtained by our tool. The types of

ground-usage shown in the map are agriculture, industry, city, residential, water, and natural vege-

tation. When comparing the map to our results we observe that our method �nds more classes. For

example, we observe many di�erent classes in the agriculture region. It is interesting to see that most

of the regions found by our method are rectangular regions, that are aligned with the neighboring

regions. The shape, orientation, and size of these regions corresponds to the typical plots of land in

agriculture regions. It seems that our method is able to discriminate between the di�erent types of

agricultural use of the land in this region. Also the water regions, that cover only approximately 0.6%

of the total surface, come out clearly when using our method. We also �nd two classi�cations for the

urban regions, the �rst class is mainly located near the center of urban regions, while the second class

is located more towards the boundaries of the urban areas. This can correspond to the discrimination

between city and residential area in the map. The boundaries between city and residential are di�erent

in our case, though we can easily imagine that these boundaries are not very well de�ned, and we see

it as a promising result that our method already detects that you have di�erent types of urban area's.

There is only little industry in this region, and it seems like the industrial regions are classi�ed as
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residential area's in our method. The area's with natural vegetation are split over two classes.

When doing the same analysis for a lower value of the separability parameter we get a more course

grain classi�cation. The agriculture regions is less diverse, and the city and residential area are merged

in a single class. Natural vegetation is covered by a single class too.

10. Conclusions

We developed a biased sampling method and a hierarchical clustering method. The sampling method

exploits spatial information in order to select those pixels that correspond to a single ground cover,

and contain relatively little noise. The sampling method has been tested by means of a theoretical

model and on real data. In both cases, we observe that the clusters in the data-set are more clearly

present when using a biased sample instead of a random sample.

The hierarchical clustering method is a fast, unsupervised clustering method that takes a set of

points as an input and produces a set of non-parametric classes describing the input-data. The method

is purely data-driven, and therefore the number of clusters obtained is dependent upon this data-set.

In fact, the algorithm produces a whole range of clusterings simultaneously, and afterwards a number

of clusterings can be extracted almost instantly. Apart from the sample-sizes and neighborhood sizes,

the method uses a separability parameter. This parameter determines under what conditions two

clusters can be merged into a single cluster, and therefore a�ects the �nal number of clusters. This

parameter has an intuitive basis in terms of the ratio of the peak-densities of clusters and the density

of the ridge connecting the clusters.

Anticipated further work is the development of non-parametric models out of the learning-data by

means of radial basis neural networks, the use of evolutionary computation methods to search for

models that allow a demixing of clusters consisting of multiple classes, and the usage of a Bayesian

approach to exploit the spatial structure during the pixel classifcation. Spatial structure is exploited

by computing computing prior probabilities over a spatial neighborhood, and use these to compute

posterior pixel classi�cation probabilities.
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