
Partial Servicing of On-Line Jobs

Rob van Stee* and Han La Poutre

Centre for Mathematics and Computer Science (CWI)
Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands

(e-mail: {rvs,hlp}<Gcwi.nl)

Abstract. We consider the problem of scheduling jobs online, where
jobs may be served partially in order to optimize the overall use of the
machines. Service requests arrive online to be executed immediately; the
scheduler must decide how long and if it will run a job (that is, it must
fix the Quality of Service level of the job) at the time of arrival of the
job: preemption is not allowed. We give lower bounds on the competitive
ratio and present algorithms for jobs with varying sizes and for jobs with
uniform size, and for jobs that can be run for an arbitrary time or only
for some fixed fraction of their full execution time.

1 Introduction

Partial execution or computation of jobs has been an important topic of research
in several papers [2, 4-9, 12, 13]. Problems that are considered are e. g. imprecise
computation, anytime algorithms and two-level jobs (see below).

In this paper, we study the problem of scheduling jobs online, where jobs
may be served only partially in order to increase the overall use of the machines.
This e. g. also allows downsizing of systems. The decision as to how much of a
job to schedule has to be made at the start of the job.

This corresponds to choosing the Quality of Service (QoS) in multimedia
systems. One could e. g. consider the transmission of pictures or other multimedia
data, where the quality of the transmission has to be set in advance (like quality
parameters in JPEG), cannot be changed halfway and transmissions should not
be interrupted.

Another example considers the scheduling of excess services. For instance,
a (mobile) network guarantees a basic service per request. Excess quality in
continuous data streams can be scheduled instantaneously if and when relevant,
and if sufficient resources are available (e. g. available buffer storage at a network
node).

Finally, when searching in multimedia databases, the quality of the search is
adjustable. The decision to possibly use a better resolution quality on parts of
the search instances can only be made on-line and should be serviced instantly
if excess capacity is available [3].

In the paper, we consider the following setting. Service requests have to be
accepted or rejected at the time of arrival; when (and if) they are accepted,

* Supported by SION/NWO, project number 612-30-002.

251

they must be executed right away. We use competitive analysis to measure the
quality of the scheduling algorithms, comparing the online performance to that
of an offline algorithm that knows the future arrivals of jobs.

We first consider jobs with different job sizes. In that case, the amount by
which the sizes can differ is shown to determine how well an algorithm can do:
if all job sizes are between 1 and M, the competitive ratio is D(ln M). We adapt
the algorithm Harmonic from [1] and show a competitive ratio of O(ln M).

Subsequently, and most important, we focus on scheduling uniform sized
jobs. We prove a randomized lower bound of 1.5, and we present a deterministic
scheduling algorithm with a competitive ratio slightly above 2J2 - 1 R-: 1.828.
Finally, we consider the case where jobs can only be run at two levels: a < 1
and 1. We derive a lower bound of 1 +a: - a2 •

This is an extended abstract in which we do not give complete proofs. For
more details, we refer to the full paper [10].

1.1 Related Work

We give a short overview of some related work.
In overloaded real-time systems, imprecise computation[B, 6, 7] is a well-known

method to ensure graceful degradation. On-line scheduling of imprecise compu
tation jobs is studied in [9, 2), but mainly on task sets that already satisfy the
{weak) feasible mandatory constraint: at no time may a job arrive which makes it
infeasible to complete all mandatory subtasks (for the offiine algorithm). This is
quite a strong constraint. Anytime algorithms are introduced in [5] and studied
further in [13]. This is a type of algorithm that may be interrupted at any point,
returning a result with a quality that depends on the execution time.

In [4], a model similar to the one in this paper is studied, but on a single
machine and using stochastic processes and analysis in stead of competitive
analysis. Jobs arrive in a Poisson process and can be executed in two ways, full
level or reduced level. If they cannot start immediately, they are put in a queue.
The execution of jobs can either be switched from one level to the other, or
it cannot (as is the case in our model). For both cases, a threshold method is
proposed: the approach consists of executing jobs on a particular level depending
on whether the length of the queue is more or less than a parameter M. The
performance of this algorithm, which depends on the choice of M, is studied in
terms of mean task waiting time, the mean task served computation time, and
the fraction of tasks that receive full level computation. The user can adapt M
to optimize his desired objective function. There are thus no time constraints
(or deadlines) in this model, and the analysis is stochastic. In [12], this model is
studied on more machines, again using probabilistic analysis.

2 Definitions and notations

By n, we denote the number of machines. The performance measure is the total
usage of all the machines (the total amount of time that machines are busy).

252

For each job, a scheduling algorithm earns the time that it serves that job. The
goal is to use the machines most efficiently, in other words, to serve as many
requests as possible for as long as possible. The earnings of an algorithm A on
a job sequence a are denoted by A(a). The adversary is denoted by ADV. The
competitive ratio of an algorithm A, denoted by r(A), is defined as

3 Different job sizes

ADV(a)
r(A) = s~p A(a) .

We will first show that if the jobs can have different sizes, the competitive ratio
of an online algorithm is not helped much by having the option of scheduling
jobs partially. The most important factor is the size of the accepted and rejected
jobs, and not how long they run. This even holds when the job sizes are bounded.

Lemma 1. If job sizes can vary without bound, no algorithm that schedules jobs
on n machines can attain a finite competitive ratio.

Proof. Suppose there is a r-competitive online algorithm A, and the smallest
occurring job size is 1. The following job sequence is given to the algorithm:
x 1 = 1, x2 = r, Xi = ri-l (i = 3, ... , n), Xn+I = 2r(l + ... + rn-l). All jobs arrive
at time t = 0. As soon as A refuses a job, the sequence stops and no more jobs
arrive.

Suppose A refuses job Xi, where is n. Then A earns at most l+r+ .. . +ri-2 ,

while the adversary earns 1 + r + ... + ri-I. We have

1 + r + ... + ri-l ri-l - 1
------. - > 1 + . = 1 + r - 1 = r.
1 + r + ... + r•- 2 1 + r + ... + r•- 2

This implies A must accept the first n jobs. However, it then earns at most
1 + ... + rn- 1 • The adversary serves only the last job and earns 2r times as
much. 0

Note that this lemma holds even when all jobs can only run completely.
If for all job sizes x we have 1 S x ::; M, we can use similar methods to those

used in studying the video on demand problem studied in [l] to give lower and
upper bounds for our problem.

In [1], a central server has to decide which movies to show on a limited
number of channels. Each movie has a certain value determined by the amount
of people that have requested that movie, and the goal is to use the channels
most profitably.

Several technical adjustments in both the proof of the lower bound and in
the construction of the algorithm Harmonic are required. We refer to the full
paper[lO] for details.

Theorem 1. Let r be the optimal competitive ratio of this scheduling prob
lem with different job sizes. Then r = f?(ln M). For M = f?(2n), we have
r = J?(n(efM -1)). Adapted Harmonic, which requires n = f?(MHM), has a
competitive ratio of O(ln M).

253

4 Uniform job sizes

We will now study the case of identical job sizes. For convenience, we take
the job sizes to be 1. In this section we allow that the scheduling algorithm is
completely free in choosing how long it serves any job. The simplest algorithm
is Greedy, which serves all jobs completely if possible. Clearly, Greedy maintains
a competitive ratio of 2, because it can miss at most 1 in earnings for every job
that it serves.

Lemma 2. For two machines and jobs of size 1, Greedy is optimal among algo
rithms that are free to choose the execution times of jobs between 0 and 1, and
it has a competitive ratio of 2.

Proof. We refer to the full paper [10].
We give a lower bound for the general case, which even holds for randomized

algorithms.

Theorem 2. For jobs of size 1 on n > 2 machines, no (randomized) algorithm
that is free to choose the execution times of jobs between 0 and 1 can have a
lower competitive ratio than 3/2.

Proof. We use Yao's Minimax Principle [11].
We examine the following class of random instances. At time 0, n jobs arrive.

At time 0 < t :::; 1, n more jobs arrive, where t is uniformly distributed over the
interval (0, l]. The expected optimal earnings are 3n /2: the first n jobs are served
for such a time that they finish as the next n jobs arrive, which is expected to
happen at time 1/2; those n jobs are served completely.

Consider a deterministic algorithm A and say A earns x on running the first
n jobs (partially). If A has v(t) machines available at time t, when the next n
jobs arrive, then it earns at most an additional v(t). Its expected earnings are

at most x + ft1=o v(t)dt = n, since ft1=o v(t)dt is exactly the earnings that A

missed by not serving the first n jobs completely: x = n - ft~o v(t)dt. Therefore
r(A) ;::: 3/2. 0

We now present an algorithm SL which makes use of the possibility of choos
ing the execution time. Although SL could run jobs for any time between 0 and
1, it runs all jobs either completely (long jobs) or for ~j2 of the time (short
jobs). We denote the number of running jobs of these types at time t by l(t) and
s(t). The arrival time of job j is denoted by ti.

The idea is to make sure that each short job is related to a unique long
job which starts earlier and finishes later. To determine which long jobs to use,
marks are used. Short jobs are never marked. Long jobs get marked to enable
the start of a short job, or when they have run for at least 1 - ~j2 time. The
latter is because a new short job would always run until past the end of this
long job. In the algorithm, at most So = r(3 - J2)n/7l ~ 0.22654. n jobs are
run short simultaneously at any time. We will ignore the rounding and take
so = (3 - J2)n/7 in the calculations. The algorithm is as follows.

254

Algorithm SL If a job arrives at time t, refuse it if all machines are busy.
If a machine is available, first mark all long jobs j for which t - t; ~ 1- !./2.

Then if s(t) <so and there exists an unmarked long job x, run the new job for
!-12 time and mark x. Otherwise, run it completely.

Theorem 3. SL maintains a competitive ratio of

R = 2J2 - 1 + 8J2 - 11 ~ 1.8284 + 0.31371'
n n

where n is the number of machines.

Proof. We will give the proof in the next section.

5 Analysis of Algorithm SL

Below, we analyze the performance of algorithm SL, which was given in Section
4, and prove Theorem 3.

time

A

"'
A

0 c A :E
~ A a

A

Fig. 1. A run of SL

Consider a run of SL as in Figure 1. We introduce the following concepts.

- A job is of type A if at some moment during the execution of the job, all ma
chines are used; otherwise it is of type B. (The jobs are marked accordingly
in Figure 1.)

- Lost earnings are earnings of the adversary that SL misses. (In Figure 1,
the lost earnings are marked grey.) Lost earnings are caused because jobs
are not run or because they are run too short.

- A job or a set of jobs compensates for an amount x of lost earnings, if SL
earns yon that job or set of jobs and (x + y)/y :=; R (or x/y :=; R - 1). I. e.,
it does not violate the anticipated competitive ratio R.

A job of type B can only cause lost earnings when it is run short, because no
job is refused during the time a job of type B is running. However, this causes

255

at most 1 - !v'2 of lost earnings, so there is always enough compensation for
these lost earnings from this job itself.

When jobs of type A are running, the adversary can earn more by running
any short jobs among them longer. But it is also possible that jobs arrive while
these jobs are running, so that they have to be refused, causing even more lost
earnings. We will show that SL compensates for these lost earnings as well. We
begin by deriving some general properties of SL.

Note first of all that if n jobs arrive simultaneously when all of SL's machines
are idle, it serves s0 of them short and earns !sov'2+(n-s0) = (6+5.J2)n/14 ~
0.93365n. We denote this amount by x0 .

Properties of SL

l. Whenever a short job starts, a (long) job is marked that started earlier and
that will finish later. This implies l(t) ?: s(t) for all t.

2. When all machines are busy at some time t, SL earns at least x0 from the
jobs running at time t. (Since s(t) ::'5 s0 at all times.)

3. Suppose that two consecutive jobs, a and b, satisfy that tb - ta < 1 - !J2
and that both jobs are long. Then s(tb) = so (and therefore s(ta) = so),
because b was run long although a was not marked yet.

Lemma 3. If at some time t all machines are busy, at most n - so jobs running
at time t will still run for !J2 or more time after t.

Proof. Suppose all machines are busy at time t. Consider the set L of (long)
jobs that will be running for more than ! J2 time, and suppose it contains
x ?: n - s0 + 1 jobs. We derive a contradiction.

Denote the jobs in L by i1, ... , ix, where the jobs are ordered by arrival time.
At time tj.,, the other jobs in L must have been running for less than 1 - !J2
time, otherwise they would finish before time t + !J2. This implies that jobs in
L can only be marked because short jobs started.

Also, if at time tJz we consider ix not to be running yet, we know not all
machines are busy at time tj=, or ix would not have started. We have

so s(tjJ < so. Therefore, between times tj 1 and tj.,, at most s(tj.,) ::; so - 1
short jobs can have been started and as a consequence, less than so jobs in L
are marked at time tj.,. But then there is an unmarked job in L at time ti=, so
ix is run short. This contradicts ix E L. 0

Definition A critical interval is an interval of time in which SL is using all
its machines, and no jobs start or finish.

We call such an interval critical, since it is only in such an interval that SL
refuses jobs, causing possibly much lost earnings. From Lemma 3, we see that
the length of a critical interval is at most !J2.

We denote the jobs that SL runs during I by jf, ... , j~, where the jobs are
ordered by arrival time. We denote the arrival times of these jobs by t{, ... , t~; I

256

starts at time t~. We will omit the superscript I if this is clear from the context.
We denote the lost earnings that are caused by the jobs in I by X1; we also
sometimes say simply that X1 is caused by I. We say that a job sequence ends
with a critical interval, if no more jobs arrive after the end of the last critical
interval that occurs in SL's schedule.

Lemma 4. If a job sequence ends with a critical interval I, and no other jobs
besides j{, ... , j~ arrive in the interval [t{, ... , t~], then SL can compensate for
the lost earnings X1.

Proof. Note that Ji is long, because a short job implies the existence of an earlier,
long job in I by Property 1. SL earns at least xo from j 1 , ... ,jn by Property 2.
There are three cases to consider, depending on the size and timing of h.

Case 1. h is short. See Figure 2, where we have taken t2 = 0. Note that j 1 must

0 2/3 513

critical interval

Fig. 2. i2 is short

be the job that is marked when j2 arrives, because any other existing jobs finish
before I starts and hence before h finishes. Therefore, t 2 - t 1 < 1 - ~.J2, so

before time t2 the adversary and SL earn less than 1 - !V2 from job 1. After

time t2, the adversary earns at most (1 + ~.J2)n from Ji, ... ,Jn and the jobs
that SL refuses during I. We have

1 1
(1 + 2.J2)n + (1- 2.J2) = R · x0 ,

so SL compensates for X 1.

Case 2. h is long and t2 - ti < 1 - ~.J2.
Since no job arrives between Ji and h, we have by Properties 3 and 1 that

s(t1) =so and l(t1);:::: so. Denote the sets of these jobs by S1 and L1, respectively.
All these jobs finish before I. (During I, SL does not start or finish any jobs.)

257

0

r>----s ~-1 ~) ~J..'---------'·
I

Fig. 3.]2 is long

Case 2a. There is no critical interval while the jobs in Si and Li are running.
Hence, the jobs in S1 and £ 1 are of type B. We consider the jobs that are

running at time t 1 and the later jobs. Note that Li contains at least s0 jobs, say
it contains x jobs. After time t 1 the adversary earns at most 2n, because I ends
at most at time t1+1. SL earns ~sov'2 + x from Si and Li and at least x 0 on
the rest. For the adversary, we must consider only the earnings on Si and £ 1

before time ti; this is clearly less than ~s0 v'2 + x.
We have

2n + ~soJ2 + x
1 rn < R for x 2: so.

xo+z-sov2+x

This shows SL compensates for X1 (as well as for the lost earnings caused by
S1 and L1).

Case 2b. There exists a critical interval before I which includes a job from S 1

or L 1 . Call the earliest such interval / 2 . If I2 starts after ti, we can calculate as
in Case 2a. Otherwise, we consider the earnings on each machine after the jobs
in / 2 started. Say the first job in S1 starts at time t'. We have tn - t' < 1. See
Figure 4.

Fig. 4. j 2 is long and there is another critical interval

Say 12 contains x short jobs that are not in S1 (0 ::; x :S so). Then it contains
so - x short jobs from S1 , and therefore at least so - x (long) jobs from L1. This

258

implies it contains at most n - 2s0 + x long jobs not from £ 1 . It also implies
there are x short jobs in S1 which are neither in I nor in h.

Using these observations, we can derive a bound on the earnings of the ad
versary and of SL from the jobs in 12 and later. We divide their earnings into
parts as illustrated in Figure 4 and have that the adversary earns at most

1
(2 + 2v'2)n (after t')

+ n - 2so + x (from the long jobs not in L1)

1 + (1 - 2v'2)so (from L 1 before t')

+ ~xv'2 (from the short jobs not in 81)

1 1 1 = (3 + 2v'2)n - (1 + 2v'2)s0 + x(l + 2v'2),

while SL earns 2x0 (from the jobs in I and h) +~x.J2 (from the x short jobs
from S1 between 12 and J). We have

(3 + ~.J2)n - (1 + ~.J2)so + x(l + ~../2)
--''------~--=---~-- :S R for 0 :S x :S so

2xo + ~x../2
so SL compensates for all lost earnings after h.

Case 3. jz is long and t2 - t1 ~ 1 - ~../2. We consider job jJ.
If h is short, then after time t 1 + (1 - ~../2) the adversary earns at most

(1 + ~../2)n - (n - 2)((t3 - t1) - (1 - ~.J2)) - ((t2 - t1) - (1 - ~../2)). Before
that time, it earns of course (1- ~../2) (only counting the jobs in J). So in total,
it earns less than it did in Case 1.

If h is long, we have two cases. If t3 - t2 < 1 - ~../2, again the sets 81 and
£ 1 are implied and we are in Case 2. Finally, if t3 - t2 ~ 1 - ~ v'2 we know that
t4 - t3 < 1 - ~../2, so this reduces to Case 1 or 2 as well.

In all cases, we can conclude that SL compensates for X1. 0

Lemma 5. If a job sequence ends with a critical interval I, then SL can com
pensate for the lost earnings X1.

Proof. We can follow the proof of Lemma 4. However, it is now possible that a
short job j~ starts after j 1 , but finishes before I.

Suppose the first short job in I arrives at time t' = t 1 + x. If the job sets 8 1

and L1 exist, we can reason as in Case 2 of Lemma 4. Otherwise, all long jobs
in I that arrive before time t~ save one are followed by short jobs not in I. (If
there are two such long jobs, they arrived more than 1 - !v'2 apart, and the
adversary earns less than in Case 1 of Lemma 4 (cf. Case 3 of that lemma).)

For each pair (ai,bi), where ai is long and bi r/. I is short, we have that bi
will run for at least ~..j2 - x more time after t', while ai has run for at most x
time. One such pair is shown in Figure 5.

259

---x

Fig. 5. Pairs of long and short jobs

We compare the adversary's earnings now to its earnings in Case 1 of Lemma
4. Since bi (/. I, it earns less on the machine running bi and more on the machine
running ai (because there it earns something before time t', which was not taken
into account earlier). If x ~ ~J2, the adversary loses more on the machines
running these pairs than it gains. On the other hand, if x > 1 - !J2, then I is
shorter than ~V2: the adversary earns x - (1 - ~J2) less on every machine. 0

It is possible that two or more critical intervals follow one another. In that
case, we cannot simply apply Lemma 5 repeatedly, because some jobs may be
running during two or more successive critical intervals. Thus, they would be
used twice to compensate for different lost earnings. We show in the full paper
that SL compensates for all lost earnings in this case as well.

Definition A group of critical intervals is a set {JiH=i of critical intervals, where
Ii+1 starts at most 1 time after Ji finishes (i = 1, ... , k - 1).

Lemma 6. If a job sequence ends with a group of critical intervals, SL com
pensates for all the lost earnings after the first critical interval.

Proof. The proof consists of showing that in all cases, the lost earnings between
and after the critical intervals are small compared to SL's earnings on the jobs
it runs. A typical case is shown in Figure 6. For details, see [10]. 0

Theorem 4. SL maintains a competitive ratio of R = 2./2- 1 + s~-11 .

Proof. If no jobs arrive within 1 time after a critical interval, the machines
of both SL and the adversary are empty. New jobs arriving after that can be
treated as a separate job sequence. Thus we can divide the job sequence into
parts. The previous lemmas also hold for such a part of a job sequence.

Consider a (part of) a job sequence. All the jobs arriving after the last crit
ical interval can be disregarded, since they are of type B: they compensate for
themselves. Moreover, they can only decrease the amount of lost earnings caused
by the last critical interval (if they start less than 1 after a critical interval).

If there is no critical interval, we are done. Otherwise, we can apply Lemma
6 and remove the last group of critical intervals from consideration. We can then
remove the jobs of type Bat the end and continue in this way to show that SL
compensates for all lost earnings. 0

r 260

Fig. 6. A sequence of critical intervals

6 Fixed Levels

Finally, we study the case where jobs can only be run at two levels [4, 12]. This
reduces the power of the adversary and should lower the competitive ratio. If
the jobs can have different sizes, the proofs from Section 3 still hold.

Theorem 5. Let r be the optimal competitive ratio of this scheduling problem
with different job sizes and two fixed run levels. Then r = !/(ln M). For M =
il(2n), we have r = !/(n(\fM - 1)). Adapted Harmonic, which requires n =
{}(MHM), has a competitive ratio of O(lnM).

Proof. We refer to the full paper [10].
For the case of uniform jobs, we have the following bound.

Theorem 6. If jobs can be run at two levels, a < 1 and 1, then no algorithm
can have a better competitive ratio than 1 + a - a 2 •

Proof. Note that each job is run either for 0, a or 1 time. Let n jobs arrive
at time t = 0. Say A serves </m jobs partially and the rest completely. It earns
(1 - <P + a<P)n. If this is less than n / (1 +a - a 2) we are done. Otherwise, we have
</> ~ l+:-°'2 • Another n jobs arrive at time t =a. A earns at most (1 + cup)n in
total, while the offline algorithm can earn n + na. Since <P :$ l+a<°'-°'2 , we have
r(A) >!±ft.> 1 +a - a:2 • 0 - l+m/> -

Note that for a = ~v'2, SL yields a competitive ratio for this problem of at
most 1.828 (but probably much better). Extending these results to more values
of a is an open problem.

7 Conclusions and Future Work

We have studied the problem of scheduling jobs that do not have a fixed ex
ecution time on-line. We have first considered the general case with different
job sizes, where methods from [1] can be used. Subsequently, we have given a

261

randomized lower bound of 1.5 and a deterministic algorithm with competitive
ratio ~ 1.828 for the scheduling of uniform jobs. An open question is by how
much either the lower bound or the algorithm could be improved. Especially
using randomization it could be possible to find a better algorithm.

An extension of this model is to introduce either deadlines or startup times,
limiting either the time at which a job should finish or the time at which it
should start. Finally, algorithms for fixed level servicing can be investigated.

8 Acknowledgement

The authors wish to thank Peter Bosch for useful discussions.

References

1. S. Aggarwal, J.A. Garay, and A. Herzberg. Adaptive video on demand. In Proc.
3rd Annual European Symp. on Algorithms, LNCS, pages 538-553. Springer, 1995.

2. S.K. Baruah and M.E. Hickey. Competitive on-line scheduling of imprecise com
putations. IEEE Trans. On Computers, 47:1027-1032, 1998.

3. H. G. P. Bosch, N. Nes, and M. L. Kersten. Navigating through a forest of quad
trees to spot images in a database. Technical Report INS-R0007, CWI, Amsterdam,
February 2000.

4. E.K.P. Chong and W. Zhao. Performance evaluation of scheduling algorithms for
imprecise computer systems. J. Systems and Software, 15:261-277, 1991.

5. T. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings
of AAAI, pages 49-54, 1988.

6. Wu-Chen Feng. Applications and extensions of the imprecise-computation model.
Technical report, University of Illinois at Urbana-Champaign, December 1996.

7. K.J.Lin, S. Natarajan, and J.W.S. Liu. Imprecise results: Utilizing partial com
putations in real-time systems. In Proc. IEEE Real-Time Systems Symp., pages
255-263, 1998.

8. W.-K. Shih. Scheduling in real-time systems to ensure graceful degradation: the
imprecise-computation and the deferred-deadline approaches. Technical report,
University of Illinois at Urbana-Champaign, December 1992.

9. W.-K. Shih and J.W.S. Liu. On-line scheduling of imprecise computations to
minimize error. SIAM J. on Computing, 25:1105-1121, 1996.

10. R. van Stee and J. A. La Poutre. On-line partial service of jobs. Technical Report
SEN-ROOxx, CWI, Amsterdam, in preparation.

11. A. C. Yao. Probabilistic computations: Towards a unified measure of complexity.
In Proc. 12th ACM Symposium on Theory of Computing, 1980.

12. W. Zhao, S. Vrbsky, and J.W.S. Liu. Performance of scheduling algorithms for
multi-server imprecise systems. In Proc. Fifth Int. Conf. Parallel and Distributed
Computing and Systems, 1992.

13. S. Zilberstein. Constructing utility-driven real-time systems using anytime algo
rithms. In Proc. lst IEEE Workshop on Imprecise and Approximate Computation,
1992.

