
The value of online information for
demand response in Walrasian electricity markets

Felix Claessen∗, Bart Liefers∗, Michael Kaisers∗ and Han La Poutré∗†
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Abstract—Smart energy systems integrate renewables and
demand response. Most European electricity markets coordinate
the resulting time-varying flexibility in demand and supply by
organising day-ahead trade with Walrasian mechanisms, using
simultaneous call auctions and sealed bids. These mechanisms
give bidders no information on each other’s values and flexibilities
until after clearing. In this paper we simulate two alternative
day-ahead market mechanisms which share information, such
that bidders obtain a better position before entering the intraday
market. One mechanism uses an ascending shared market price
signal rather than sealed bids. The other auctions off future
timeslots consecutively rather than simultaneously. We perform
a case study on 400 households with electric vehicles, either with
or without volatile wind generation. Results show that a price-
taking flexible consumer can obtain higher utility in the market
with simultaneous ascending-price auctions, because online price
information reduces uncertainty over available energy and prices.

Index Terms—decentralised control, energy management,
power system economics, smart grids

I. INTRODUCTION

The changing energy system in which many distributed en-
ergy resources are present needs new and smart organisational
mechanisms. Markets are especially useful for managing the
fast decisions that have to be made throughout the system.
Different market mechanisms have different characteristics in
terms of stability, scalability and information sharing, and re-
searchers are studying them to help policy makers, companies
and system operators in shaping the emerging smart grid [1].

In this paper, we focus particularly on the characteristic of
information sharing. This characteristic is receiving increased
attention since the EU has passed regulation on wholesale
energy market integrity and transparency (REMIT), requiring
traders to share information such as their installed capacity
[2]. Several auction rules strongly influence what information
is available, such as the order in which bids are matched
(e.g. call auctions or continuous auctions), the order in which
delivery timeslots are auctioned off (e.g. consecutively or
simultaneously) and the format in which bids are accepted (e.g.
open or sealed). To help create a concise classification, we use
the term Walrasian auction to describe a two-sided uniform-
price multi-unit auction. This means both buyers and sellers
place bids and the market is cleared at an equilibrium price at
which demand and supply match. European day-ahead markets
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can then be described as Simultaneous Sealed-bid Walrasian
(SSW) call auctions (see Section II-A). Here we investigate
the effects of timeslot order (consecutive vs. simultaneously)
and bid format (sealed vs. ascending prices) in call auctions
used for day-ahead trading. Of the four possible combinations
(Table I), we present results for the Consecutive Sealed-
bid Walrasian (CSW) market—an alternative based on the
standard method of auctioning off individual days in current
electricity markets—and propose the Simultaneous Ascending-
price Walrasian (SAW) market—a refined mechanism with
promising simulation performance.

The SAW market shows similarities to a market mechanism
described by Gerding et al. [3], which uses simultaneous
Vickrey auctions, and a simultaneous ascending-price mech-
anism described by Cramton et al. [4] that unlike in our
mechanism, closes auctions for all timeslots at the same
time. Gerding et al. chose the sealed-bid format for its low
communication overhead. In contrast, we as well as Cramton
et al. have chosen an iterative ascending-price format for its
ability to provide online information during operation of the
market mechanism. This enables bidders to effectively share
information on their desired planning. The closest related
mechanism is the Japanese auction for multiple goods [5]—a
one-sided ascending price auction which the SAW mechanism
extends to bilateral participation of both buyers and sellers,
publishing also quantity imbalances at the current price. This
paper provides empirical evidence that this online information
improves price forecasts, and thereby the planning and utility
obtained by price-taking flexible consumers.

We explain the CSW and SAW market mechanisms in detail
and present our experimental method for comparing them in
Section II. Results of our simulations and a discussion follow

Table I: Four categories of (W)alrasian call auctions with different timeslot
ordering and bid formats, and their effects on available information. Results
are presented for the CSW and SAW markets.

(C)onsecutive slots (S)imultaneous slots

(S)ealed bids CSW SSW
• slots traded one by one • no information
• information available • exchange about
• about previous slots • any slots

(A)scending CAW SAW
prices • information available • iterative scheduling

• about current and • information available
• previous slots • about all slots
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in Section III and IV, respectively.

II. METHOD

The performance of an electricity market for smart en-
ergy systems depends on the interplay between the market’s
mechanism, the bid strategies of participants, and on specific
conditions such as forecast accuracy. Our experiment is de-
signed to validate and compare the CSW and SAW markets in
two scenarios, within each of which we evaluate two bidding
strategies. The mechanisms, scenarios and bid strategies are
described in Section II-A, II-B and II-C, respectively.

Supply and demand need to be in approximate balance at
all times in the electricity grid. Ahead trading is the widely
adopted coordination mechanism, and is typically facilitated
by over-the-counter, day-ahead and intraday markets over pre-
defined timeslots. Over-the-counter trades are bilateral agree-
ments between suppliers and consumers, and the other markets
are mediated by an energy exchange, like the APX or EEX
power spot markets. The exchange markets may close one day
ahead of delivery (day-ahead) or shortly before delivery (intra-
day). Here, we investigate two designs for a day-ahead market
in which both buyers and sellers trade energy for multiple
future timeslots of 15 minutes in the next day. We classify
the market’s mechanism by stating the type of auction used
to trade energy for each timeslot, and the order in which the
auctions are held. To make our classification concise, we use
the term Walrasian market to describe a two-sided uniform-
price multi-unit auction. In such an auction, a number of units
of energy is traded for a given timeslot by setting a uniform
market price at which demand matches supply.

The market designs are compared in simulation using two
stylised cases with data generated by Flex Street [6], a
model for creating demand and supply patterns of residential
microgrids. The case studies demonstrate the strong and weak
points of the two market designs.

A. Two market mechanisms

The Walrasian market mechanism is the standard model
adopted by the majority of European electricity spot markets
(e.g. APX, EEX) [7], [8]. Energy is traded each day for
discrete timeslots j ∈ {1, ..., jmax}. The market is a futures
market for 24 hours ahead (starting at midnight) with timeslots
of 15 minutes, and uses either CSW or SAW auctions for all
timeslots. An overview is given in Table I.

1) CSW market: The Consecutive Sealed-bid Walrasian
(CSW) market is similar to the day-ahead market, in terms of
how individual days are auctioned off one after the other. With
our mechanism, however, individual timeslots are auctioned
off one after the other, such that information is available about
all previous slots (and not just about slots in previous days).
This is unlike usual day-ahead markets, which typically close
all timeslots of the next day at the same time. According
to our classification, the CSW market mechanism consists of
sequential identical auctions, which are sealed-bid Walrasian
auctions. Formally, the auctions are carried out consecutively
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Figure 1: In the CSW market, the clearing price p∗j for a timeslot j is
determined by matching the bids of participating agents. Both supply bids
qj,S(p) and demand bids qj,D(p) are monotonously increasing functions
mapping a unit price to a quantity of energy. The residual supply function
describes the excess energy (in sum) at various prices, and crosses zero at p∗j .

for timeslots j ∈ {1, ..., 96}. The auction for slot j + 1 only
starts after the one for slot j has closed.

For each timeslot, one auction is carried out. Agents bid
in the auction by submitting a bid function, mapping a unit
price pj (e.g. in e/kWh) to a quantity of energy qj (e.g. in
kWh) on a given timeslot j. Here qj > 0 indicates supply, and
qj < 0 indicates demand of energy by the agent, as indicated
in Figure 1.

The market sums all bid functions and calculates the unit
price p∗j at which the market clears (i.e. where supply matches
demand and the sum of all bid functions is zero). Given the
agent models in Section II-B, the market will always clear.
The agents will then be committed to the quantity that they
bid at p∗j .

2) SAW market: The Simultaneous Ascending-price Wal-
rasian (SAW) market has, to our best knowledge, not been
used before in electricity markets. The SAW market mech-
anism consists of 96 simultaneous identical auctions, which
are ascending-price Walrasian auctions carried out for each
timeslot j ∈ {1, ..., 96}. Each auction consists of an iterative
process in which the unit price for a timeslot j ascends until
a clearing price is reached, as indicated in Figure 2. When
a clearing price is reached, the open timeslot (with trade in
progress) becomes a closed slot (with trade completed). The
auctions are synchronised, such that, for a given iteration, all
open timeslots share the same unit price. Note that closed slots
may have different unit prices. We refer to each iteration i as
one market round, for which pi denotes the current unit price
vector for all slots, i.e. pi,j is the current price for slot j.
During a market round, each agent can post a bid schedule: a
quantity for each timeslot, which the agent is willing to trade
at the current unit price.

For the first round (i = 0), the unit price vector p0 (in
e/kWh) is set to the same starting value for each timeslot.
Every agent a posts a bid schedule consisting of a quantity
qa0,j for each timeslot j that it is willing to trade at unit price
p0. After each round, for each open slot, pi+1,j = pi,j + ∆p,
where ∆p is a positive scalar increment of the price.
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Figure 2: In the SAW market, clearing prices p∗j for timeslots j are determined
by incrementing the unit price pi for each open timeslot; when supply exceeds
demand for a given timeslot, the slot is closed for trading. In this example,
timeslots 13 and 84 closed first at a clearing price of 1 cent/kWh.

After collecting all bid schedules for a given round i, the
market determines the net imbalance Ni,j for each timeslot j:

Ni,j =
∑
a

qai,j (1)

Here Ni,j < 0 indicates a shortage of energy, and Ni,j >
0 indicates an excess. For each timeslot with excess energy,
demand bids become final commitments to consume at the
unit price pi,j , after which the slot is closed for trading. On
each closed slot, the total supply required to cover the total
demand is divided over the supply bids, according to the ratios
of their bids.1

The results of each round (final commitments for closed
timeslots and net imbalances for open timeslots) are commu-
nicated back to the agents, and agents are requested to update
their bids. The price is increased with every new round, and
agents can bid on open timeslots until all timeslots are closed.

B. Scenarios w/ and w/o volatile supply

We compare the market mechanisms by simulating mi-
crogrids in two stylised scenarios: w/ (with wind) and w/o
(without wind). For both scenarios, data is generated by the
Flex Street model [6], and its method describing case study
simulations is followed accordingly. The microgrid consists
of 400 households and 400 electric vehicles (EVs). In the w/
scenario, the microgrid includes an additional wind turbine.
Scenario w/o is without wind turbine. The microgrid has a
single connection to the main grid, and, at any given moment,
is a net consumer. The main grid is modelled as a large
conventional generator, with a flexible supply large enough
to cover the microgrid’s peak demand.

All loads and generators are represented as individual
agents, trading electricity through a local electricity market
which sets electricity prices for the microgrid. The local
market is of sufficient size to guarantee a low market im-
pact for individual households and EVs. Furthermore, the
aggregate consumption of 400 households gives a smooth and
predictable pattern, even though individual residential patterns

1Note that in this case suppliers may be allocated less than what they bid
for. Assuming suppliers have non-decreasing marginal costs and fine-grained
control over their output level (e.g. conventional generation), this will be in
their advantage, meaning that their utility is higher than the utility they would
obtain if they were allocated their complete bid.

are stochastic. The two scenarios lead to a difference in market
price volatility due to the stochastic generation of the wind
turbine. Consequently, market prices in the w/ scenario are
more difficult to forecast. Faced with this market setting, each
household owner needs to procure energy according to its non-
flexible (residential) and flexible (EV) demand. Likewise, each
generator needs to sell energy according to its non-flexible
(wind) or flexible (conventional) supply.

C. Bid strategies

Each household owner has the ability to adjust its EV’s
consumption schedule for the next day in order to maximise
its utility. For this purpose we define an autonomous agent
for each household’s EV. It can decide its own schedule ~q,
which is a set of quantities qj for each timeslot j of the next
day. In this paper we focus on an individual household and
work out a bid strategy that maximises its utility. The other
agents are considered non-flexible for control purposes in the
experiments. Strategies for these agents are given at the end
of this section (subsection 6).

We first define the agent’s constraints and valuation
model for flexible EVs, from which we determine an
optimal schedule for a given set of forecasted prices ~̂p. This
information then allows us to construct either a bid schedule
(for the SAW market) or a bid function (for the CSW market).

1) Agent constraints: The charging schedule of a vehicle’s
battery is controlled by an intelligent agent a. We assume that
the battery is connected to the grid in an empty state at 5pm
and disconnected at 9am the next morning. The agent is not
allowed to deliver power back to the grid. The rate of charge
is constrained between 0 and 3.7 kW, due to the residentially
typical 16 A fuse with a line voltage of 230 V in Europe. The
maximum amount of charge in the battery is 10 kWh, which
yields constraints for trading an energy quantity qj (in kWh)
for a given timeslot j (of 15 minutes) formalised in (4).

2) Valuation model: To describe what a given battery level
is worth to the vehicle’s owner, we use a quadratic valuation
function (with diminishing returns). This models that every
additional unit of consumed energy has a lower contribution
to the total valuation than the previous unit, i.e. non-increasing
marginal value [9]. The valuation function V is given by:

V = B ·Q−A ·Q2 , Q = −
∑
j

qj ≥ 0 (2)

where each qj is a traded quantity (always negative for
consumption) such that Q is the total electricity demand in
kWh over all timeslots j. A and B are the agent’s constants
for the valuation function (identical for all EV owners),
shown in Figure 3 with the chosen experimental parameters
B = 40 cents/kWh and A = 2 cents/(kWh)2.

3) Optimal schedule under forecasted prices: Given a set
of forecasted unit prices ~̂p, the agent can determine its optimal
schedule ~q by maximising its utility U, defined as:

U = V − TC , TC = −~̂p · ~q (3)
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Figure 3: Valuation function for the vehicle’s electricity demand.

where TC are the total costs (for any timeslot j, costs are
positive for negative qj). We assume that pj does not depend
on qj (negligible market impact), and write our optimisation
problem as:

maximise:
96∑
j=1

((p̂j −B) · qj)−A · (
96∑
j=1

qj)
2 (4)

subject to: −0.92 ≤ qj ≤ 0 , −10 ≤
j∑

k=1

qk ≤ 0

This quadratic programme can be solved by numerical optimi-
sation, e.g. gradient descent, which finds the optimal quantity
qj for each timeslot given the price prediction ~̂p.2 This price
prediction consists of:
• known market clearing prices p∗j and agent commitments

q∗j , for all closed timeslots
• forecasted prices p̂j for all open timeslots.3

4) Optimal bid under forecasted prices: To bid on one of
the markets we construct either a bid schedule (for the SAW
market) or a bid function (for the CSW market).

In a SAW market, we let the agent post a schedule that
optimises (4) at each round, given the forecasted prices of
that round. We present two bid strategies: In the online SAW
bid strategy, the schedule is updated after each round by re-
optimising for the online price forecasts (i.e. forecasts em-
ploying the online information that becomes available during
operation of the market mechanism). In the offline SAW bid
strategy, the agent doesn’t use online information other than
1) commitments for closed timeslots, 2) final prices for closed
timeslots, 3) the current ascending price for all open timeslots.
How online and offline price forecasts are constructed is
explained in Section II-C5.

In a CSW market, one timeslot is handled per round, and
bids should specify a quantity for that timeslot for each
possible price (a bid function). The agent posts a function
that optimises (4) for timeslot i, given the forecasted prices
p̂j for all timeslots j 6= i. Assuming independent prices:

∂pj
∂pi

= 0 ∀ j 6= i (5)

2If uncertainty or error information is available, the optimal strategy may
deviate by taking error distribution into account.

3Except for slots where p̂j < pi,j , for which it is known that the final
clearing price must be at least the current round price pi,j . This only applies
to the SAW market.

the Lagrangian method of constrained optimisation yields an
optimal quantity qi as a function of the actual market price pi,
according to:

qi(pi) =


qmin
i if pi > pmax

i

qmax
i if pi < pmin

i
B−pi

2A −
∑

j 6=i q̂j otherwise

pmin
i = B − 2A(qmax

i +
∑
j 6=i

q̂j) (6)

pmax
i = B − 2A(qmin

i +
∑
j 6=i

q̂j)

where q̂j is the forecasted optimal quantity for timeslot j
given in (5), and qmin

i and qmax
i are deduced from the

constraints in (4).

5) Learning to forecast prices: The forecasted prices, re-
quired by the agent to determine its optimal bid for each
timeslot, can be constructed by learning from historical data—
possibly in combination with external data sources such as
weather forecasts—or from market quotes fed back during
the market process—giving information on the valuation of
other bidders. We developed forecasting methods that use a
combination of historical prices (without external information)
and market quotes if available. In a CSW market, no quotes
are available and only historical prices are used to generate
a forecast for open timeslots. We refer to this as an offline
forecast. In a SAW market, initial quotes for all open timeslots
become available after the first round. If these quotes are used,
we refer to the resulting forecast as an online forecast.

The offline price forecast is computed from a weighted sum
of the historically observed prices for the same timeslot of the
last n days, in which the weights decrease exponentially:

wk =
(1− r)rk−1

1− rn
, k = 1, ..., n (7)

where wk is the weight for the k-th last available price, and r
defines the ratio between consecutive weights (r = wk+1/wk).
In the experiment n = 10 and r = 0.5.

Our method of constructing the online price forecast is
to search historical data on market quotes. The historical
data of the SAW market consists of quotes Ni,j,k, i.e. the
net imbalance for each round i for a given timeslot j in a
previous day k. To construct the forecast, we compare the
quote sequence Nj,0 for the current market day (k = 0)
to the quote sequence Nj,k for previous days. A nearest
neighbour classification finds the closest matching historical
quote sequence. The final price in that sequence is taken as
the forecasted price for the given timeslot. Only if this gives
a lower price than the price of the current market round, the
round price is used instead. In the SAW market, the forecast
can be updated during the iterative process. With each round,
the current quote sequence becomes longer and we expect
that our search through the historical data yields a more
accurate forecast.



6) Other agents: The models used for the other agents in
the simulations, such as generators and inflexible consumers,
do not employ learning. The flexible generator always posts
the same bid function representing its marginal costs MC
given by:

MC = A · qj + B (8)

where qj is the supplied amount of electricity in kWh during
future timeslot j, and A and B are the generator’s constants
for marginal costs. In all cases, B = 1 cent/kWh and A is set
to give a daily average unit price of 20 cents/kWh. This bid
function models that every additional unit will cost more to
produce than previous units (cheapest production first).

Both the production schedule of the wind turbine and the
consumption schedules of households and non-flexible EVs
are price inelastic. Agents representing these entities bid fixed
demands for each timeslot, regardless of price, which models
the current non-adaptability of consumers and wind farms.4

According to the Flex Street model [6], the residential con-
sumption schedules were generated by imposing a stochastic
deviation on the time of use-events. The non-flexible EV
schedules were generated by stochastic variation in the arrival
time of the vehicles.

D. Evaluation

We evaluate the performance of both bidding strategies in
both scenarios for each day, by comparing its obtained utility
to the utility it would have obtained if it had had a perfectly
accurate price forecast, i.e. when:

p̂j = p∗j (9)

where p̂j is the forecasted price for timeslot j used in the
constrained optimisation, and p∗j is the actual clearing price.
In our case, the clearing price p∗j is effectively determined by
the marginal cost function MC(q) of the generator defined in
(8), and the demand bids qaj and qrestj of the intelligent agent
and of all other agents, respectively, such that:

p∗j = MC(−qrestj − qaj ) (10)

This actual clearing price corresponds to a perfectly ac-
curate price forecast. Following the same procedure as in
Section II-C3, we solve (4) with a perfect price forecast, which
gives us the optimal utility that can be obtained by the agent.
In our results, performance indicates the ratio of the agent’s
obtained utility with respect to the optimal utility.

III. EXPERIMENTS AND RESULTS

A. Simulation parameters

The simulation comprises 100 days in both cases (w/ and
w/o), for which demand and supply patterns were generated
stochastically. During this time, the intelligent agent con-
trolling the flexible EV collects price observations and thus
learns to forecast prices more accurately. Each day, a market
is organised for the next day. For the SAW market, a price
increment of 0.1 cents per round is used.

4Curtailment is politically undesired, and e.g. in Germany limited by law.
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Figure 4: Price forecast error, representing the median of the absolute
difference between the actual clearing price and the price forecast for each
timeslot. The red circles (dotted line) represent the error of the online forecast;
the black disks (solid line) represent the error of the offline forecast.

B. Results

Figure 4 shows the accuracy of the two implemented price
forecast methods. Historical data becomes available after the
first day, after which the error of offline forecasts shows no
downward trend. In all cases, the accuracy of online price
forecasts increases further over time. The first 20 days served
as a start-up phase to get reliable price forecasts. The analysis
in this section was performed on the remaining 80 days.

Figure 5 shows the obtained utility and performance for all
simulations. The spread in the obtained utility is caused by
daily differences in the demand schedules of loads and, in
the w/ case, the supply schedule of the wind turbine, where a
higher utility can be obtained during windy days. The agent’s
performance in both cases is highest in a SAW market when
online forecasts are used; price volatility then has hardly any
influence. When the agent’s bid strategy uses only offline
information, performance is lower in the volatile case for both
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Figure 5: Distribution of the utilities and performances over all simulated days.
The graphs can be interpreted as the probability of occurrence of a certain
utility or performance (the total area under each curve is equal to one). The
performance of the optimal allocation equals 100% by definition.



mechanisms.
Lower utilities occur especially when offline information is

used that wrongly predicts the time at which prices are lowest
(Figure 6). In the w/o case (left-hand-side figures), offline
forecasts accurately predict lowest prices from about 5am to
8am, and the agent obtains a utility that is close to optimal. In
the w/ case (right-hand-side figures), due to unexpected supply
from the wind turbine, the lowest price actually occurred
between 4am and 6.30am. On the CSW market, the agent’s
bid function allowed it to adapt somewhat to this unexpected
early opportunity, but on the SAW market without the online
update, the cheapest timeslots closed without any bid from the
agent, and the agent obtained a smaller load for a higher price.
On the SAW market with online update, the agent was able
to accurately update its bid to a near optimal schedule.

IV. DISCUSSION AND CONCLUSIONS

The online information that is available to the intelligent
agent clearly improves its position on the market, allowing it
to obtain a higher utility. However, in adversarial settings other
agents may use this information to speculate against this first
agent. In the current experiment, no adversarial agents were
considered, thus our insights transfer primarily to cooperative

Case 1: without wind (w/o) Case 2: with wind (w)
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Figure 6: Selected results (last day clearing prices and EV demand) showing
the improved alignment of the procured schedule (solid black line) with the
optimum (grey area) when the bidder considers online price information. This
illustrates the value of (online) information for intelligent demand response.

settings, e.g. local markets, where adversarial behaviour has
immediate social repercussions. Future work may make the
online information more dynamic by increasing the number of
flexible loads and, correspondingly, the number of intelligent
agents. A second limitation refers to the assumption that agents
are price taking. Individual market power can become large,
especially in smaller markets. As the influence of bids on
prices becomes a significant factor in the negotiation process,
agents may improve their profitability by taking into account
to what extent market prices are influenced by their own
bids. Future research may investigate the influence of price
information on agent utility when the agent’s market impact
is high.

This article presents simulation experiments in alternative
day-ahead electricity market mechanisms (CSW and SAW).
Results show the utility obtained by an intelligent agent and
relate it to an upper bound deduced from perfect knowledge
of future prices. Our case study simulations show that a near
optimal utility can be obtained when the agent trades in the
SAW market, and uses the available online information about
all timeslots. The value of this online information was highest
when prices were hard to predict, i.e. in a scenario with volatile
wind generation. Sharing information online can help reduce
uncertainty over available energy and corresponding prices,
and enables flexible consumers to provide intelligent demand
response. This improved alignment of volatile generation with
(flexible) loads yields higher profits for the individual, and has
the potential to alleviate the system imbalances.
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