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Abstract

In future energy systems, peaks in the daily electricity generation and consumption are ex-
pected to increase. The “smart grid” concept aims to maintain high levels of efficiency in the
energy system by establishing distributed intelligence. Software agents (operating on devices
with unknown computational capabilities) can implement dynamic and autonomous decision
making about energy usage and generation, e.g. in domestic households, farms or offices. To
reach satisfactory levels of efficiency and reliability, it is crucial to include planning-ahead of
the energy-involving activities. Market mechanisms are a promising approach for large-scale
coordination problems about energy supply and demand, but existing electricity markets ei-
ther do not involve planning-ahead sufficiently or require a high level of sophistication and
computing power from participants, which is not suitable for smart grid settings. This pa-
per proposes a new market mechanism for smart grids, ABEM (Ahead- and Balancing En-
ergy Market). ABEM performs an ahead market and a last-minute balancing market, where
planning-ahead in the ahead market supports both binding ahead-commitments and reserve
capacities in bids (which can be submitted as price functions). These features of planning-
ahead reflect the features in modern wholesale electricity markets. However, constructing
bids in ABEM is straightforward and fast. We also provide a model of a market with the
features mentioned above, which a strategic agent can use to construct a bid (e.g. in ABEM),
using a decision-theoretic approach. We evaluate ABEM experimentally in various stochastic
scenarios and show favourable outcomes in comparison with a benchmark mechanism.

Keywords: Markets for electricity, agent-based simulation, decision theory, smart grid

1 Introduction

In future energy systems, novel supply and demand patterns pose new challenges for the man-
agement and allocation of electricity. Intermittent renewable energy generators (e.g. solar panels
and wind mills) increase the uncertainty on the supply side and novel consumption technologies
(e.g. electric vehicles and heat pumps) increase overall demand for electricity, but also enable
the demand side to become more flexible. Traditionally, demand was predictable and generation
could be scheduled. The operation of an energy system could be managed by a central scheduling
algorithm. In the future, however, the novel supply and demand patterns make the problem of
operating a stable and affordable energy system more complicated.

Market mechanisms are a promising approach for such coordination problems. In order to
increase competition and find better allocations, centrally-mediated markets for electricity, e.g.
auction mechanisms, have been developed and employed on the wholesale level in recent years. A
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new approach, often referred to as the “smart grid“, aims to involve many more actors in decision
making than are present on the wholesale markets. It uses a distributed intelligence approach,
in which decisions are delegated to intelligent software agents on lower levels of the grid, which
operate production or consumption devices on their owner’s behalf (e.g. in domestic homes, farms
or offices). This can be especially useful to manage flexible demand devices (e.g. heat pumps or
electric vehicles).

A market mechanism suitable for smart grids should satisfy two crucial requirements. First, in
order to maintain satisfactory efficiency levels in the operation of energy systems, it is important
that the mechanism enables participants to plan their generation or consumption ahead of the
time of actual power flow. Planning-ahead in a market mechanism (by negotiation of possible
quantities and prices) facilitates planning of activities for participants and has been found to
increase competition [3, 14], which lowers prices and their volatility [35]. Planning-ahead also
enables flexible market participants to achieve monetary compensation for offering their flexibility.
Modern wholesale electricity markets have two ways of planning-ahead - binding commitments
made in an ahead market (say, 24 hours before power flow) and optional (reserve) capacity. The
latter represents an option, provided by flexible participants, to supply or consume given amounts
on short notice, which can be activated during a balancing phase close to the time of power flow.
Such balancing is necessary since supply has to match demand due to laws of physics. However,
the operation of three different allocation mechanisms, an ahead market, a market for reserve
capacities and a balancing phase, introduces considerable complexity for the involved participants.
This is e.g. due to the interdependence and complexity of these mechanisms.

Second, it is important to limit the complexity of bidding in the mechanism, since a smart grid
setting contains many agents with limited computational capacities. For instance, heat pumps
might have logic implemented on an embedded micro-chip, which they would use to decide when
to buy electricity in order to heat a house or office building at the lowest cost. Or homes may have
an energy management system, typically with computationally limited power. This fact prohibits
to re-use market designs which have been developed on the wholesale level, where only a few
big players interact who have many capabilities and much computational power to optimise their
bidding behaviour, and where the aggregated supply and the aggregated demand are usually more
predictable.

Most market designs in the electricity domain do not take the computational complexity of
bidding into consideration sufficiently, and a smart-grid setting would not seem feasible. There
have been several proposals for smart grid-inspired market mechanisms, which only require low
computational effort for the creation of bids. However, these proposals either do not fully support
the features of modern market mechanisms for planning-ahead or have some other trait which rules
them out to be applicable as a generic mechanism for smart grids. Proposals developed in the
electricity domain commonly neglect to address strategic behaviour of bidders or the convergence
characteristics of their market clearing algorithm are uncertain (i.e. market outcomes can take
long to be computed). Proposals developed in computer science are usually focused on specific
applications, which concern sub-cases of smart grids.

There is thus a need for a generically applicable market mechanism for smart grids, which in-
cludes planning-ahead sufficiently, but which does not introduce a high computational complexity
to the process of bidding. In this paper, we address this challenge by presenting ABEM, a novel
market mechanism (Section 2). We also provide a decision-theoretic model for bidders in mar-
kets with the same main features as ABEM (Section 3) and perform an experimental evaluation
(Section 4).

2 The ABEM mechanism

2.1 Main features

In the electricity domain, several features of market mechanisms have been developed and es-
tablished in recent decades. It appears that in many countries, a distinct set of features which
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concern planning-ahead is considered to be important for efficient operation of energy systems.
Our market mechanism ABEM has these important features, as well.

The first feature is a so-called two-settlement procedure [5], conducting an ahead market as well
as a real-time balancing market. In this paper, we denote the ahead market (the first settlement)
as “market A” and the balancing market (the second settlement) as “market B”. Two-settlement
procedures are periodic auctions for a specific time slot, rather than continuous auctions [26]. The
second feature is to also integrate the trade of reserve capacities, which are traded in the ahead
market and allocated in the balancing market. The System Operator (SO) usually chooses the
overall amount of required reserve capacity by experience or some heuristics (e.g. a percentage
of forecasted load). The third feature is that bids for binding commitments and bids for reserve
capacity have to be submitted simultaneously in the ahead market, which reduces the opportunities
for strategic bidding [8, 25]. Figure 1 shows a schematic overview of the timeline in this type of
market.

Figure 1: Timeline in a two-settlement procedure with integrated trade of reserve capacity and
simultaneous bidding.

2.2 Bid format

2.2.1 Allocation variables and the ratio between binding commitments and reserve
capacity

For each bidding agent a, we denote with qAa ≥ 0 the binding commitment, which is allocated in
market A and with qBa ≥ 0 the usage of reserve capacity which is allocated in market B. If a is
not flexible and thus demanding reserve capacity (in the form of upward regulation) in market
B, qBa < 0. If a is flexible and thus offering reserve capacity, qBa ∈ [0, qRa ], where we denote with
qRa ≥ 0 the amount of reserve capacity which a flexible bidding agent a agrees to hold.

When a is a supplier, he supplies qAa + qBa . The maximal amount a could supply is in this case
qmaxa = qAa + qRa , where 0 ≤ qmaxa ≤ qUa . On the other hand, when a is a consumer, a consumes
qAa −qBa and the maximal amount a could consume is in this case qmaxa = qAa , where 0 ≤ qmaxa ≤ qUa .

In the remainder of this section, we explain how the reserve capacity qRa is defined in relation
to qAa . Each agent a chooses a ratio r ∈ [0, 1] per bid ba,r. With r, the reserve capacity qRa can be
described as a ratio of the binding commitment qAa and is given by:

qRa = rqmaxa (1)

For the case that a is a supplier, we can compute qRa =
rqAa
1−r by inserting qAa + qRa for qmaxa (see

above). When a is a consumer, this translates to qRa = rqAa (because qmaxa = qAa , see also above).
Let us consider an example where a submits a bid with r = 1

3 . For the case when a is a supplier,

qRa = 1
3q
A
a /

2
3 =

qAa
2 . When a is a consumer, then qRa =

qAa
3 .

At r = 0, no reserve capacity is offered in market B and a has full certainty how much he
sells or consumes after market A has cleared (qmaxa = qAa , q

R
a = 0). Thus, inflexible bidding agents

submit bids with r = 0 and offer no reserve capacity. For the special case r = 1, we define that all
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of a’s capacity up to qmaxa is flexible to be allocated as qBa in market B. Then, if a is a supplier,
qAa = 0 and qmaxa = qRa , and if a is a consumer, qRa = qAa .

2.2.2 Bid components

A bid in ABEM by a bidder a consists of a function ba,r which maps marginal prices to quantities
of power (qAa in market A and qBa in market B). The marginal value for a given quantity denotes
the cost of producing the last unit or the utility of consuming the last unit. Marginal values
are often used for bids in markets. They represent true information which is often accessible to
the bidder, but selling or buying at marginal value nonetheless yields economic surplus for the
bidder, as sellers sell all units but the last above their production costs and buyers buy all units
but the last below the utility of consuming them. Another interesting economic property is that
in a market with perfect competition, the marginal valuation actually represents the bid which
maximises surplus [28].

It includes the ratio r (see Section 2.2.1), which is unique for ba,r. A bid in ABEM also contains
lower and upper quantity limits qLa ≥ 0 and qUa ≥ 0, which are unique for a.

We restrict the function in bids to continuous linear functions. This allows for simpler optimi-
sation during market clearing [4], but limits the ability to represent non-continuous costs like the
costs of starting up or down a generator or switching from charging to discharging. Thus, ABEM
is an exchange market rather than a Pool market [21].

A bid function ba,r in ABEM defines a positive quantity for each price ρ ≥ 0 and is given by

ba,r(ρ) = δa(ρ− va) (2)

where, if a is a supplier, va denotes the reservation price below which a is not willing to sell
and the slope parameter δa is positive. If a is a consumer, va denotes the reservation price above
which a is not willing to buy and the slope parameter δa is negative. Besides being constrained
by the reservation price va, the set of well-defined outcomes is further constrained by quantities
qLa and qUa , so the function ba,r is valid only for unit prices in the interval [b−1a,r(q

L
a ), b−1a,r(q

U
a )].

2.2.3 Bid translation for market B

After the first settlement (in market A), the SO translates each accepted bid function ba,r into
a new bid function bBa , which is used on a’s behalf in market B. bBa is valid for unit prices in
the interval [ρAba,r

, ρBa,max], where we denote with ρAba,r
the unit price which bid ba,r describes for

the quantity qAa , which is at the time of translation known and fixed. Thus, ρAba,r
= b−1a,r(q

A
a ).

Furthermore, ρBa,max = b−1a,r(q
A
a + qRa ) if a is a supplier. If a is a consumer, ρBa,max = b−1a,r(q

A
a − qRa ).

bBa is formulated in the same ways as ba,r, with va in Equation 2 replaced by ρAba,r
. We also

introduce a second slope parameter ω. When a is a supplier, ω = 1 and if a is a consumer, ω = −1.
Thus, if a is a supplier, bBa has the same slope as ba,r and if a is a consumer, the slope of bBa is
inverted (with respect to the slope of ba,r), because a acts as a seller on market B. bBa is given by:

bBa (ρ) = ωδa(ρ− ρAba,r
) (3)

Figure 2 illustrates the bid translation. We note that the slope of bBa is always positive and
that the reserve price of bBa is ρAba,r

. Thus, this translation ensures that ρBa , the price a is paid for

qBa , is higher than ρAa , the price a is paid (when he is a supplier) or pays (when is a a consumer)
for qAa :

ρBa > ρAa (4)

This reflects a relation between ahead- and balancing prices which is recommended by economic
experts. For example, Oren (2000) [25] argues that balancing power is a good of higher economic
quality than day-ahead procurement because of shorter delivery time and should be priced higher.
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Figure 2: Bid translation in ABEM from market A (dashed) to market B (continuous). The part
of the bid function ba,r which is defined for quantities q ∈ [qAa , q

A
a + qRa ] (if a is a supplier) or

quantities q ∈ [qAa − qRa , qAa ] (if a is a consumer) is translated into a new bid function bBa , which is
defined for quantities q ∈ [0, qRa ]. If a is a consumer, the slope is multiplied by −1.

2.3 Market clearing in ABEM

2.3.1 Actors and bids

We consider four sets of actors: flexible suppliers FS and flexible consumers FC, as well as
inflexible suppliers IS and inflexible consumers IC. Bidders in FS and FC can provide upward
regulation - they supply more or consume less, respectively, than was allocated for them as binding
commitment in market A. They submit bids with r ∈ [0, 1]. Bidders in IS and IC do not provide
upward regulation and thus submit bids with r = 0. However, they announce extra demand after
market A has cleared, because they supply less or consume more, respectively, than was allocated
for them as binding commitment in market A. As we explained in Section 1, it is the responsibility
of the SO to secure sufficient reserve capacity in market A, in order to supply all possible extra
demand in market B.

For convenience, we consider in this work the case of one submitted bid per bidder. In principle,
each bidder can submit more than one bid, which increases the number of market clearings that
need to be performed by the SO to find the best clearing solution among all sets of choices of one
bid per bidder.

2.3.2 The constrained optimisation problem

The optimisation goal of the SO is to solve the so-called economic dispatch problem, which is to
minimise costs of electricity generation. Given all submitted bids (for each bidder a, the bids ba,r
and bBa ), the goal is to find the prices which minimise the overall objective function given by:

arg min
PA,PB

[ ∑
a∈FS∪IS

(
qAa ρ

A
a + qBa ρ

B
a

)]
(5)

where PA and PB denote the sets of unit prices that all bidders are allocated in market A and
market B, respectively, and ρAa and ρBa denote the prices for individual bidders a. It is implied
that for each bidder a, qAa = ba,r(ρ

A
a ) and qBa = bBa (ρBa ).

This optimisation problem cannot be solved during the market clearing in market A (the first
settlement), because the bids from inflexible actors in IS and IC, in which they describe their
extra demand, are not known yet. The outcomes of market B (the second settlement), namely
the quantities qBa and the prices ρBa , can only be taken into account once these bids are known.
Therefore, we break up this ex-post optimisation problem into two ex-ante optimisation problems,
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one that can be solved during the market clearing for market A and another that can be solved
during the market clearing for market B.

Market A In the optimisation problem for the market clearing in market A (for binding com-
mitments and reserve capacity), the SO minimises the costs which are known for sure at the time
of this market clearing and, to an extent which the SO chooses, the costs he expects to occur in
the market clearing of market B. This optimisation problem is given by:

arg min
PA

[ ∑
a∈FS∪IS

qAa ρ
A
a + γE[CB ]

]
(6)

where E[X] denotes the expectation of X, CB denotes costs of using reserve capacity in

market B (CB =
∑FS∪FC
a qBa ρ

B
a ) and γ ∈ [0, 1] is a weight parameter which the SO can choose.

By estimating CB , the SO estimates costs in market B, but does not include the price set PB as
optimisation variables.

If the SO chooses γ = 0, there is no need to estimate CB and the outcomes of market B are not
considered during the clearing in market A. If he chooses γ > 0 and also estimates CB close to the
actual CB , the SO can improve the solution to the overall economic dispatch problem in Equation 5
by buying more power on market A than inflexible consumers ordered, in the expectation that
some inflexible actors will have to order more expensive balancing power in market B. This can
reduce overall costs because it holds for each flexible actor a that ρBa > ρAa (see Section 2.2.3).

We now list the constraints that every valid solution needs to respect. First, supply needs to
equal demand:∑

a∈IS
(qAa + E[qBa ]) +

∑
a∈FS

(qAa + qBa ) =
∑
a∈IC

(qAa + E[qBa ]) +
∑
a∈FC

(qAa − qBa ) (7)

If the SO chooses γ = 0, the SO does not need to consider (expectations of) qBa and this
constraint can be simplified to: ∑

a∈FS∪IS
qAa =

∑
a∈FC∪IC

qAa (8)

Furthermore, the SO needs to make sure that each supplier a will stay within his capacity
constraints:

qLa ≤ qAa ≤ qUa (1− ra) (9)

where ra is the ratio between binding commitment and reserve capacity (see Section 2.2.1)
from a’s bid. Similarly, each consumer a needs to stay within his capacity constraints:

qLa + qAa ra ≤ qAa ≤ qUa (10)

Flexible suppliers and consumers are allocated reserve capacity qRa , as described in Section 2.2.1.
The overall reserve capacity needs to be at least as high as qR, the overall reserve capacity, which
is determined by the SO (see Section 1). Hence, we add the final constraint∑

a∈FS∪FC
qRa ≥ qR (11)

We could have used = instead of ≥, but this is not necessary, as the cost optimisation is ensured
by minimising costs of supply.
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Market B In the optimisation problem for the market clearing in market B, the SO minimises
the costs for the use of reserve capacity. Before market B is cleared, inflexible actors a ∈ IS ∪ IC
announce their extra demand qBa (flexible actors do not need to do that). The SO translates each
accepted bid ba,r from flexible actors (submitted during the first settlement in market A) into a
bid bBa (to be used in market B), as described in Section 2.2.3. These translated bids are used to
minimise the objective function given by

arg min
PB

[ ∑
a∈FS∪FC

qBa ρ
B
a

]
(12)

The only constraint to this optimisation requires that all supply equals all demand:∑
a∈IS

(qAa − qBa ) +
∑
a∈FS

(qAa + qBa ) =
∑
a∈IC

(qAa + qBa ) +
∑
a∈FC

(qAa − qBa ) (13)

2.3.3 Uniform and discriminative pricing

There exist two major approaches to find prices from bids in auctions - uniform pricing (UPA)
and discriminative pricing (DPA) [17]. If a UPA design approach to market clearing is used, then
the price sets PA and PB contain the same prices ρAa and ρBa for all actors a. In each of the
two markets, the SO adds up (with respect to quantities) all supply functions to one aggregated
supply function S. In market A, these are the functions ba,r per bidder a ∈ FS ∪ IS and in
market B, these are the functions bBa per bidder a ∈ FS ∪ FC. The SO also adds up all demand
functions to one aggregated demand function D. In market A, these are the functions ba,r per
bidder a ∈ FC ∪ IC and in market B, these are the functions bBa per bidder a ∈ IS ∪ IC.

In both markets, the price ρ for which S(ρ) = D(ρ) is the uniform clearing price. Each actor
a buys or sells the quantity which can be looked up on his relevant bid function (ba,r or bBa , see
above) at price ρ. Should that quantity be lower than 0, a sells nothing. Should that quantity be
higher than a maximal limit qmaxa for this bid, a sells qmaxa at price ρ.

Sandholm and Suri (2002) [29] showed that finding ρ is not computationally expensive and
always possible, under two conditions. First, all supply functions need to be monotonically in-
creasing and all demand bids need to be monotonically decreasing, which is a condition that the
bid functions we describe in Section 2.2 fulfil. Second, the bid functions should either be linear
or piecewise linear. We deal with linear functions, so this condition is fulfilled, as well (capacity
constraints like we described in Constraints 9 and 10 are also used in [29]). However, Constraint 11
may render the solution at price ρ invalid. The SO can request that actors with flexibility submit
at least one bid with the value for r larger than some minimal rm which the SO chooses.

Finding prices in a DPA approach is computationally more elaborate, as there is now a distinct
price per bidder a in both PA and PB . However, in [29] it is also shown that the problem of
finding optimal discriminatory prices in a two-sided auction with both supply and demand curves
for multiple indistinguishable units can be formulated as a convex quadratic program with linear
constraints. The solution to such a program can be found in polynomial time using general
techniques, e.g. with the technique described in [7]. The only condition is that curves are linear,
which is given in our context, see Section 2.2.2. All the constraints we formulated in Section 2.3.2
are linear. As described for the UPA clearing, Constraint 11 can make some solutions invalid and
the SO might need to request that some bids with minimal values of r are submitted.

2.4 Advantages of ABEM by design

This section describes three advantages which ABEM has by design. Later, Section 4 also describes
advantages & disadvantages experimentally.

The complexity of bid construction is reduced. In the ABEM mechanism, bidders only
submit one bid, whereas other comparable mechanisms require the submission of two separate
bids, one for binding commitments and one for reserve capacity (refer to Section 1). This is
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made possible by the bid translation, described in Section 2.2.3. We will show concrete examples
of the bidder’s optimisation problem in our decision-theoretic experiments later on, where the
simplification of the objective function becomes apparent formally.

Bidders can bid price functions to both markets, potentially their marginal costs or
valuation. In ABEM, the function which is submitted to market A is resubmitted to market B.
The knowledge of the allocation in market A is used in the translation process (see Section 2.2.3).
This means that a price function is used in both markets, rather than a constant price in market
B (which is the case in some real-world versions of comparable mechanisms).

Being able to submit only one price function also enables bidders to submit their marginal cost
or utility function as bid, which is not feasible in mechanisms which require the submission of two
independent bids. The expression of the valuation is of course limited by our formal definition of
price functions in Section 2.2.2. For example, costs of ramping up or down and switching costs
can not be expressed, which has little effect on some flexible technologies (e.g. batteries) and more
effect on others (e.g. coal power plants).

Flexible consumers are guaranteed that offering reserve capacity increases their over-
all utility. Flexible actors should be incentivised to offer reserve capacity. We will show by proof
that the following proposition holds:

Proposition 2.1. For a flexible consumer, offering reserve capacity is guaranteed to be profitable,
if he submits his marginal utility function.

As a benchmark, we consider a as an inflexible consumer, who buys qAa and does not sell
anything on market B. His surplus SUR

′

a is given by:

SUR
′

a =

∫ qAa

q=0

(
ρa(q)− ρAa

)
dq (14)

where ρa(q) = b−1a,r(q) denotes the unit price at which a’s bid ba,r describes the quantity q.

Figure 3: a’s bid ba,r and the residual functions SAres and DB
res. The dotted part of bid ba is

translated into bid bBa . qAa and qBa are determined by intersection of ba,r with SAres and DB
res.

Now we consider the case in which a is flexible and active on market B, selling any qBa ∈ [0, qRa ]
at price ρBa . Let us denote a’s utility in this case by U

′

a. We calculate U
′

a by subtracting from
SUR

′

a the loss of utility for selling qBa less than qAa and adding the revenues from selling qBa . For
illustration, Figure 3 shows in a grey area both the lost utility (on the right) and the revenues
from selling qBa (on the left). U

′

a is given by:
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U
′

a = SUR
′

a −
∫ qAa

q=qAa −qBa
ρa(q) dq + qBa ρ

B
a

= SUR
′

a +

∫ qBa

q=0

(
−ρa(q + qAa − qBa ) + ρBa

)
dq

(15)

U
′

a is guaranteed to be larger than SUR
′

a, if we can show that ρa(q + qAa − qBa ) ≤ ρBa for all
q ∈ [0, qBa ]. This is the case, because ρa(0 + qAa − qBa ) = ρBa and the slope of ba,r is negative.

Finally, we can now show that the ABEM bid mechanism guarantees that offering reserve
capacity increases a’s utility, compared with an inflexible consumer that buys the same amount of
electricity. As a benchmark, let us again assume that a is inflexible and offers nothing to market
B (and thus qRa = 0). Here, we assume that a buys exactly qAa − qBa in market A. We denote the
surplus for a in this case by SUR∗a, given by:

SUR∗a =

∫ qAa −q
B
a

q=0

(
ρa(q)− ρBa

)
dq (16)

where in this example, ρBa = ρa(qAa − qBa ) denotes the price a pays for qAa − qBa on market A
(refer also to Figure 3).

Let us now consider that a acts as a flexible consumer and offers qRa on market B. To make
this case comparable to our benchmark case (which led to SUR∗a), we assume that a first buys qAa
and then sells qBa ∈ [0, qRa ]. This leaves a with qAa − qBa for his own usage, just as in the benchmark
case. We denote the utility a has in this case with U∗a . There are two differences in U∗a with
respect to SUR∗a: First, a pays a lower unit price for his consumption of qAa − qBa , namely ρAa
instead of ρBa , and if the price difference of ρBa − ρAa is positive, a’s utility will increase. Second, a
sells qBa instead of consuming it himself, and thus adds U

′

a − SUR
′

a to his utility (see above). U∗a
is given by:

U∗a = SUR∗a + (ρBa − ρAa )(qAa − qBa ) + U
′

a − SUR
′

a (17)

We have shown above that U
′

a−SUR
′

a is positive. We now show that also (ρBa − ρAa )(qAa − qBa )
is positive. This is the case because qAa − qBa ≥ 0 and ρBa ≥ ρAa (see Section 2.2.3).

The intuition behind this proof is that buying qAa and then selling qBa is better for A’s utility
than both only buying qAa and only buying qAa − qBa in market A. The first reason for this is that
the more a buys in market A, the more the price per unit bought decreases (because the slope of
ba,r is decreasing). The second reason is that it is profitable to resell a unit in market B which
was bought in market A, because ρBa > ρAa , a property of ABEM we established in Section 2.2.3.

Proposition 2.1 is an important baseline result, especially for markets with high levels of
competition. However, we are not able to make a similar claim about a flexible supplier. Let us
assume that a has no choice which bid function ba,r to submit (i.e. submitting his marginal costs
is one possible scenario given this assumption). Then, a prefers to sell a quantity q on market A
over selling q partly on market A and partly on market B. Let ρAa denote the price a is paid for qAa
(ba,r(ρ

A
a ) = qAa ) and let ρBa denote the price a is paid for qBa in market B (bBa (ρBa ) = qBa ). Given

the way bids in ABEM are translated between market A and market B, ρBa is also the price a
would be paid in the case where he sells all of qAa + qBa already in market A (ba,r(ρ

B
a ) = qAa + qBa )).

The difference in a’s profits if he sells either qAa + qBa on market A or if he first sells qAa on market
A and then qBa on market B is qAa (ρBa − ρAa ). Because ρBa > ρAa (see above), a clearly prefers the
first option.

This shows that flexible suppliers cannot be guaranteed that offering reserve capacity increases
their profits. Offering reserve capacity can, however, be profitable in many market settings and a
will have to consider this possibility when constructing his bid.
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3 A parametrised market model for decision-theoretic bid
optimisation

3.1 Aggregation of other actors

The bidding behaviour of all other market participants besides a is modelled as parametrised
functions. For brevity of this market model, these functions are aggregated on both demand
and supply side. Aggregating actors in this way is based on the assumption that the average
behaviour is sufficiently predictable. Good predictions can be made either when the number of
actors is high or individual decision-making of a smaller group of actors can be estimated (for
instance by experience).

Following [27], an aggregated bid function is the sum of curves of individual bid functions. Let
D(ρ) → R be an aggregated demand function and S(ρ) → R an aggregated supply function for
unit prices ρ. We will use D, S and their parameters with the superscripts A for market A and B

for market B. If needed for clarification, we might use the subscript −a to denote explicitly that
the function does not include a. D and S for markets A and B are given by

DA(ρ) :=

[
DA
max − αAρ

]
≥0

SA(ρ) :=

[
βA(ρ− ρAmin)

]
≥0

(18)

DB(ρ) :=

[
DB
max − αBρ

]
≥0

SB(ρ) :=

[
βB(ρ− ρBmin)

]
≥0

(19)

where [X]≥0 denotes the maximum of X and 0, DA
max, D

B
max are constants denoting the max-

imal demand, ρAmin, ρ
B
min are constants denoting the minimal unit offer price and αA, αB as well

as βA, βB ∈ [0, 1] are slope parameters.
We thus have eight parameters to describe this market model. Some relations between pa-

rameters, however, might be assumed. For example, DB
max is probably related to DA

max, ρBmin is
probably not lower than ρAmin and the slopes of these accumulated functions can probably assumed
not to change significantly between market A and market B. We will make specific assumptions
for such relations when we make use of this market model in experiments.

3.2 Residual functions

Given DA, DB , SA and SB , we model the residual functions that a faces in markets A and B. In
economic theory, residual supply is the full market supply minus the quantity bought by other
actors at each unit price ρ and residual demand is the full market demand minus the quantity
supplied by other actors at each unit price ρ. Following [27], Equation 20 first shows the residual
demand function DA

res (for when a is a supplier) and then the residual supply function SAres (for
when a is a consumer). Finally, the residual demand function DB

res is shown, which a faces in
market B.

DA
res(ρ) = DA(ρ)− SA−a(ρ)

SAres(ρ) = SA(ρ)−DA
−a(ρ)

DB
res(ρ) = DB(ρ)− SB−a(ρ)

(20)
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Table 1: Summary of market parameters - we use superscripts A or B to denote usage in market
A or B, respectively.

Parameter Description
Dmax maximal demand of demand functions DA

−a and DB

α slope of demand functions
ρmin min. price of supply functions SA−a and SB−a
β slope of supply functions
k noise parameter

3.3 Market clearing

We can now discuss how supply and demand bids are cleared in our decision-theoretic market model
representation. The prices ρAa and ρBa , which allocate from a the quantities qAa and qBa , respectively,
are found at the intersection of a’s bid with the residual functions. Similar to Equation 20,
Equation 21 first shows clearing in market A, for the two cases of a being a supplier or a consumer,
and then clearing in market B, where a acts as a supplier:

qAa = DA
res(ρ

A
a ) = ba,r(ρ

A
a )

qAa = SAres(ρ
A
a ) = ba,r(ρ

A
a )

qBa = DB
res(ρ

B
a ) = bBa (ρBa )

(21)

3.4 Uncertainty

a approximates the residual supply and demand functions DA
res (if a is a supplier), SAres (if a is a

consumer) and DB
res (in both cases) with some uncertainty. We model this by noise parameters

kA and kB , with which we multiply the minimal price of suppliers in SA−a and SB−a (refer to
Equations (18) and (19)). Functions DA

res, S
A
res and SA−a prescribe an additional parameter kA

and functions DB
res and SB−a prescribe an additional parameter kB . SA−a and SB−a are then given

by:

SA−a(ρ, kA) = βA(ρ− ρAminkA)

SB−a(ρ, kB) = βB(ρ− ρBminkB)
(22)

For the likelihood of individual value of kA and kB , a needs to model two probability distri-
butions probA : R→ [0, 1] and probB : R→ [0, 1], respectively.

3.5 Surplus functions for a

We now model surplus functions for a, given market outcomes, which are useful in the economic
analysis of bidding strategies in multi-unit commodity markets with unit prices (like ABEM).
This work assumes that the marginal cost function of a supplier is monotonically increasing and
that the marginal utility function of consumers is monotonically decreasing. This follows from
the economic assumption that those units which cost the least to produce are produced first and
that each consumed unit will increase utility less than the one which was consumed before it.
We consider only variable costs and do not model fixed costs explicitly. This leads us to model
producer and consumer surplus (which we define below) instead of economic, long-term profit.

Producer’s surplus is defined as the revenue that a supplier receives for his delivered quantity
minus the variable costs of producing it (where revenue is defined as quantity times unit price).
Consumer’s surplus is defined as the utility derived from consuming a quantity of goods (which is
the highest value that the consumer is willing to pay) minus the price he actually paid for it.

Let a bidding agent a represent his total costs of generating a quantity q of electricity or,
alternatively, his total utility of consuming a quantity q of electricity, by a quadratic valuation
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function Va, e.g. as advocated for in [4] and modelled in [32]. Va and the marginal valuation
function V ′a (the derivative of Va) are given by

Va(q) = vaq + δaq
2

V ′a(q) = va + 2δaq
(23)

where va ∈ R and δa ∈ R are coefficients. Furthermore, δ > 0 for cost functions and δ < 0 for
consumption utility functions. va denotes the value of the first unit in q and δa denotes (half of)
the change in value of every further unit produced or consumed.

a as a flexible supplier: In market A, revenues are qAa ∗ρAa and the total costs of producing qAa
are given by Va(qAa ). In market B, revenues are qBa ∗ ρAa and the total costs of generating qBa are
the costs for generating the last qBa units in qAa + qBa . Therefore, we introduce a total cost function
V Ba for qBa that calculates the costs on Va(qAa + qBa ) for qBa ∈ [0, qRa ]. V Ba is given by:

V Ba (qAa , q
B
a ) = Va(qAa + qBa )− Va(qAa )

= (va + 2δaq
A
a )qBa + δa(qBa )2

(24)

Then, the surplus functions are given by:

surplusAa (ba,r, k
A) = ρAa q

A
a − Va(qAa )

surplusBa (bBa , ba,r, k
B) = ρBa q

B
a − V Ba (qAa , q

B
a )

(25)

where bBa is either the result of the translation of bid function ba,r for market B in the ABEM
mechanism (see Section 2.2.3) or the price ρBa , chosen by a in the BENCH mechanism (see Sec-
tion 4.1.1). qAa and ρAa , as well as qBa and ρBa , are determined through market clearing (see
Section 2.3), and thus ba,r and kA, as well as bBa and kB , are implicit in the right-hand formulae.
Note that surplusBa is coupled to the results of market A (and thus needs to consider ba,r), as qAa
is used in V Ba as well as in the determination of qRa .

a as a flexible consumer: a’s overall utility Ua is given by:

Ua = Va(qAa − qBa )− qAa ρAa + qBa ρ
B
a (26)

For surplusAa , we consider a’s valuation of consuming qAa and the costs of buying qAa . For
surplusBa , we consider the economic reward for reducing demand and subtract the costs of a’s
provision of reserve capacity by the (lost) utility of the last qBa units in qAa . We model this lost
utility via the function V Ba , which is given by:

V Ba (qBa , q
A
a ) = Va(qAa )− Va(qAa − qBa ) (27)

Then, the surplus functions are given by:

surplusAa (ba,r, k
A) = Va(qAa )− qAa ρAa

surplusBa (bBa , ba,r, k
B) = qBa ρ

B
a − V Ba (qBa , q

A
a )

(28)

3.6 The bid optimisation problem

The surplus maximisation problem for a is given by:

arg max
ba,r,bBa

[ ∫ kAmax

kA=kAmin

probA(kA) ∗

(
surplusAa (ba,r, k

A)

+

∫ kBmax

kB=kBmin

probB(kB) ∗ surplusBa (bBa , ba,r, k
B) dkB

)
dkA

] (29)

12



Note that in the ABEM mechanism, bBa is not a choice to be made by a, but is translated from
ba,r and therefore the optimisation problem is considerably reduced in complexity, when compared
to a mechanism where bids ba,r and bBa are independent.

4 Experiments

4.1 Experiment models

4.1.1 The benchmark mechanism BENCH

We model a benchmark mechanism (which we will refer to as BENCH from now on) for a to take
part in, which is modelled in resemblance to existing real-world implementations of electricity
markets (e.g. [22] or [33]). Like ABEM, the BENCH mechanism is a two-settlement mechanism
with integration of the trade of reserve capacity and simultaneous bidding. Unlike ABEM, BENCH
requires from a two separate bids to market A and market B.

Furthermore, BENCH also requires from a a price function ba,r as bid to marketA (like ABEM),
but only allows bBa , the bid to market B to represent a constant price ρBa (unlike ABEM). In both
mechanisms, the reserve capacity qRa is determined by a bid parameter, and the allocation in
market A, as described in Section 2.2.1. Figure 4 illustrates the bids to BENCH for both cases (a
representing a supplier or a consumer).

quantity

unit

price

v
a

b
a,r

q
A

a

max

a

B

q
a

R

(a) a is a supplier

quantity

unit

price

v
a

b
a,r

q A

a

a

maxB

q
a

R

(b) a is a consumer

Figure 4: Bids in the BENCH format. Bid ba,r to market A (dashed) is a function and the bid
ρBa to market B (continuous) is a constant price. Note that ρBa is independent from the bid ba,r,
besides being constrained in quantity by qRa . For bids in ABEM, see Figure 2.

Both the ABEM and the BENCH mechanism can be used for a within the market model
described in Section 3, without changes to the modelling of other actors.

4.1.2 Translation of a’s valuation of electricity into bids

We now show how the bidder agent a translates V ′a, his marginal value function for electricity
(refer to Section 2.2.2) into a bid function to either the ABEM or BENCH mechanism. We also
show how a can alter this bid function for surplus optimisation.

Bid functions in both the ABEM and the BENCH mechanism map unit prices to quantities.
The bid of marginal valuation, bmara , is therefore given by the inverse of V ′a:

bmara (ρ) = V ′a
−1

(ρ) =
1

2δa
(ρ− va) (30)

In order to construct a bid that maximises his surplus, a can submit a bid that deviates from
bmara - in particular, a could deviate from both his va and δa values. For simplicity, we fix δa and
restrict a to adapt only the parameter va. In [2], this restriction of the function parametrisation in
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a market mechanism is called “c-parametrisation” (because they used “C” as a parameter name
where we use “va”) and previous literature in which this restriction was also used is described. In
a bid ba,r, we denote the adapted va as v∗a. ba,r is given by:

ba,r(ρ) =
1

2δa
(ρ− v∗a) (31)

In the BENCH mechanism, a has, next to v∗a, also to choose ρBa , his constant price bid for
balancing power (see Section 4.1.1).

4.1.3 Market power of a as a flexible supplier

Market power is defined as “the ability to alter profitably prices away from competitive levels” [20].
Nicolaisen et al. (2001) [24] distinguish structural market power (which exists in the case where
all traders reveal their marginal costs) from strategic market power (which exists in the case where
traders misrepresent marginal costs in their bids). We measure a’s realised strategic market power
by calculating the Lerner index ∈ [0, 1], defined by dividing per-unit profits by unit price. As the
index is defined for a monopolist, we multiply it by a’s market share to compute the Lerner index
for an oligopoly [31]:

lerner(qAa , q
B
a ) =

ρa(qAa , q
B
a )− costsavga (qAa , q

B
a )

ρa(qAa , q
B
a )

sa(qAa , q
B
a ) (32)

where ρa denotes the average unit price which a earns when selling the quantities qAa and qBa ,
costsavga is the average production costs per unit and sa is a’s market share. In our case:

ρa(qAa , q
B
a ) =

qAa ρ
A
a + qBa ρ

B
a

qAa + qBa

costsavga (qAa , q
B
a ) =

costsfulla (qAa + qBa )

qAa + qBa

sa(qAa , q
B
a ) =

qAa + qBa
qAa + qA−a + qB−a + qBa

(33)

where costsfulla denotes the full production cost function of a and qA−a denotes the amount which
all suppliers but a sold in market A (when a is a supplier) or the amount which all consumers
bought (when a is a consumer) in market A. qB−a denotes the amount which all suppliers but a
sold in market B.

Note that this way of modelling market power works well for a supplier, but is not defined for
the perspective of a flexible consumer who also acts as a supplier in market B.

4.2 Experiment setup

4.2.1 Oligopolistic market scenario

First, we define an oligopolistic market scenario, which could for instance resemble the situation
in a microgrid. Both microgrids and wholesale markets resemble oligopolistic markets, because
they are dominated by a small number of players.

Supply side in market A - In [32], several generators and a generic buyer profile are modelled
for a simulation of 24 hours. From this study, we model an average generator g and the sum of
aggregated demand. Our chosen settings correspond to hour 8am in [32]. We chose that hour as it
is similar to most other hours and not an outlier. As was noted earlier, our experiments perform
a one-shot auction. Note also that, because we use settings from a wholesale market study, the
prices in our model are in $/MWh. However, the general findings of this model can also hold for
markets which trade kWh, as we only use settings to model relative quantities and slopes of cost
functions.

14



The average generator g has a maximal production of qUg = 300 units, a minimum unit cost
vg = 18.8 and δg, the slope parameter of g’s marginal cost function, is given by δg = 0.008. The
model in [32] includes five generators. Thus, to arrive at the average slope of SA, we multiply
the slope of g’s marginal costs by five: βA = 5

2δg
. When we model a as a supplier, then SA−a, the

aggregated function without a, has the slope βA = 4
2δg

. Finally, we assume that the minimal unit

price of SA−a is 10% higher than g’s minimal unit costs: ρAmin = 1.1vg.
Demand side in market A - The sum of the demand of all buyers in [32] is 900, or 3qUg . We set

DA
max = 3qUg (1 − rm). All studies in [18] measured the price elasticity of demand, which denotes

the percentage change in quantity demanded in response to a one percent change in price. [18]
distinguishes between “long-run” and “short-run” demand. At the time when he considers the
price, a consumer with long-term demand has more time until the time of consumption than a
consumer with short-term demand. Thus, having short-term demand allows for less substitution of
demanded power with any alternative (e.g. shifting demand to a later time), similar to the situation
in a balancing market. The survey reports price elasticities between 0.7 and 2.1 for “long-run”
scenarios (which we use for market A) and between 0.03 and 0.5 in “short-run” scenarios (which
we use for market B). We take αA = 1.0 and αB = 0.2.

Coupling of market B - Two parameters of market B are determined by the outcome of
market A: the minimum price ρBmin and the maximal reserve capacity DB

max. ρBmin is determined
as the price at which demand and supply in market A (without a taken into account) intersect
(DA
−a(ρBmin) = SA−a(ρBmin)). We assume that DB

max is related to demand in market A via a ratio

rm, such that DB
max =

rmq
A
C

1−rm , where qAC denotes the sum of all binding commitments of consumers
in market A (without a taken into account, if he is a consumer).

Reserve capacity - The SO needs to allocate sufficient reserve capacity from all market partic-
ipants in market A, such that qR ≥ DB

max. For this, he might approximate rm from experience
(refer to Section 1). We assume he is successful in this. For the purposes of this decision-theoretic
model, we need to decide which level of reserve capacity agent a bids on1, i.e. which r is set in his
bid ba,r. For the simplicity of our setup, we assume that the SO can approximate rm perfectly
and requires a to use rm in his bid ba,r with r = rm. This modeling choice assumes that r is
technically feasible with the generation or consumption devices that a has. We will use two valued
for r, 0.1 and 0.3 (see Section 4.2.4). While the smaller value of r = 0.1 should be feasible with
almost all devices, the higher value of r = 0.3 is mainly possible with devices that have little costs
of switching between states, e.g. batteries. Of course, a more detailed model would assume that
bidders have individual preferences which values for r they prefer, e.g. based on their devices
or previous history. In such a market clearing mechanism, bidders can submit several bids with
different values for r. We discuss this possibility in Section 2.3 and also propose it for future work
(see Section 5).

4.2.2 Competitive market scenario

We also design a second scenario (using the oligopolistic scenario as a starting point), in which we
model two trends that are considered very important for smart grids. First, we make the scenario
more competitive: we increase both the number of suppliers and demand responsiveness tenfold
(which affects αA and βA). Second, we add demand (e.g. to model increasing market penetration
of electric vehicles and heat pumps) by doubling the overall demand for electricity (which affects
DA
max). Table 2 lists all default parameter values for the two scenarios. Note that the parameters

for market B depend on the parameters of market A.

4.2.3 Settings for bidding agent a

Participation in an ABEM market is simulated for two types of bidders, a flexible supplier and a
flexible consumer. They are flexible to supply more or consume less, respectively, on short notice

1All inflexible actors use r = 0 in their bids. As all market participants other than a are modelled by uncon-
strained functions, we do not need to decide which values of r the flexible participants bid.

15



Table 2: Default settings for parameters in the oligopolistic and competitive scenario.
Name oligopolistic scenario competitive scenario
DA
max 3qUg (1− rm) 6qUg (1− rm)
αA 1.0 10.0
ρAmin 1.1vg 1.1vg
βA 5

2δg
50
2δg

DB
max

rmq
A

1−rm
rmq

A

1−rm
αB αA

5
αA

5
ρBmin ρA−a ρA−a
βB βA βA

rm 0.1 or 0.3 0.1 or 0.3

(this ancillary service is usually referred to as “upward regulation”).
In order to model a as a flexible supplier, we parametrise a as an average generator, according

to [32] (see Section 4.2.1). We set va = vg, δa = δg and qUa = qUg .

We model a as a flexible consumer in the following way: His maximum capacity is qUa = qUg ,
same as for our average generator g (see Section 4.2.1). For the slope of the valuation function of
a flexible consumer, literature does not provide us with helpful pointers. For this work, we choose
δa = −0.008, mirroring δg, the slope of the cost function of g. Finally, we aim at modeling a’s
utility function Va such that a’s valuation is close to the market valuation and set va = ρAB−a ∗ 1.1.
ρAB−a is the average price over markets A and B, under given parameter settings, if a is not present.
The multiplication by 1.1 roughly compensates for the slope δa.

4.2.4 Method

In the experiments, we evaluate both the oligopolistic and the competitive market scenario using
a Monte-Carlo simulation. We now describe the generation of specific parameter settings, the
method of sampling traces in them, and which steps bidding agent a follows to find optimal bid
parameters.

Parameter settings - We create several relevant settings in both market scenarios by varying
the value of one parameter a a time, where the other parameters remain at the default setting
from Table 2. In both scenarios, φ ∈ [0, 3] (φ is the uncertainty scaling parameter and will be
explained below), ρAmin ∈ [ 23vg,

3
2vg] and DA

max ∈ [ 23D
A,base
max , 32D

A,base
max ], where DA,base

max denotes the
default setting for DA

max from Table 2. Note that ρBmin and DB
max are formulated in relation to

ρAmin and DA
max, respectively. Finally, we run simulations with rm = 0.1, which is a reserve level

observed often in current markets, as well as rm = 0.3, a setting that is not unrealistic in the
market scenarios we can expect in the upcoming 10 years, at least for the actors that can offer
significant reserve power (for example if they operate batteries or gas power plants).

Sampling - We sample the outcomes for each setting 100 times. Each sample contains a new
pair of the noise parameters kA and kB , which influence the position of the residual functions that
a faces with respect to quantity (see Section 3.4). Each pair is generated by the Mersenne twister
pseudo-random number generation algorithm. We assume that the two probability distribution
functions probA and probB are independent from one another. Also, we assume they model normal
distributions and we thus have to make two choices: how to set means and standard deviations
for the distribution functions of both kA and kB . First, we set both means to 1, which is the
value for which there is no noise, compare Equation 22. Second, we define the standard deviations
sA and sB such that the position of the residual function for a in the given market is changed
by a certain amount (the amount is specific to the market setting). We explain this definition
using kB in market B as an example. At a noise value of kB = 1, no noise is present. Residual
demand is not willing to buy from a above the price ρB−a (DB

res(ρ
B
−a, 1) = 0). We define sB such

that DB
res(ρ

B
min, 1 − 3sB) = 0. Thus, a value of kB = 1 − 3sB repositions DB

res downwards along
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the quantity axis such that residual demand is not willing to buy from a above the price ρBmin.
Finally, in order to model varying degrees of noise, we create additional parametrised settings,
where we vary sA and sB . To create these settings, we multiply both sA and sB with a scaling
parameter φ ∈ [0, 3] (in default settings, φ = 1).

Finding optimal bid parameters - in Section 4.1.2, we describe that bidding agent a has to
optimise one (in the ABEM mechanism) or two (in the BENCH mechanism) bid parameters. He
does this in two steps. First, a performs a brute-force search on parameter settings for his bid(s).
a evaluates 100 evenly-spaced values for v∗a (in his bid to market A) in the range [va, ρ

A
max] when a

is a supplier or [ρAmin, va] when a is a consumer. Furthermore, when participating in the BENCH
market, a evaluates, for each of the 100 values he evaluated for v∗a, 100 evenly-spaced values for
ρBa (his bid to market B) in the range [pAmin, ρ

B
max]. Here lies the main difference in the time it

takes to compute a bid with optimal expected value. In our experiments, optimising a bid in the
ABEM mechanism took around a minute, while optimising bids to the BENCH mechanism took
up to around one hour on a standard desktop PC.

The second step of the bid optimisation is to refine the best solution from the brute-force
search. Starting with the most promising bid(s) found so far (with respect to his expected surplus),
a applies a downhill simplex algorithm [23] to maximise the expected surplus further.

During the evaluation of each value setting, a sets kAmin = 1 − 3sA, kAmax = 1 + 3sA, kBmin =
1− 3sB and kBmax = 1 + 3sB (refer to Equation 29).

4.3 Results and Discussion

4.3.1 Agent a as a flexible supplier

We begin with confirming that, for several general economic properties, the market model behaves
as expected in reality. First, a has positive surplus in both mechanisms and across all settings. a’s
surplus also correlates with settings like one would expect. It is positively correlated to changes
in δa, DA

max and ρAmin and negatively correlated to rm, α
A and βA. Second, a’s presence increases

competition as he can offer electricity below market price. We simulated the markets without a
(thus decreasing the number of suppliers by one). As should be expected, the aggregated unit
price (the sum of all sold units in both markets divided by the sum of money paid by consumers)
is significantly higher in these settings than it is with a’s presence. Finally, in comparison to the
oligopolistic scenario, the competitive scenario has a lower aggregated market price, as well as
lower market power and surplus for a.

We now turn to two important observations, concerning notable differences or similarities in
outcomes when a takes part in either the ABEM or the BENCH mechanism:

Observation 1: Agent a reaches comparable surplus in both mechanisms across a
wide range of market conditions, but shows different bidding behaviour. The outcomes
for a are different, between both mechanisms, in terms of quantities a supplies and prices a is
paid. The differences are most prominent in market B and we now note two notable ones. First,
the results for a in market B vary mostly in price in ABEM, while in BENCH, they vary mostly
in quantity (see Figure 5 for two examples). Second, a in the BENCH mechanism does not sell
any qBa in settings with high uncertainty (φ > 1.5), because he charges a price that is too high for
the market.

However, a’s surplus does not differ significantly2 across all settings when we let a take part
in the ABEM or BENCH mechanism. The only exceptions are in the oligopolistic scenario when
the setting has high values for DA

max (where a has higher surplus in ABEM) or in both scenarios
when the setting has high values for ρAmin (where a has higher surplus in BENCH).

Observation 2: The ABEM mechanism substantially reduces market prices and mar-
ket power in exploitable settings. In the default settings, market power measurements for

2We performed Student’s T-Tests and tested for p ≤ 0.01.
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(a) oligopolistic scenario, rm = 0.3 (b) competitive scenario, rm = 0.3

Figure 5: Sampled outcomes for a in default settings. The outcomes of different runs have been
labelled 1 through 4 for convenience.

agent a in the ABEM and BENCH mechanism show no significant differences. The biggest oppor-
tunities for a to exercise market power exist in settings with larger values for ρAmin, because then
the difference between offer prices of S−a and a’s costs is high and a can thus increase his surplus.
The settings in which ρAmin ≥ 24 show by far the highest aggregated market prices, as well as
market power and surplus for a. In these settings, a exploits this opportunity less when he uses
the ABEM mechanism (see Figure 6 for an example). The differences in a’s market power between
the ABEM and the BENCH mechanism in these settings are significant, with the exception of the
oligopolistic scenario where rm = 0.1. This observation also aligns with some differences in surplus
which we reported in observation 1 (in settings with high values for ρAmin).

(a) Aggregated unit prices across both markets. (b) Market power of a.

Figure 6: Effects of increasing prices of a’s competition in the competitive scenario, rm = 0.3.
Results shown with +

−1 standard deviation.

Specifically, a in ABEM is lowering the price ρAa on market A, and as a result the aggregated
market prices are lower than in the BENCH mechanism. Note that the most quantity is sold on
market A and thus lowering ρAa has a strong effect. See Figure 6a for the most substantial case,
where the presence of a when using the ABEM mechanism has an impact on aggregated market
prices which is up to 2.7 times larger as when a takes part in the BENCH mechanism. The results
also show a clear reduction in market power. In the default settings (ρAmin = 20.68), a has the same
market power in both mechanisms. However, in settings with ρAmin ≥ 24, a gains substantially less
market power with respect to the default setting when taking part in the ABEM mechanism and
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therefore has less market power than when taking part in the BENCH mechanism. See Figure 6b
for the most substantial case, where a has up to 11% less market power in the ABEM mechanism.

Discussion: First, the mechanisms ABEM and BENCH prescribe different bid formats for mar-
ket B. This leads to different bidding behaviour by a in both markets (see observation 1). In
market B, agent a in BENCH bids a constant price ρBa and thus the results differ only along the
quantity axis (for qBa ). Agent a in ABEM, on the other hand, bids a supply function to market
B, and thus results for both qBa and ρBa differ (depending on δa, the slope of a’s bid).

Most important, however, is the confirmation that a reaches the same level of surplus in ABEM
and in BENCH. This shows that using ABEM is economically as rewarding as our benchmark
mechanism BENCH. The observation that a in the BENCH mechanism does not sell any qBa in
settings with high uncertainty is more prevalent when a is a flexible consumer, so we will discuss
this behaviour in Section 4.3.2.

We now turn to observation 2 and discuss bidding behaviour under exploitable market settings
(here modelled by large values for ρAmin). In most settings we simulated, multiple near-optimal
combinations of quantities and prices exist. Though bids in the ABEM mechanism are less flexible
than in the BENCH mechanism (because only one bid function can be submitted), a is likely to
find a bid ba,r that realises one of them, as is evident in the good performance across all settings
(see observation 1). However, the market settings in question (with ρAmin ≥ 24) are so favourable
for a that he can sell all capacity on both markets (qAa = qUa (1− rm) and qBa = qRa ). This means
that there exists only one pair of optimal quantities (because bid functions are monotonically
increasing) and the optimisation problem is reduced to finding the optimal prices for this pair of
quantities.

However, in the ABEM mechanism the following restriction is in place: Let the quantity qAa
be fixed. Then, the distance between bids ba,r and bBa with regard to the price is fixed as well
(because the minimum price of bBa is v∗a + 2δaq

A
a ). Thus, in ABEM it becomes highly unlikely that

a can bid optimal prices in both markets in this situation. We conclude that in conditions with
excessive market power for a, the ABEM mechanism restricts a from realising the full potential
market power. In effect, a in the ABEM mechanism lowers bid ba,r substantially, in order to not
overprice on market B. It makes the ABEM mechanism appealing to market makers, as it protects
vulnerable consumers from unnecessarily high prices.

4.3.2 Agent a as a flexible consumer

As we do in Section 4.3.1, we begin by validating the market model for several important properties:
a’s overall surplus is positive in both mechanisms across all settings and, in comparison to the
oligopolistic scenario, the competitive scenario has lower market prices and a lower surplus for
a. We now discuss two major observations, where observation 1 is similar to observation 1 in
Section 4.3.1.

Observation 1: Agent a reaches comparable surplus in both mechanisms across a
wide range of market conditions, but shows different bidding behaviour. The outcomes
for a show distinct patterns between both mechanisms, most prominently in market B. If a
sells electricity in both markets, this resembles outcomes we showed in Figure 5 and described
in Section 4.3.1. However, in many settings, a in the BENCH mechanism sells no qBa at all (see
observation 2 for more details on this).

Despite such differences in market outcomes, a’s surplus does not differ significantly3 across all
settings when we let a take part in the ABEM or BENCH mechanism. This observation is present
in all our parametrised market settings, with the only exception for low values of ρAmin (where a
has higher surplus in the BENCH mechanism).

3We performed Student’s T-Tests and tested for p ≤ 0.01.
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(a) Effects on ρAa (b) Effects on ρBa

Figure 7: Effects of increasing uncertainty on prices for a (oligopolistic scenario, rm = 0.3). The
dotted line shows the default setting φ = 1.

Observation 2: Agent a offers and sells reserve capacity at affordable prices in the
ABEM mechanism, but not in the BENCH mechanism. In the ABEM mechanism, a
consistently sells balancing power across most market settings, at prices which inflexible actors
are willing to pay. a in BENCH, however, will in many settings bid a price ρBa which is too high in
the given market setting. As a consequence, he sells, when compared to the ABEM mechanism,
very little qBa or even none at all. In fact, a in BENCH only sells qBa in the oligopolistic scenario,
when rm = 0.3, neither ρAmin nor DA

max are low and φ is not high. Figures 7 and 8 illustrate what
is happening when the uncertainty parameter φ (a’s uncertainty about market outcomes increases
with φ, refer to Section 4.2.4) is varied. a in the BENCH mechanism increases the price ρBa and
sells less qBa when φ > 1. At the same time, he decreases the price on market A and thus buys qAa
cheaper than a in ABEM.

(a) Effects on qAa (b) Effects on qBa

Figure 8: Effects of increasing uncertainty on quantities for a (oligopolistic scenario, rm = 0.3).
The dotted line shows the default setting φ = 1.

Discussion: The fact that agent a reaches comparable surplus in both mechanisms (see obser-
vation 1) confirms observation 1 in our first experiment (see Section 4.3.1) where a is a flexible
supplier and the same discussion applies here. The only exception is given in settings with low
values for ρAmin. We will discuss this exception in our discussion of observation 2.

Observation 2 describes that a in BENCH is only in a few settings willing to offer his reserve
capacity at prices which are acceptable to inflexible actors in market B (and thus does not sell qBa
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in other settings). This observation makes the ABEM mechanism attractive to market operators.
Agent a in BENCH does offer and sell qBa at affordable prices in the default settings of the

oligopolistic scenario. In the remainder of this section, we will discuss the three settings noted
in observation 2 (low values for ρAmin, low values for DA

max, high values for φ), which lead a in
BENCH to overprice qBa in the oligopolistic scenario and also explain why he does not sell qBa at all
in the competitive scenario. Keep in mind, however, that settings with low values for ρAmin are the
only ones where surplus for a differs significantly between the ABEM and BENCH mechanisms
(see observation 1). In all other settings, the difference from a’s point of view is merely one of
bidding strategy choices, which a makes, not of financial outcomes for a. This is significant, as
we should require that bidders are able to make the same amount of surplus as in comparable
mechanisms.

In general, a in BENCH behaves as observation 2 describes, in order to avoid costs of lost
opportunity. In particular, there are two reasons these costs exists. First, if a is uncertain about
market outcomes, the financial risk of buying electricity in market A with the goal of offering it
as reserve capacity in market B becomes too high for him when he bids a constant price ρBa (as
prescribed by the BENCH mechanism). Second, in some settings, a in the BENCH mechanism
can buy electricity at a very low price ρAa in market A and the price difference between ρAa and
possible prices ρBa in market B is not attractive enough. We now begin by discussing settings
where the latter reason for not selling ρBa holds.

In settings with low values for ρAmin, supply prices are low in market A and thus an opportunity
exists for buyers to raise their surplus considerably. a buys qAa far under his reserve price va. In the
BENCH mechanism, a does not need to sell any qBa (he can overprice, as observation 2 describes),
while a in the ABEM mechanism is required to sell qBa at a price related to the price he paid for
qAa . Settings with low values for DA

max are similar - qAa can be bought cheaply in market A (in this
case, because there is little competition from other buyers) and a in BENCH prefers not to offer it
in market B at the prices he could achieve there. Finally, in the competitive scenario, the number
of suppliers is increased tenfold, which decreases prices in both markets. As a consequence, buying
on market A becomes more attractive and selling on market B becomes less attractive, which leads
to a in BENCH to not sell qBa .

We now turn to settings with high values for φ, in other words, with high uncertainty a has
about market outcomes. In the BENCH mechanism, both the bid to market B (ρBa ) and the
residual demand function for balancing power (DB

res) react only very little to changes in price:
The former is a constant price, and the latter has a low slope. The intersection of both varies
strongly along the quantity axis. Figure 8b) illustrates this. Consider for example the default
setting, where φ = 1 (a base level of noise exists) and a still sells qBa in BENCH. This variation
of possible quantities for a means that, in the BENCH mechanism, a is facing a higher risk than
in the ABEM mechanism, if he follows the strategy of increasing his bid to market A (i.e. to pay
a higher price for qAa ), in order to be able to offer reserve capacity qRa and sell qBa . The negative
outcome a risks in this case is that he might sell too little or no qBa due to noise in market B. This
would strongly lower a’s overall surplus. Therefore, a lowers his bid ba,r to market A, in order to
optimise surplus there, and overprices his bid price ρBa in market B, in order not having to sell
any qBa .

This is not the case in the ABEM mechanism. Here, a submits a positively-sloped bid function
to market B, which reduces variation along the quantity axis. This result relates to the original
paper about supply function equilibria by Klemperer and Meyer (1989) [15], where the authors
note that, when faced with exogenous uncertainty about residual demand, ”a supply function
provides valuable flexibility, because it can be chosen to coincide with the set of optimal price-
quantity pairs“. By using supply functions in market B rather than a constant price (a Bertrand
model), the ABEM mechanism is allowing for a high degree of detail in the expression of economic
value by bidders.

21



5 Conclusions and related work

Because peaks in both electricity generation and consumption are expected to increase in future
energy settings, the “smart grid” concept aims to maintain high levels of efficiency in the energy
system by establishing distributed intelligence. Dynamic decisions will be made by many intelligent
agents (with unknown computational capabilities) in autonomous fashion, on behalf of households
and devices. Market mechanisms are a promising approach for large-scale coordination problems
about energy supply and demand, but in order to reach satisfactory efficiency levels, it is crucial
to involve planning-ahead by letting capable participants commit early, in either a binding or
an optional manner. It has become common practice in several wholesale electricity markets
around the world to conduct planning-ahead in both of these ways. However, existing proposals
for electricity markets in smart grids, with high number of participants, either do not involve
planning-ahead sufficiently or require a high level of sophistication and considerable computing
power from participants.

In this paper, we present and evaluate a novel market mechanism called ABEM (“Ahead-
and Balancing Electricity Market”). ABEM is an effective market mechanism that incorporates
planning-ahead in the way modern wholesale markets do, but is also usable for bidders with
non-sophisticated computational capabilities, i.e. in smart grids. We provide three main contri-
butions4, as follows.

1. We introduce the ABEM mechanism (Section 2). The ABEM mechanism has two unique
features: Bids for binding commitments as well as for reserve capacity are combined into
one bid, and this bid specifies a quantitative relationship between binding commitments
and reserve capacity. ABEM provides several main advantages by design: First, the bid
optimisation problem for bidding agents is reduced in complexity from a two- to a one-
dimensional problem, which significantly reduces the time necessary to compute well-working
bids. Second, agents can bid price functions to both markets, potentially their true costs or
valuation, which is usually problematic in other approaches. Third, the mechanism provides
a guarantee for flexible consumers that offering reserve capacity is profitable (if they submit
their marginal valuation as bid).

2. We provide a parametrised market model (Section 3) of a two-settlement market with in-
tegrated trade of reserve capacity and simultaneous bidding (which can be used to repre-
sent ABEM, among others). A strategic bidding agent can use this market model for his
bid optimisation problem, using a decision-theoretic approach. The market model is fully
parametrised, most importantly with respect to the uncertainty the agent has about market
outcomes. We also formulate the bid optimisation problem an agent needs to solve when
using this model.

3. We evaluate ABEM experimentally, with respect to a benchmark mechanism (Section 4).
This approach was chosen because a theoretical analysis of possible outcomes is not feasible
for such complex settings as the one described above. We simulate both an oligopolistic and
a competitive market scenario using parametrised Monte Carlo simulations. Participation
in an ABEM market is simulated for two types of bidders, a flexible supplier and a flexible
consumer. The computational simulations show that, from the bidding agent’s perspective,
the same levels of overall economic surplus (on average across all tested settings) can be
reached in both ABEM and the benchmark mechanism. The simulations also confirm that
the bidding agent’s bids are much more efficiently computable if he takes part in ABEM.
Furthermore, from the system operator perspective, we show experimentally two advantages
of ABEM over the benchmark mechanism. First, bidding agents make less use of strategic
opportunities to exploit market settings, which keeps overall prices low. Second, reserve

4We note that some preliminary concepts and results of what today comprises the ABEM mechanism have been
presented across three conference papers [9, 10, 11] in recent years. This paper provides deeper background on re-
lated work and economical foundations. It describes the mechanism in more detail and with coherent nomenclature.
Finally, it also presents all experimental and theoretical results in a coherent fashion.
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capacity for balancing is made available at affordable prices, whereas in the benchmark
mechanism it would often be overpriced, in order to avoid costs of lost opportunity.

5.1 Related work

Several state-of-the-art mechanisms in wholesale electricity markets implement all or a subset of
the features mentioned in Section 2.1. For instance, several two-settlement markets are currently
implemented, e.g. in New England [12] and The Netherlands [33]. While the U.S. Midcontinent
energy market [22] is the only mechanism known to us which combines all of the features mentioned
in Section 2.1, several two-settlement procedures which also trade reserve capacities or so-called
ancillary services differ only in few aspects (for instance they might not require simultaneous
bidding). Through several decades of real-world experience in electricity market design, these
mechanisms do involve planning to a satisfactory degree, by including binding commitments as
well as reserve capacity. However, as they consist of at least two or even three markets5, they
have several bottlenecks.

Firstly, the computational complexity of creating bids that work well across several markets is
very high. This can become problematic in smart grid settings due to the limited computational
power and lower predictability (due to intermittent generation), as was discussed earlier. Secondly,
from the SO perspective, it is difficult to create the proper economic incentives for bidders. For
example, Kamat et al. (2002) [13] report that holding back bids in the ahead market often becomes
a profitable strategy to increase prices during balancing. Vandezande et al. (2010) [34] observe
that often strong incentives exist to not offer reserve capacity on public markets at all, but rather
balance privately owned assets only. Thirdly, the expression of the proper economic valuation of
bidders is restricted. As we noted above, the simultaneous submission of bids in the ahead market
for binding commitments or for reserve capacity has been identified as good practice to reduce
strategic behaviour. However, bidders have to create the bid for reserve capacity without knowing
their binding commitment. Although both bids describe the same resource (electricity), the two
bids usually contain no explicit relationship to each other. Another restriction of the expression
of the proper economic valuation concerns the allowed bid function format. Although using price
functions (e.g. piecewise-linear or quadratic) in bids has been shown to increase efficiency of a
market [4, 39], current wholesale market designs (e.g. the U.S. Midcontinent energy market [22])
mostly require constant prices as bids for reserve capacity in order to deal with the involved
complexity. In ABEM, we will address these above bottlenecks.

Besides two-settlement-procedures for wholesale markets, the field of electrical engineering
has (often in collaboration with economics) also proposed several market mechanisms with more
smart grid-like settings in mind. These mechanisms achieve less complexity and thus better
scalability. However, they either lack the ability of planning, do not consider strategic behaviour
or have uncertain convergence characteristics. For instance, Kok et al. (2005) [16] propose the
PowerMatcher control structure for decentralised energy systems. This system is scalable (i.e. it
deals with computational complexity) by the introduction of an hierarchical structure, but does not
involve planning-ahead. Bakker et al. (2010) [1] describe a three-step methodology for planning
in smart grids, which is also scalable. However, the method assumes a cooperative setting, i.e. it
is assumed that bidding agents (e.g. on freezers or heat pumps) are not acting strategically in self-
interest. Virag et al. (2011) [36] also target at an improved mechanism for simultaneous bidding
on binding and commitments and reserve capacity. They propose an iterative market design,
where in each round the mechanism proposes two market prices and the agents reply with what
they would buy at those prices. This is done until convergence. It is assumed that no strategic
behaviour by bidders takes place, but even for this case, the convergence of this mechanism is
either slow or dependent on initialisation values.

The need for scalable mechanisms (for smart grids) has attracted attention from computer
scientists. Several market mechanisms for smart grids have therefore been proposed in computer

5Some modern wholesale markets add even more components to their mechanisms, e.g. financial transmission
rights markets or locational marginal pricing.

23



science in recent years. For instance, Lamparter et al. (2010) [19] discuss an agent-based market
framework which is scalable but lacks features for planning-ahead. Vytelingum et al. (2010) [37]
propose a two-settlement procedure. Reserve capacity is not traded explicitly. Instead, unmatched
(incremental) offers from the day-ahead market are used for balancing, if needed. This approach
thus treats every unmatched bid to the ahead market as reserve capacity. However, this makes
the assumption that all bidders can, on short notice and on request, physically change the amount
they deliver or consume, which might not hold for all appliances. Furthermore, it is assumed that
bidders do not have opportunity costs (e.g. that a consumer will not change his plans if he does
not get his desired commitment in the day-ahead market). To include such opportunity costs in
his bid is very difficult for a bidder in this mechanism. Other mechanisms have been designed for
a specific smart grid-related application only, and are thus not generically applicable as a market
mechanism for smart grids. For instance, Vytelingum et al. (2010) [38] look into micro-storage in
the domestic households and provide agent-based strategies for planning battery storage profiles
for the upcoming day, given a stylised spot market for electricity. Gerding et al. (2011) [6], as
well as Stein et al. (2012) [30], address the problem of charging a fleet of electric vehicles, where
the former paper proposes a mechanism for plug-in hybrid vehicles and the latter a mechanism
for pure electric vehicles. Both papers design a mechanism that is capable of allocating electricity
efficiently among vehicles, based on their drivers announced preferences for their next trip.

5.2 Future work

For future work, it can be useful to allow bidders to bid on several reserve ratios r at the same
time, with several bids to the same market mechanism. This would enable the SO to increase
market efficiency by increasing the number of alternative market clearing solutions. The design
challenge here is to allow bidding agents some freedom on their choice of values for r, but also to
give the SO a way to ensure that he will be able to allocate sufficient reserve capacity. The explicit
notion of r which ABEM prescribes is a good foundation for solving this problem, as opposed to
the static heuristics which are in use today.

References

[1] V. Bakker, M.G.C. Bosman, A. Molderink, and J.L. Hurink. Demand side load management
using a three step optimization methodology. In First IEEE International Conference on
Smart Grid Communications, pages 431–436, 2010.

[2] R. Baldick. Electricity market equilibrium models: the effect of parametrization. IEEE
Transactions on Power Systems, 17(4):1170–1176, November 2002.

[3] J. Bower and D. Bunn. A model-based comparison of pool and bilateral market mechanisms
for electricity trading. Energy Journal, 21(3):1–29, 2000.

[4] M.B. Cain and F.L. Alvarado. Implications of cost and bid format on electricity market
studies: linear versus quadratic costs. In Large Engineering Systems Conference on Power
Engineering, number July, 2004.

[5] Department Of Energy. Impacts of the Federal Energy Regulatory Commission’s Proposal
for Standard Market Design. 2003.

[6] Enrico H Gerding, Valentin Robu, Alex Rogers, and Sebastian Stein. Online Mechanism
Design for Electric Vehicle Charging. In Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 811–818, 2011.

[7] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming, 27(1):1–33, September 1983.

24



[8] E. Hirst and B. Kirby. Ancillary Services: The Neglected Feature of Bulk-Power Markets.
Electricity Journal, 11(3):50–57, 1998.
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