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Abstract. Classifiers can be used to analyse class sizes, i.e., counts of
items per class, but systematic classification errors yield biases (e.g., if a
class is often misclassified as another, its size may be under-estimated).
To handle classification biases, the statistics and epidemiology domains
devised methods for estimating unbiased class sizes (or class probabili-
ties) without identifying which individual items are misclassified. These
bias correction methods are applicable to machine learning classifiers,
but in some cases yield high result variance and increased biases. We
present the applicability and drawbacks of existing methods and extend
them with three novel methods. Our Sample-to-Sample method pro-
vides accurate confidence intervals for the bias correction results. Our
Maximum Determinant method predicts which classifier yields the
least result variance. Our Ratio-to-TP method provides detailed error
estimations (i.e., how many items classified as class X truly belong to
class Y , for all possible classes) and has properties of interest for applying
the Maximum Determinant method. Our methods are demonstrated em-
pirically, and we discuss the need for establishing theory and guidelines
for choosing the methods to apply.

Keywords: Classification · Bias correction · Error estimation.

Methods for correcting biases due to systematic misclassifications have been
researched in statistics and epidemiology [1,4], but seldom considered in machine
learning besides land coverage estimation [2,3]. Yet a variety of use cases would
benefit from applying bias correction methods, e.g., for analysing class sizes and
distributions. For instance, let us consider ecologists classifying images of animals
to analyse the species abundance. If species X is systematically misclassified as
species Y , it yields under-estimations of speciesX and over-estimations of species
Y . If species X increases over time while species Y is stable, the individuals from
X misclassified as Y increase too. It yields a deceptive increase of species Y in
the classification data. Without applying bias correction methods, no
scientific conclusion can be drawn from the classification data.

Existing bias correction methods aim at estimating unbiased class sizes (i.e.,
numbers of items belonging to each class) or class proportions (i.e., class sizes
divided by total number of items, also considered as class probabilities) without
identifying which individual items are misclassified. The methods assume that
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error rates measured in test sets are the same in the datasets to which classifiers
are applied in practice (the target sets). Bias correction results are subject to
potentially high variance due to random error rate deviations between test and
target sets. For small datasets, the variance magnitude is critical and applying
bias correction methods may even worsen the initial biases. Two bias cor-
rection methods exist, one of which requires equal class proportions
between test and target sets but has the least result variance.

We extend bias correction methods to estimating the numbers of
errors in a classifier output, i.e., within the items classified as class Y , how
many would truly belong to class X. Such estimates describe the quality of
classification data beyond accuracy or precision. In future research, they can
also help identifying which individual items are misclassified 3. We introduce a
novel error estimation method, called Ratio-to-TP method, that has interesting
properties to ensure the applicability of a bias correction method, and to predict
its result variance.

The variance of bias correction results can be critical and is thus
crucial to estimate. Existing variance estimation methods do not address the
case of disjoint test and target sets, which is common in machine learning ap-
plications. Our Sample-to-Sample method addresses this issue. It estimates the
variance at the level of the error rate estimator, using each class size in both test
and target sets. It provides accurate confidence intervals for bias correction re-
sults in binary problems. Multiclass problems require bootstrapping techniques,
or in simulations using Sample-to-Sample to specify error rates’ variance.

Finally, we introduce the Maximum Determinant method for predicting
which classifier yields the least variance when applying a bias correction
method, without knowledge of the potential target sets. Initial results are promis-
ing but future research is needed to establish theory and investigate the appli-
cability, e.g., depending on class sizes and proportions, number of classes, and
error rate magnitudes. Future research is also needed if feature distributions
(e.g., class models) di↵er between test and target sets (e.g., domain adaption).
We illustrate such cases and their critical impact on bias correction results.
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Abstract—Classifiers can provide counts of items per class,
but systematic classification errors yield biases (e.g., if a class is
often misclassified as another, its size may be under-estimated).
To handle classification biases, the statistics and epidemiology
domains devised methods for estimating unbiased class sizes (or
class probabilities) without identifying which individual items
are misclassified. These bias correction methods are applicable
to machine learning classifiers, but in some cases yield high
result variance and increased biases. We present the applicability
and drawbacks of existing methods and extend them with
three novel methods. Our Sample-to-Sample method provides
accurate confidence intervals for the bias correction results.
Our Maximum Determinant method predicts which classifier
yields the least result variance. Our Ratio-to-TP method details
the error decomposition in classifier outputs (i.e., how many
items classified as class Cy truly belong to Cx, for all possible
classes) and has properties of interest for applying the Maximum
Determinant method. Our methods are demonstrated empirically,
and we discuss the need for establishing theory and guidelines
for choosing the methods and classifier to apply.

I. INTRODUCTION

Methods for correcting biases due to systematic misclassifi-
cations have been thoroughly researched in statistics and epi-
demiology [1]–[4], but seldom considered in machine learning
besides land coverage estimation [5]–[8]. Yet a variety of use
cases would benefit from applying bias correction methods,
e.g., for analysing class sizes and distributions. For instance,
let us consider ecologists classifying images of animals with
computer vision software to analyse the species abundance.
If species X is systematically misclassified as species Y , it
yields under-estimations of species X and over-estimations of
species Y . If species X increases over time while species Y is
stable, the individuals from X misclassified as Y increase too.
It yields a deceptive increase of species Y in the classification
data. Without applying bias correction methods, no scientific
conclusion can be drawn from the classification data.

Bias correction methods are based on error rates measured
in a sample of items (the test set, also called groundtruth,
gold standard, validation or calibration set). The error rates are
assumed to be the same in the datasets to which classifiers are
applied in practice (the target sets). Bias correction methods
aim at estimating unbiased class sizes (i.e., numbers of items
belonging to each class) or class proportions (i.e., class sizes
divided by total number of items, also considered as class
probabilities) without identifying which individual items are
misclassified. Bias correction results are subject to potentially
high variance due to random error rate deviations between
test and target sets. The variance magnitude depends on bias

correction methods. For small datasets, the variance magnitude
is critical and applying bias correction methods may even
worsen the initial biases. Two bias correction methods exist,
one of which requires equal class proportions between test and
target sets but has the least result variance (Section II).

The bias correction methods can be extended to detail the
error composition in a classifier output, i.e., within the items
classified as class Y , how many would truly belong to class
X . Such estimates describe the quality of classification data
beyond accuracy or precision. In future research, they can also
help identifying which individual items are misclassified. For
instance, provided with i) probabilities that an item belongs to
a class, for all classes and items; and ii) estimated numbers
nxy of items classified as Y and truly belonging to class X; a
method can be developed to select the nxy items that are most
likely classified as Y while belonging to X . We introduce a
novel method for estimating the error decomposition, called
Ratio-to-TP method. It provides exactly the same result as the
extended state-of-the-art methods, but has interesting proper-
ties to ensure the applicability of a bias correction method,
and to predict its result variance (Section III).

The variance of bias correction results can be critical and
is thus crucial to estimate. Variance estimation methods exist
for uses cases where the test set is randomly sampled within
the target set, with the same class proportions [1]. For disjoint
test and target sets, existing variance estimators describe the
population from which target sets are sampled [2]–[4], [7]. If
applied to describe the target set itself (i.e., class sizes, error
composition), they provide inaccurate estimates. Our Sample-
to-Sample method handles the latter issue. It estimates the
variance at the level of the error rate estimator, using each class
size in both test and target sets. It provides accurate confidence
intervals for bias correction results in binary problems. Mul-
ticlass problems require bootstrapping techniques, or future
research using Sample-to-Sample in simulations (Section IV).

Finally, we introduce the Maximum Determinant method
for predicting which classifier yields the least variance when
applying a bias correction method, without knowledge of the
potential target sets. Initial results are promising but future
research is needed to establish theory and investigate the
applicability, e.g., depending on class sizes and proportions,
number of classes, and error rate magnitudes (Section V).

Future research is also needed if feature distributions (e.g.,
class models) differ between test and target sets (e.g., domain
adaption). We illustrate such cases and their critical impact on
bias correction results (Section VI).
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II. EXISTING BIAS CORRECTION METHODS

Two bias correction methods exist: i) the reclassification
method [4], also called double sampling [1], ratio method
[6] or inverse calibration [9], which requires equal class
proportions in test and target sets (Section II-A); ii) the
misclassification method [4], also called matrix inversion
method [10], classical calibration [9] or PERLE [11], which
is robust to varying class proportions (Section II-B). The
misclassification method yields a larger results variance than
the reclassification method, as mentioned in [3] and shown in
Fig. 1. It is preferable to use the reclassification method and a
test set with class proportions similar to the target set. But this
is often impossible as class proportions may vary over target
sets, or are unknown when the test set is collected.

We introduce the existing methods using the notation in
Table I where nxy are numbers of items belonging to class
Cx and classified as Cy , nx. is the true class size for Cx, n.x

the output class size from a classifier results, and n.. the total
number of items in the test set. The variables for the target
set are denoted with the prime symbols, e.g., n1. is the true
size of class C1 in the test set, and n′1. the true class size in
the target set. The bias correction methods estimate true class
sizes n′x. in the target set, given the known output class sizes
n′.x and numbers of error nxy measured in the test set. We
present bias correction results in terms of class size estimates
n′x. rather than class proportion n′x./n′.., the latter being easily
derived from the former.

TABLE I
CONFUSION MATRIX AND NOTATION

True Class Output
CountC1 C2 ... Ck

Assigned
Class

C1 n11 n21 ... nk1 n.1
C2 n12 n22 ... nk2 n.2
... ... ... ... ... ...
Ck n1k n2k ... nkk n.k

True Count n1. n2. ... nk. Total n..

A. Reclassification Method
The reclassification method is based on error rates using

the output class sizes n.y as denominators, e.g., precision
in binary problems. Assuming equal error rates in test and
target sets ê′xy = exy , true class sizes are estimated as (1).
This assumption is violated, and the method is not applicable,
if class proportions differ between test and target sets (see
Subsection D).

exy = nxy

n.y
n̂′xy = exyn′.y n̂′x. =∑

y

exyn
′
.y (1)

Variance estimates V (n̂′x.) are provided in [1] for test sets
randomly sampled with target sets, using a weighted sum to
account for both test and target set sizes.

B. Misclassification Method
The misclassification method is based on error rates with

true class size nx. as denominator, e.g., recall in binary
problems (2). Assuming equal error rates in test and target sets
θ̂′xy = θxy , true class sizes are estimated as (3), e.g., solving a
system of linear equations as in [11].

θxy = nxy

nx.
(2)

⎛⎜⎜⎜⎜⎜⎝

n̂′1.
n̂′2.
...

n̂′x.

⎞⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎝

θ11 θ21 ... θx1

θ12 θ22 ... θx2
... ... ... ...

θ1x θ2x ... θxx

⎞⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎝

n′.1
n′.2
...

n′.x

⎞⎟⎟⎟⎟⎟⎠
(3)

Variance estimates V (n̂′x.) are provided in [2] for test sets
randomly sampled within target sets, and with similar class
proportions nx./n.. ≃ n′x./n′... The case of disjoint test and
target sets with different class proportions is addressed in [3],
[4] and refined in Section IV.

C. Application
We apply reclassification and misclassification methods to

open-source datasets from the UCI repository. We use a Naive
Bayes classifier from the Weka platform with 10-fold cross
validation. We randomly sample test sets of predefined sizes,
and consider the remaining items as target sets. The predefined
class sizes split the data into test and target sets with different
class proportions (Table II). We draw 100 random splits to
show the variance and bias in the initial classification results,
and in the bias correction results (Fig. 1). The reclassification
method yields biased results (median results are not on dashed
line) as class proportions differ between test and target sets.
The misclassification method is unbiased but yields larger
variance than the reclassification method.

TABLE II
DATASETS USED FOR EXPERIMENTS IN FIG. II

Dataset Test Set Size nx. Target Set Size n′x.
Iris C1:25 C2:20 C3:30 C1:25 C2:30 C3:20
Ionosphere C1:63 C0:150 C1:63 C0:75
Segment C1,3,5,7:210 C2,4,6:110 C1,3,5,7:120 C2,4,6:220

Ohscal C0:471 C1:433 C2:124 C3:125 C4:275
C5:205 C6:738 C7:339 C8:490 C9:613 C0-C10:400

Waveform C1:600 C2:900 C3:1200 C1:1092 C2:753 C3:455
Chess C1:1000 C0:500 C1:669 C0:1027

Data source: https://archive.ics.uci.edu/ml/datasets.html

D. Discussion
The misclassification method is unaffected by changes in

class proportions because its error rates θxy involve items
belonging to the same true class, unlike the error rates exy
of the reclassification method, as shown in (4).

Class proportions:
n′x.
n′.. =α

nx.

n..
,

n′y.
n′.. =β

ny.

n..
, α≠β, α,β ∈R<0

Assuming proportional errors n′xy =αnxy and n′yx=βnyx then:

θ′xy = αnxy

αnx.
= θxy e′xy = αnxy

βny.
≠ exy (4)

The misclassification method yields significantly higher
variance than the reclassification method. The latter uses
a simple linear sum of random variable n′.yexy while the
former uses a matrix inversion. Cramer’s rule [12] shows that
the random variables θxy are involved several times in the
denominator and numerator of a fraction, hence the higher
variance (estimator is not linear).

766



C3

0
10

20
30

40
50

60

C1 C2 C1

0
10

20
30

40
50

60

C2 C3C1 C2 C3

0
10

20
30

40
50

60

a) Iris b) Ionosphere

Reclass. Meth.

N P

40
50

60
70

80
90

10
0

Classifier Results

N P

40
50

60
70

80
90

10
0

Misclass. Meth.

N P

40
50

60
70

80
90

10
0

c) Segment

d) Ohscal

Reclassification Method

50
10

0
15

0
20

0
25

0

C1 C2 C3 C4 C5 C6 C7

Classifier Results

50
10

0
15

0
20

0
25

0

C1 C2 C3 C4 C5 C6 C7

Misclassification Method

50
10

0
15

0
20

0
25

0

C1 C2 C3 C4 C5 C6 C7

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Misclassification Method

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Reclassification Method

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Classifier Results

Misclassification Method Reclassification MethodClassifier Results

C1 C2 C3

20
0

60
0

10
00

14
00

Reclassification Method

C1 C2 C3

20
0

60
0

10
00

14
00

Misclassification Method

C1 C2 C3

20
0

60
0

10
00

14
00

Classifier Results

e) Waveform f) Chess
N P

40
0

60
0

80
0

10
00

12
00

N P

40
0

60
0

80
0

10
00

12
00

N P

40
0

60
0

80
0

10
00

12
00

Reclass. Meth.Classifier Results Misclass. Meth.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Fig. 1. Counts of items per class (median, 50%, 95% quartiles for 100
randomly sampled test and target sets) provided by the raw classifier output
(left graphs), bias correction with the misclassification method (middle graphs)
and reclassification method (right graphs). Horizontal dashed lines indicate
true class sizes, and colors indicate the related class (e.g., green boxplots
with median values on green dashed lines indicate unbiased results).

If the test or target sets are small, or the change in class
proportions not significant, the variance of the misclassifica-
tion method may introduce more bias than the reclassification
method or the initial classification results (Fig. 1-a to -d).
Combining both methods does not reduce the variance (e.g.,
estimate n′x. with the misclassification method, subsample the
test set with similar class proportions nx.=αn′x.∀x, and apply
reclassification method using the resampled test set)1.

To address the challenge of high result variance for the
misclassification method, we introduce novel methods for
estimating result variance for specific target sets (Section IV),
and for minimising the variance without knowledge of the
potential target sets (Section V). These methods are also able
to deal with the variance of n′xy estimates describing the error
decomposition of n′x. (Section III).

1Demonstration omitted for brevity but reproducible with code in Appendix.
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Fig. 2. Results of misclassification method for simulated data. Score thresh-
olds (x axis) are used to assign classes C0 or C1 (Fig. 3), and simulate
different magnitudes of error rate. Class sizes n̂′0. (y axis) are estimated for
104 pairs of test and target sets randomly sampled with score probability and
class proportions in Fig. 3. Unbiased means n̂′0. (black line) are close to true
n′0. (red line) unless test sets are too small and error rate too close to 0 or 1
(extreme thresholds yielding few observations, e.g., nxy ≈a few items).
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Fig. 3. Specification of classification problem in Fig. 2. Left: score distribution
with means µ0=µ′0=0.4 for C0, µ1=µ′1=0.6 for C1, and σx=σ′x=0.1. Middle:
example of score threshold and related errors n01, n10. Right: error rate
variance over thresholds. V (θ′01)<V (θ′10) because we use n′0.=2n′1.and
n0.=n1. to simulate different class proportions in test and target sets.

III. ERROR DECOMPOSITION

We extend the bias correction methods to detail the class-to-
class errors in a classifier output, i.e., in an output of n′.y items
classified as Cy , we estimate the n′xy items that truly belong to
Cx. Such estimates are of interest for describing the quality of
classification data, and potentially for identifying which items
are misclassified. For instance, if a classifier provides class
probabilities for each item, a method can infer which items
are most likely to be classified as Cx while belonging to Cy .

If class proportions do not differ between test and target
sets, the reclassification method is a trivial solution, i.e.,
n̂′xy=exyn′.y (1). We discuss two methods addressing varying
class proportions (Subsections A and B). Both result in the
exact same estimates, impacted by the same variance1, but
use different error rates. We discuss both methods because
their error rate matrices have specific properties of interest.
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A. Extension of Misclassification Method
The misclassification method is easily extended to estimate

n′xy as (5), after estimating the class size n̂′x..
n̂′xy = θxyn̂′x. (5)

B. Ratio-to-TP Method
The Ratio-to-TP method is based on atypical error ratios

using True Positives nxx as denominators (6), with rxx=1
(assuming nxx≠0). The method assumes equal error rates in
test and target sets, i.e., r̂′xy = rxy . The true positives in the
target set n′xx are estimated by solving the linear system (7)
in (8). The number of errors n′xy are derived using n̂′xx in (9).

rxy = nxy

nxx
n′.y =∑

x

n′xy =∑
x

n′xxr′xy (6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n′.1 = n′11 + n′22 r′21 + ... + n′xx r′x1
n′.2 = n′11 r′12 + n′22 + ... + n′xx r′x2
... = ... + ... + ... + ...

n′.x = n′11 r′1x + n′22 r′2x + ... + n′xx

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(7)

⎛⎜⎜⎜⎜⎜⎝

n̂′11
n̂′22
...

n̂′xx

⎞⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎝

1 r21 ... rx1

r12 1 ... rx2
... ... ... ...

r1x r2x ... 1

⎞⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎝

n′.1
n′.2
...

n′.x

⎞⎟⎟⎟⎟⎠
(8)

n̂′xy = n̂′xx rxy (9)

C. Application
We apply the Ratio-to-TP and extension of misclassification

methods, using the same experimental setup as in Section
II-C. Both methods result in the same estimates2, which are
unbiased but with potentially high variance due to random
differences between θxy and θ′xy (Fig. 4). The potentially high
variance is a challenge for estimating both n̂′x. and n̂′xy .

D. Discussion
The error rate matrix Mr=( 1 r2x ...

rx2 1 ...
... ... ...

) of the Ratio-to-TP
method has all diagonal values equal to 1. It offers a simple
condition to ensure its invertibility (i.e., that its determinant∣Mr∣≠0), needed for the Ratio-to-TP method to be applicable.
Under condition (10) M⊺

r is diagonally dominant, thus invert-
ible, and since ∣Mr∣ = ∣M⊺

r ∣, Mr is also invertible. Setting a
threshold t for all error rates rxy,x≠y <t can ensure that (10) is
satisfied. Mr is always invertible under condition (11) where
c is the number of classes (e.g., for 3-class problems t=0.5,
4-class t=0.33, 5-class t=0.25). It is also possible that Mr is
invertible even if the condition is not met.

∣Mr∣ ≠ 0 if for all Cx ∑
y,y≠x rxy < 1 (10)

If all rxy < 1

c − 1 then ∑
y,y≠x rxy < (c − 1)

1

c − 1 = 1
Thus ∣Mr∣ ≠ 0 if all rxy,y≠x < 1

c − 1 (11)

2Demonstration is omitted but reproducible with code in Appendix.
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Fig. 4. Evaluation of estimated n̂′xy , showing the absolute error n′xy − n̂′xy
for 104 pairs test and target sets sampled as in Section II-C.

The misclassification method also requires its error rate
matrix Mθ = ( θ11 θ21 ...

θ12 θ22 ...
... ... ...

) to be invertible, but the Ratio-to-
TP method offers a simple threshold condition to guarantee
its matrix invertibility. We empirically observed that error rate
matrices Mr and Mθ drawn from the same test set were
either both invertible, or both non-invertible. Future work is
needed to establish if the threshold condition (11) ensuring the
invertibility Mr also ensures the invertibility of Mθ.

The Ratio-to-TP method uses error ratios rxy that follow
a Cauchy distribution, in contrast to θxy which follows a
binomial distribution. Estimating the variance V (rxy) is more
complex. Hence in the next section we focus on error rates
θxy to estimate the variance of n̂′x. and n̂′xy derived from the
misclassification method.

IV. SAMPLE-TO-SAMPLE METHOD

The Sample-to-Sample method aims at estimating the vari-
ance estimates θ̂′xy , n̂′x., n̂′xy for a target set S′, using mea-
surements from a disjoint test set S (i.e., S ∩S′=∅). We first
approximate the variance of the θ̂′xy estimator, and validate
our approach using known n′x.. The method is then evaluated
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in practice with unknown n′x., using estimated n̂′x. instead.
The method performs well for estimating the variance of
n̂′x. and n̂′xy in binary problems. Multiclass problems require
bootstrapping techniques, or future work on simulations using
Sample-to-Sample estimates of V̂ (θ̂′xy) (see Subsection E).

A. Error Rate Estimator

We focus on the estimator θ̂′xy=θxy for the unknown target
set error rate θ′xy based on the known error rate θxy in
a disjoint test set. Test and target sets are assumed to be
randomly sampled from the same population n∗x.→∞ with
error rate θ∗xy . For test and target sets sampled with nx. and
n′x. items, the expected value and variance of θxy and θ′xy
are given in (12) [13].

E[θxy] = E[θ′xy] = θ∗xy
V (θxy) = θ∗xy(1 − θ∗xy)

nx.
V (θ′xy) = θ∗xy(1 − θ∗xy)

n′x.
(12)

The estimator θ̂′xy=θxy yields the mean squared error in
(13). The notation below omits the subscripts, e.g, θ=θxy .

MSE(θ̂′) = E[(θ−θ′)2] = E[(θ −E[θ] +E[θ] − θ′)2]
= E[(θ −E[θ])2 + 2(θ −E[θ])(E[θ] − θ′) + (E[θ] − θ′)2]
= E[(θ−E[θ])2]−2E[(θ−E[θ])(θ′−E[θ′])]+E[(θ′−E[θ′])2]
= V (θ) − 2Cov(θ,θ′) + V (θ′)
Cov(θ,θ′)=0 since S∩S′=∅ and θ,θ′ i.i.d., thus

MSE(θ̂′xy) = V (θxy) + V (θ′xy) (13)

Hence the Sample-to-Sample method considers that the
estimator θ̂′xy = θxy is approximately distributed as (14).

θ̂′xy ∼ N(θxy, V (θxy) + V (θ′xy)) (14)

B. Evaluation of Error Rate Estimator

We evaluate the Sample-to-Sample estimates in (14) by
simulating binary datasets and drawing confidence intervals
for θ̂′01. We focus on a single class C0 and ignore C1, i.e.,
we simulate only n0y and n′0y . We draw 68% rather than
95% confidence level for a better verification of over-estimated
intervals (e.g., coverage may be slightly higher than 95% but
significantly higher than 68%). To estimate V (θ′01) we use the
known n′0. and apply (12) as (15). Further evaluations address
realistic cases where n′x. is unknown (Subsections C and D).

V (θ̂′
01
) = θ01(1−θ01)

n0.
+ θ01(1−θ01)

n′0. (15)

We sample 100 test sets of sizes n0.∈{20, ...,50000} ran-
domly drawn from an infinite population with θ∗01∈{0.01,0.5}.
For each test set, we measured θ01 and use (14-15) to
draw confidence intervals for θ̂′01 in target sets of sizes
n′0.∈{20, ...,50000}. For each interval, we randomly sample
100 target sets with the same population rate θ∗01.
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Fig. 5. Evaluation of Sample-to-Sample using known n′x. to derive V (θ̂′xy)
and draw 68% confidence intervals for θ̂′xy . The cells show the % of intervals
containing true θ′01 for a total of 104 tests. Green cells have correct coverages≈68%, red indicates too small coverages, white indicates too large coverages.

The graph cells in Fig. 5 show the percentage of θ′xy
contained in confidence intervals derived using the Sample-to-
Sample method. The confidence intervals achieve the desired
confidence level, except when sample sizes nx. and n′x. are
too small w.r.t. error rates θ∗xy (in bottom graph only, e.g.,
nxy≈1 item, same as the biases observed in Fig. 2), or w.r.t.
each other (nx. ≪ or ≫ n′x., black contours). The interval
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coverage varies more if nx.<n′x. (lower left triangle of graphs)
but mean coverage is correct (e.g., for θ∗xy=0.5, in lower left
triangle µ=68.1% and σ=4, otherwise µ=68.3% and σ=1.5).

C. Application to Class Size Estimates

We evaluate the Sample-to-Sample method applied to
estimating confidence intervals for the target class sizes
n̂′x. estimated with the misclassification method in bi-
nary problems. As in Section IV-B, we simulate 100 test
sets and 100 target sets for each test set, with sizes
nx., n

′
x.∈{300,500,1000,2000}, drawn from populations with

θ∗xy specified in (16).

(θ∗00 θ∗10
θ∗01 θ∗11) ∈ {(.9 0

.1 1) ,(.9 .1
.1 .9) ,(.9 .2

.1 .8) ,(.8 .2
.2 .8)} (16)

Confidence intervals are estimated using Fieller’s theorem,
as in [3]. We express the results of the misclassification method
as ratios in (17), assuming 1−θ̂′01−θ̂′10 ≠ 0. Fieller’s theorem
applies to ratios of correlated random variables A/B, e.g.,
A = n′.0− θ̂′

10
n′.. and B = 1− θ̂′

01
− θ̂′

10
. The variance and

covariance of A and B are detailed in Appendix. We use esti-
mator θ̂′xy=θxy with variance (18) derived using the Sample-to-
Sample method, and the results of the misclassification method
n̂′x. as estimates of the unknown n′x..

n̂′0. = n′.0 − θ̂′10 n′..
1 − θ̂′01 − θ̂′10 n̂′1. = n′.1 − θ̂′01 n′..

1 − θ̂′01 − θ̂′10 (17)

V̂ (θ̂′xy) = θxy(1−θxy)
nx.

+ θxy(1−θxy)
n̂′x.

(18)

The results in Fig. 6 show that the Sample-to-Sample
method provides accurate confidence intervals for n̂′x.. For
each model in (16) respectively, the mean and variance of
intervals’ coverage are respectively: µ=68.1% σ=0.7, µ=68.2%
σ=0.7, µ=68.2% σ=0.7, µ=68.2% σ=0.7.

These results are obtained without rounding the estimated
n̂′x. nor the confidence limits. If these are rounded, the intervals
are slightly biased and over-estimated, e.g., in our experiments
the coverage aproximatively varied by ±3% for 68% intervals
with µ=69.1%, and ±1% for 95% intervals with µ=95.6%.

D. Application to Error Decomposition

We evaluate the Sample-to-Sample method applied to esti-
mating confidence intervals for the results n̂′xy of the extended
misclassification method (Section III-A). As in Section IV-C,
Fieller’s theorem is applied with the same experimental setup,
to derive confidence intervals for n̂′01 instead of n̂′0.. In
this case A=θ̂′

01
(n′.0− θ̂′

10
n′..) (5), (17). The variance and

covariance of A and B are detailed in the Appendix.
Instead of drawing a graph as Fig. 6, we report the mean

and variance of interval coverage for each model in (16), re-
spectively: µ=68.0% σ=0.7, µ=68.1% σ=0.8, µ=68.2% σ=0.7,
µ=68.3% σ=0.7. It shows that the Sample-to-Sample method
provides accurate confidence intervals for n̂′xy .
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Fig. 6. Results of Sample-to-Sample applied to estimating confidence intervals
for n̂′x.. Test and target datasets are randomly sampled with sizes on columns
and rows. The cells show the % of intervals that contained n′0. for a total of
104 tests (the % are rounded for clarity).
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E. Discussion

1) Prior Work: Fieller’s theorem is also used in [3], [4] but
focuses on class proportions π′x=n′x./n′... The prior method is
restated for class C0 in (19), using our notation. The main
difference with our approach is how the test and target sizes
nx., n′x. are considered for variance estimation. The Sample-
to-Sample approach accounts for test and target sizes nx., n′x.
in the estimation of error rate variance V (θ̂′xy). In [3], [4] the
error rate variance V (θ̂′xy) considers only the test sizes nx..
The target sizes n′x. are considered only for estimating the
variance of class proportions n′.y/n′.. in the initial classifier
output prior to applying bias correction (20).

π̂0 = n̂′0.
n′.. =

n′.0/n′.. − θ10
1 − θ01 − θ10 (19)

V (n′.0/n′.. − θ10) = n′.0/n′..(1 − n′.0/n′..)
n′.. + θ10(1 − θ10)

n1.
(20)

The results of [3], [4] are applied in Fig. 7 using vari-
ables similar to the evaluation in [3]: nx.∈{25,50,125,250},
n′x.∈{50,125,250,500}, θ01=0.1, θ10=0.2. The result are bi-
ased for some values of nx. and n′x. because the method orig-
inally aims at estimating class proportions in the population
π̂∗x=n′x./n′... This prior work is not applicable for estimating
the class sizes or proportions of the target set itself.
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Fig. 7. Confidence intervals drawn using prior work in [3], [4]. Test and
target datasets are randomly sampled with sizes on columns and rows. The
cells show the % of intervals that contained π0=n′0./n′.. for a total of 104

tests per cell (the % are rounded for clarity).

The bias in Fig. 7 is corrected by using the Sample-to-
Sample method, and considering no variance for the initial
class proportion n′.y/n′.. (21). The corrected results in Fig. 8
have a small bias, which is explained by the small sample
sizes nx., n′x.. Estimates drawn using the larger sample sizes
in Fig. 6 are unbiased with mean coverage µ=68.2%, σ=0.7.
Hence the Sample-to-Sample method is also suitable for
estimating the class proportions π′x=n′x./n′...
V̂corrected(n′.0/n′.. − θ10) = θ10(1 − θ10)

n1.
+ θ10(1 − θ10)

n̂′1.
(21)
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Fig. 8. Results of Sample-to-Sample method used to correct the bias in Fig. 7.

2) Multiclass Problems: Fieller’s theorem does not apply to
multiclass problems, which are not easily solved as fractions
of random variable using Cramer’s rule as in (17). Sarrus
rule applies to 3-class problems, but the resulting ratio under
Cramer’s rule remains complex. Thus bootstrapping methods
are recommended for multiclass problems [4]. Monte Carlo
simulations are also of interest. Datasets can be simulated
using error rates θxy with the Sample-to-Sample method,
i.e., with variance (18). Future work should investigate such
simulation, and compare its results to bootstrapping methods.

V. MAXIMUM DETERMINANT METHOD

Prior to applying the method, several classifiers may be
available, with no knowledge of the potential target sets.
To choose an optimal classifier, the Maximum Determinant
method aims at predicting which classifier yields the smallest
variance when applying the misclassification method. The ap-
proach is agnostic of the potential target sets, hence providing
a priori results.

The method focuses on the determinant of the error rate
matrix, i.e., ∣Mθ ∣= ∣ θ11 θ21 ...

θ12 θ22 ...
... ... ...

∣ for the misclassification method,

or ∣Mr∣= ∣ 1 r21 ...
r12 1 ...
... ... ...

∣ for the Ratio-to-TP method. According to
Cramer’s rule, the results of the misclassification and Ratio-
to-TP methods are fractions of two matrix determinants [12].
The fraction’s denominator is the determinant of the error rate
matrix ∣Mθ ∣ or ∣Mr∣. If the determinant ∣M∣→0 then n̂′x.→∞.
For a small determinant ∣M∣→0, a variation ∣M+∣=∣M∣+δ
can yield a high variation in n̂′x. as n̂′x.→∞. For a larger
determinant ∣M∣≫0, the same variation ∣M+∣=∣M∣+δ yields
a smaller variation in n̂′x.. Hence the Maximum Determinant
method assumes that the larger the difference ∣M∣ − 0 the
smaller the variance V (n̂′x.).

An initial evaluation is provided in Fig. 9 and Table III,
using the same datasets as Section II-C. To sample several
target sets for the same test set, we use smaller sample sizes
(i.e., in Table III, nx.+n′x.<n∗x. where n∗x. is the total number
of items available for class Cx). We sample 1000 test sets and
measure their matrix determinants ∣Mθ ∣ and ∣Mr∣. For each
test set, we sample 100 distinct target sets and compute the
variance V (n̂′x.) over the target sets.
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We find that V (n̂′x.) seems to be a linear function of∣M∣ (Fig. 9). The negative correlation between ∣Mθ ∣ and∑x V (n̂′x.) or ∑x∑y V (n̂′xy) (Table III) supports the Max-
imum Determinant assumption that high determinants indi-
cate lower variance V (n̂′x.) and V (n̂′xy). The correlation is
significant for the multiclass datasets, and less significant but
consistent for the binary datasets (i.e., negative or null). Hence
the method may not be relevant for some binary problems.

TABLE III
RESULTS OF MAXIMUM DETERMINANT METHOD

Correlation∣Mθ ∣ and ∑Var
Correlation∣Mr∣ and ∑Var

Data Test Set nx. Target Set n′x. V(n̂′x.) V(n̂′xy) V(n̂′x.) V(n̂′xy)

Te
st

s
T1

Iris C1−2 :20 C3 :15 C1−3 :25 -0.81 -0.79 -0.91 -0.89
Iono. C1 :50 C0 :50 C1 :50 C0 :100 -0.35 -0.13 -0.21 -0.01
Segm. C1−7 :100 C1,3,5,7 :100 C2,4,6 :200 -0.83 -0.81 -0.79 -0.76
Ohsc. C0−9 :400 C0−4 :100 C5−10 :200 -0.72 -0.52 -0.75 -0.64
Wave. C1−3 :300 C1 :300 C2 :600 C3 :900 -0.53 -0.40 -0.16 -0.08
Chess C1 :300 C0 :500 C1 :1000 C0 :500 -0.01 0.08 0 0.08

Te
st

s
T2

Iris C1−2 :10 C3 :15 C1−3 :25 -0.79 -0.77 -0.89 -0.87
Iono. C1 :30 C0 :30 C1 :50 C0 :100 -0.36 -0.12 -0.23 0.01
Segm. C1−7 :50 C1,3,5,7 :100 C2,4,6 :200 -0.83 -0.81 -0.78 -0.75
Ohsc. C0−9 :200 C0−4 :100 C5−10 :200 -0.71 -0.53 -0.75 -0.65
Wave. C1−3 :200 C1 :300 C2 :600 C3 :900 -0.49 -0.35 -0.18 -0.10
Chess C1 :200 C0 :300 C1 :1000 C0 :500 -0.01 0.08 0 0.09

Te
st

s
T3

Iris C1−3 :25 C1−2 :10 C3 :15 -0.24 -0.24 -0.35 -0.34
Iono. C1 :50 C0 :100 C1 :30 C0 :30 -0.80 -0.64 -0.75 -0.58
Segm. C1,3,5,7 :100 C2,4,6 :200 C1−7 :50 -0.72 -0.71 -0.77 -0.74
Ohsc. C0−4 :100 C5−10 :200 C0−9 :200 -0.68 -0.49 -0.72 -0.59
Wave. C1 :300 C2 :600 C3 :900 C1−3 :200 -0.61 -0.46 -0.16 -0.08
Chess C1 :1000 C0 :500 C1 :200 C0 :300 -0.33 -0.16 -0.34 -0.17

The initial results are promising, but future work is re-
quired for establishing theory (e.g., parameters of function
f(∣M∣)=V (n̂′x.); binary problems for which the method is not
relevant; in which cases ∣Mθ ∣ or ∣Mr∣ is a better predictor).
Future work should also investigate the potential of resampling
the test set (e.g., do smaller test sets with a higher matrix
determinant perform better than larger test sets with a lower
determinant?), and the consistency with Sample-to-Sample
estimates (e.g., do higher ∣M∣ have smaller Sample-to-Sample
variance estimates?).

VI. DISCUSSION AND FUTURE WORK

The choice of a bias correction method, and a variance
estimation method, depends on the characteristics of both
test and target sets. If class proportions differ between test
and target set, the reclassification method is not applicable.
If the test set is not sampled from the target set, and the
bias correction method is applied to describe the target set
(rather than a general population from which the target set
is sampled), then prior variance estimation methods are not
applicable and the Sample-to-Sample method must be used.

Applications of bias correction methods face issues with
potentially high result variance. Random error rate variations
between test and target sets can worsen the initial classification
bias when applying bias correction methods. This issue is
addressed in [3] with a method balancing the uncorrected
classifier output n′.y and estimated n̂′x. in a linear combination,
e.g., fitting the α parameter in (22).

n̂′x.,combined = α n̂′x. + (1 − α)n′.y (22)
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Fig. 9. Results of Maximum Determinant method, applied using ∣Mθ ∣
(misclassification method) and the datasets of test T1 in Table III. Each dot
represents a test set for which 102 target sets are sampled. The x-axis shows∣Mθ ∣, and the y-axis ∑x V (n̂′x.) (left graphs) and ∑x∑y V (n̂′xy) (right
graphs). The summation may explain the exponentiality in graph -a) -c).

A. Small Datasets

High variance is particularly critical for small datasets, e.g.,
if nx., n

′
x., nxy or n′xy are less than a few items. Further

research is needed to identify the data sizes for which bias cor-
rection methods are not recommended, or linear combinations
(22) are preferable (e.g., depending on error rate magnitudes).
Cases where small nxy yield error rate θxy →0 or 1 should
also be investigated (e.g., higher error rates may be preferable).
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B. Negative Estimates of n′x. and n′xy
The misclassification method can yield negative estimates

n̂′x. <0 (although it rarely happened in our experiments).
Negative estimates are easily handled for binary problems, i.e.,
if n̂′0.<0, set n̂′1. to n̂′1. + n̂′0., and n̂′0. to 0. Future research is
required to handle negative estimates in multiclass problems.

C. Applicability of Fieller’s theorem
Fieller’s theorem is not applicable when its denominator is

null, i.e., θ01 + θ10 = 1. Such impractical cases occur with
random classifiers (i.e., θ01 = θ10 = 0.5), or with classifiers
performing worse than random for one class and inversely
proportional for the other class (e.g., θ01 = 0.8and θ10 = 0.2).

D. Varying Feature Distributions
Classifiers typically use feature distributions to build mod-

els of each class (e.g., describing the characteristics of the
classes). If the feature distributions differ between test and
target sets, the error rates may differ too (e.g., if a target set has
more low-contrast images, more images may be misclassified).
This may worsen the classification biases when applying bias
correction methods. Fig. 10 shows examples where a single
feature is used, a score as in Fig. 2. Small variations of the
feature distribution have created significant biases.
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Fig. 10. Results of misclassification method for simulated data with varying
feature distribution. As in Fig. 2, a score threshold (x axis) is used to assign
classes C0 or C1. Class sizes n̂′0. (y axis) are estimated for 104 pairs of
test and target sets. Test sets are randomly sampled with class proportions
n0.=n1., mean scores µ0=0.4 for C0, µ1=0.6 for C1, and score variance
σx=0.1. Target sets are sampled from score distributions that differ from the
test sets, with µ′x=µx ± 0.5 and variance σ′x∈{0.05,0.1}, and with class
proportions n′0.=2n′1.. Additional variations are illustrated in graphs -h) -i).

Further research is required to handle varying feature distri-
butions. Prior work in [14] addresses this issue with a logistic
regression fitted on feature distributions, but requires equal
class proportions between test and target sets, and items with
a single feature per class (e.g., a dimension reduction, or a
measure of the similarity with class models). For binary prob-
lems using tuning parameters, Fig. 10 suggests that parameters
yielding equal error rates θ01 = θ10 (e.g., thresholds averaging
the mean scores (µ0+µ1)/2 in our simulations) may minimise
the biases due to varying feature distributions (and the variance
in any case, as suggested in Fig. 2).

VII. CONCLUSION

We demonstrated the characteristics of bias correction meth-
ods regarding their variance magnitude, and their applicability
if class proportions or feature distributions differ between test
and target sets. It informs the choice of a method depending
on the use case at hand.

We investigated methods for estimating the error composi-
tion in a classifier output. Given the n′.y items classified as
class Cy , they estimate how many n′xy items truly belong to
class Cx. Such methods describe the quality of classification
data beyond accuracy or precision.

We introduced a novel variance estimation method, called
Sample-to-Sample. It applies to specific target sets rather than
general populations from which target sets are sampled, the
latter being addressed in prior work. It provides accurate
confidence intervals for class sizes n̂′x. estimated from bias
correction methods, and for error composition estimates n̂′xy .

Finally, we introduced a promising method for predicting
the variance of bias correction results without prior knowledge
of the potential target sets. It shows a correlation between the
determinant of error rate matrices and the variance of two bias
correction methods. Such method can inform the choice of a
classifier, or its test set if several of them are available, before
applying a bias correction method.

The methods we introduced support uncertainty-aware anal-
yses of classification data, e.g., to investigate class sizes and
distributions.
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APPENDIX

A. Code

The R code used to apply and evaluate the methods
described in this paper is available online, free of use:
https://github.com/emma-cwi/classification error
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B. Application of Fieller’s theorem

Fieller’s theorem [15] defines the confidence intervals limits[ℓ−, ℓ+] for a ratio of correlated random variables A/B as (23),
with z=1 for 68% confidence level.

ℓ± = (µAµB − z2σA,B) ±√(µAµB − z2σA,B)2 − (µ2
A − z2σ2

A)(µ2
B − z2σ2

B)
µ2
B − z2σ2

B

(23)

1) Section IV-C: For n̂′0., A = n′.0 − θ̂′
10
(n′.1 + n′.0) and

B=1− θ̂′
01
− θ̂′

10
(17). The mean, variance, covariance of

A,B are detailed below, knowing that θ̂′
01

, θ̂′
10

are indepen-
dent with null covariance.

µB = E[1 − θ̂′
01
−θ̂′

10
] µ̂B = 1 − θ01 − θ10

σ2
B = V (1 − θ̂′

01
−θ̂′

10
) = V (θ̂′

01
)+V (θ̂′

10
)

σ̂2
B = θ01(1−θ01)

n0.
+ θ01(1−θ01)

n̂′0.
+ θ10(1−θ10)

n1.
+ θ10(1−θ10)

n̂′1.
µA = E[n′.0−θ̂′10 n′..] µ̂A = n′.0−θ10 n′..
σ2
A = V (n′.0−θ̂′10 n′..) = n′..2 V (θ̂′10)

σ̂2
A = n′..2⎛⎝

θ10(1−θ10)
n1.

+ θ10(1−θ10)
n̂′1.

⎞
⎠

σA,B = Cov(n′.0−θ̂′10 n′.., 1−θ̂′
01
−θ̂′

10
) = n′..V (θ̂′10)

σ̂A,B = n′..⎛⎝
θ10(1−θ10)

n1.
+ θ10(1−θ10)

n̂′1.
⎞
⎠

2) Section IV-D: For n̂′01, A=θ̂′
01
(n′.0− θ̂′10 n′..). B remains

unchanged. Their mean, variance, covariance are detailed
below, using [16].

µA = E[θ̂′01(n′.0−θ̂′10 n′..)] µ̂A = θ01(n′.0−θ10 n′..)
σ2
A = E[θ̂′01]2 V (n′.0−θ̂′10 n′..) +E[n′.0−θ̂′10 n′..]2 V (θ̂′01)
+ V (θ̂′

01
)V (n′.0−θ̂′10 n′..)

σ̂2
A = θ201n′..2 V̂ (θ̂′10) + (n′.0−θ10 n′..)2 V̂ (θ̂′01) + n′..2V̂ (θ̂′01)V̂ (θ̂′10)

σA,B = n′..(Cov(θ̂′
01
θ̂′
10
, θ̂′

01
)+Cov(θ̂′

01
θ̂′
10
, θ̂′

10
)) −n′.0V (θ̂′10)

Cov(θ̂′xy θ̂
′
yx, θ̂

′
xy) =E[θ̂′xy]Cov(θ̂′yx, θ̂

′
xy) +E[θ̂′yx]Cov(θ̂′xy , θ̂

′
xy)

=E[θ̂′yx]V (θ̂′xy)

σ̂A,B = n′..(θ10V̂ (θ̂′01) + θ01V̂ (θ̂′10)) − n′.0V̂ (θ̂′01)
With V̂ (θ̂′xy) = θxy(1−θxy)

nx.
+ θxy(1−θxy)

n̂′x.
(Sample-to-Sample)

3) Section IV-E: For π̂0=n̂′0./n′.. in [3], [4], A=n′.0/n′..−θ̂′10
(19). B remains unchanged. The mean, variance, covariance
used in [3], [4] are restated below.

µA = n′.0/n′.. − θ10

σ2
A = n′.0/n′..(1 − n′.0/n′..)

n′.. + θ10(1 − θ10)
n1.

σ2
B = θ01(1−θ01)

n0.
+ θ10(1−θ10)

n1.

σA,B = θ10(1−θ10)
n1.
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