
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Domain-specific language design requires feature
descriptions

A. van Deursen, P. Klint

REPORT SEN-R0126 NOVEMBER 30, 2001

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301640033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Domain-Specific Language Design
Requires Feature Descriptions

Arie van Deursen Paul Klint

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
http://www.cwi.nl/�farie,paulkg/

ABSTRACT

A domain-specific language (DSL) provides a notation tailored towards an application domain and is based on
the relevant concepts and features of that domain. As such, a DSL is a means to describe and generate members
of a family of programs in the domain.

A prerequisite for the design of a DSL is a detailed analysis and structuring of the application domain.
Graphical feature diagrams have been proposed to organize the dependencies between such features, and to
indicate which ones are common to all family members and which ones vary.

In this paper, we study feature diagrams in more details, as well as their relationship to domain-specific
languages. We propose the Feature Description Language (FDL), a textual language to describe features. We
explore automated manipulation of feature descriptions such as normalization, expansion to disjunctive normal
form, variability computation and constraint satisfaction. Feature descriptions can be directly mapped to UML
diagrams which in their turn can be used for Java code generation. The value of FDL is assessed via a case
study in the use and expressiveness of feature descriptions for the area of documentation generators.

1998 ACM Computing Classification System:D.2.2, D.2.9, D.2.11, D.2.13.

Keywords and Phrases:Domain engineering, tool support, software product lines, UML, constraints.

Note: To appear in theJournal of Computing and Information Technology, 2001.

Note: Work carried out under CWI project SEN 1.2, Domain-Specific Languages, sponsored by the Telematica
Instituut.

1

1 Introduction

A domain-specific language (DSL) is a programming language or executable specification language that of-
fers, through appropriate notations and abstractions, expressive power focused on, and usually restricted to,
a particular problem domain [8]. As such, a DSL can be used to generate members of a family of systems
in an application domain. The well-designed DSL is based on a thorough understanding of the underlying
application domain, giving exactly the expressive power to generate required family members easily. Poten-
tial advantages of DSLs include reduced time to market, reduced maintenance costs, and higher portability,
reliability, optimizability, and testability [8, 7]

A prerequisite for the design of a DSL is a detailed analysis and structuring of the application domain.
Guidelines for acquiring such an understanding are provided by the research area ofdomain analysiswhich
investigates ways of modeling domains. Following [22], adomain analystis a person who examines the needs
and requirements of a collection of systems which seem “similar”. Neighbors emphasizes that this is work that
only can be done by a person who has built many systems for different customers in the same problem area.
The domain analyst is like a systems analyst, except that the goal is to support the development of families of
related systems, not just one-of-a-kind productions [26].

Domain analysis originates from software reuse research, and can be used when constructing domain-
specific reusable libraries, frameworks, languages, or product lines. Several domain analysis methodologies
exists, of which ODM (Organization Domain Modeling [23]), FODA (Feature-Oriented Domain Analysis
[19]), and DSSA (Domain-Specific Software Architectures [26]) are best known.

The most important result of domain analysis1 is afeature model[5, Chapter 4]. A feature model covers the
commonalities and variabilities of software family members, as well as the dependencies between the variable
features. The feature model documents feature rationales, stakeholders, constraints (for example features may
exclude each other), binding sites, and priorities.

A key element of the feature model is thefeature diagram, which is a graphical notation for describing
dependencies between (variable) features (see Figure 1 for an example). These feature diagrams are the topic
of our paper. Feature diagrams originate from the FODA method [19]. They concisely describe all possible
configurations (calledinstances) of a software system, focusing on the features that may differ in each of the
configurations. Czarnecki and Eisenacker’s book ongenerative programmingincludes a recent account of
feature diagrams; Van Gurpet al discuss the role of feature diagrams in software product lines [16].

The purpose of this paper is to get a better understanding of feature diagrams, and their potential for sup-
porting DSL design. In particular, we address the following concerns (see also Section 6 on related work):

� The notation of feature diagram is only superficially described, and is mostly explained by way of exam-
ples. We formalize the notion of feature diagram, by providing a DSL for feature definitions called FDL,
together with a suite of formally defined operations for manipulating FDL expressions;

� Tool support for feature diagrams is still in its infancy. We construct prototype FDL tools, and discuss
various ideas for further advancing them.

� Feature diagrams are hardly used in practice, and it is difficult to find actual examples of feature diagrams
used in concrete projects. We attempt to address this by providing an additional case study in the use of
FDL.

� It is unclear how to proceed once a feature diagram exists. To address this, we discuss what can be done
with an FDL description, and how it can be mapped to a UML class diagram to get a first version of the
configuration interface.

The plan for the paper is as follows. In Section 2 we introduce the graphical notation for feature diagrams
and also present our textual Feature Description Language (FDL) that is able to express everything that can

1Issues related to domain engineering and analysis are also discussed on theProgram Transformation Wikiat www.
program-transformation.org/ .

2

carBody pullsTrailer

Transmission Engine HorsePower

automatic manual electric gasoline

lowPower mediumPower highPower

Car

Figure 1: Feature diagram for a simple car

be expressed in a graphical feature diagram (and more). Next, we introduce in Section 3 afeature diagram
algebrathat allows the normalization of feature diagrams. In addition, we introduce a notion ofsatisfaction
that enables us to answer the following question:given a feature diagram and a list of user requirements, does
this feature diagram contain software configurations that satisfy the user requirements?In this way, a feature
diagram can be actively queried and the initial investments in its construction start to pay off. Implementation
issues are addressed in Section 4. We show how feature diagrams can be mapped to UML and Java classes.
In Section 5 we perform a case study and describe how the variability of an existing commercial product for
documentation generation can be modeled using FDL. Conclusions in Section 6 complete the paper.

2 Feature Diagrams

2.1 Graphical Notation for Feature Diagrams

Figure 1 shows a feature diagram for a simple car inspired by [19, 5]. The diagram states that a car consists of a
carBody , Transmission , Engine andHorsePower . These four features are mandatory as indicated by
the closed dot on top of each feature. The last feature of the car ispullsTrailer . It is optional as indicated
by the open dot.carBody andpullsTrailer areatomic featureswhich cannot be further subdivided in
other features. In the sequel, we will call features that are defined in terms of other featurescomposite features.
We will use the convention that names of atomic features start with a lower case letter and names of composite
features start with an upper case letter. Note that atomic and composite features are called features, respectively,
subconcepts in [5].

TheTransmission may be eitherautomatic or manual . The open triangle joining the lines from
Transmission to its sub-features indicates an exclusive (“one-of”) choice: eitherautomatic or manual
may be selected but not both.

TheEngine may either beelectric or run ongasoline or both. The closed triangle joining the lines
from Engine to electric andgasoline indicates non-exclusive “more-of”) choice: eitherelectric
or gasoline or both may be selected.

3

Car: all(carBody, Transmission, Engine, HorsePower, pullsTrailer?)

Transmission: one-of(automatic, manual)

Engine: more-of(electric, gasoline)

HorsePower: one-of(lowPower, mediumPower, highPower)

Figure 2: Feature diagram for simple car in FDL

TheHorsePower may either belowPower , mediumPower or highPower . The open triangle joining
the lines to the sub-features ofHorsePower indicate an exclusive, one-of, choice.

An instanceof a feature diagram consists of an actual choice of atomic features matching the requirements
imposed by the diagram. An instance corresponds to aproduct configurationof a system family. A simple
case analysis learns that the number of possible car instances is 36: 1 (carBody) � 2 (Transmission) �
3 (Engine) � 3 (HorsePower) � 2 (pullsTrailer) = 36.

2.2 Textual Notation for Feature Diagrams

Feature Diagrams yield nice pictures that describe a system’s features. To enable email communication and
discussion as well as creation of automatic tools for processing Feature Diagrams, a textual representation
is, however, preferable. This textual representation should not only contain all information contained in the
graphical diagram but it should also be suited for automatic processing.

One proposal, primarily intended for email communication of Feature Diagrams, is given in [2]. We show
in Figure 2 how we will represent the graphical notation from Figure 1 in a textual form. They may also contain
constraints(not shown in this example), but we postpone their description until Section 3.4.

An FDL definition consists of a number offeature definitions: a feature name followed by “: ” and afeature
expression. A feature expression can consist of

� an atomic feature,

� a composite feature: a named feature whose definition appears elsewhere,

� an optional feature: a feature expression followed by “?”,

� mandatory features: a list of feature expressions enclosed inall() ,

� alternative features: a list of feature expressions enclosed inone-of() ,

� non-exclusive selection of features:2 a list of feature expressions enclosed inmore-of() ,

� a default feature value:default = followed by an atomic feature,

� and remaining features of the form... , indicating that a given set is not completely specified.

This structure is formally described in a complete grammar of FDL given in Figure 3. It is written in
SDF [17, 27]. The layout conventions (white space, comments) of FDL are defined in moduleLayout that is
not shown here.

2Called “or-features” in [5].

4

module Fdl
imports Layout

exports
sorts FeatureName AtomicFeature FeatureDefinition

FeatureDiagram FeatureExpression FeatureList
Constraint DiagramConstraint UserConstraint

lexical syntax
[A-Z][a-zA-Z0-9]* -> FeatureName
[a-z][a-zA-Z0-9]* -> AtomicFeature

context-free syntax

FeatureDefinition* Constraint* -> FeatureDiagram
FeatureName ":" FeatureExpression -> FeatureDefinition

{ FeatureExpression "," }+ -> FeatureList
all(FeatureList) -> FeatureExpression
one-of(FeatureList) -> FeatureExpression
more-of(FeatureList) -> FeatureExpression

FeatureName -> FeatureExpression
AtomicFeature -> FeatureExpression
FeatureExpression "?" -> FeatureExpression
"default" "=" AtomicFeature -> FeatureExpression

"..." -> AtomicFeature

DiagramConstraint -> Constraint
UserConstraint -> Constraint

AtomicFeature "requires" AtomicFeature -> DiagramConstraint
AtomicFeature "excludes" AtomicFeature -> DiagramConstraint

"include" AtomicFeature -> UserConstraint
"exclude" AtomicFeature -> UserConstraint

Figure 3: Grammar for Feature Definition Language

5

Variable Type

F FeatureExpression
Fs f FeatureExpression "," g*
Ft f FeatureExpression "," g+
A AtomicFeature
C Constraint
Cs Constraint*

Figure 4: Variables used in FDL rules.

3 Feature Diagram Algebra

Given the textual representation of feature diagrams, we can now start developing rules to operate on feature
diagrams. The result is afeature diagram algebra.

Overview of feature algebra rules The feature diagram algebra consists of four sets of rules:

� Normalization rules (Section 3.1): the purpose is to slightly simplify the feature expression by eliminat-
ing duplicate features and degenerate cases of the various constructors.

� Variability rules (Section 3.2): serve to count the number of possibilities for a given feature diagram.

� Expansion rules (Section 3.3): expand a normalized feature expression into adisjunctive normal form.

� Satisfaction rules (Section 3.4): given a feature expression in disjunctive normal form and given con-
straints, we determine which of the disjuncts satisfy the constraints. These satisfaction rules are the rules
we are really interested in: they allow the formulation of constraints that are inherent in a feature diagram
(system constraints) as well as constraints imposed by the user (user constraints). The satisfaction rules
enable us toquery a feature diagramfor solutions that satisfy both system and user constraints.

Relation between the FDL definition and Feature Expressions Recall from Figure 3 that an FDL definition
consists of a number of feature definitions that define a composite feature by associating a feature expression
with a feature name. In that feature expression names of other composite features may occur.

From the perspective of the feature diagram algebra it is more convenient to manipulate a single feature
expression. We assume therefore that one composite feature (by default the first one defined in the FDL
description) is thefeature of interestand all rules operate on the feature expression corresponding to this
feature of interest. To further simplify the presentation we also assume that all names of composite features in
the feature of interest have been replaced (recursively) by their definition as given in the FDL definition. This
is a simple variable substitution process that we do not further explain.

Variable conventions In the presentation of the rules, we will use the conventions for variables shown in
Figure 4 (each may be followed by digits or apostrophes). Observe thatFs represents comma-separated lists
of zero or morefeature expressions and thatFt represents comma-separated lists ofone or morefeature ex-
pressions.

The rules that we will present have been prototyped using the ASF+SDF Meta-Environment [3, 6, 20]. De-
tailed knowledge of the ASF+SDF specification formalism is, however, not necessary for a good understanding
of the following sections.

6

equations

[N1] Fs, F, Fs’, F?, Fs’’ = Fs, F, Fs’, Fs’’
[N2] Fs, F, Fs’, F, Fs’’ = Fs, F, Fs’, Fs’’
[N3] F?? = F?
[N4] all(F) = F
[N5] all(Fs, all(Ft), Fs’) = all(Fs, Ft, Fs’)
[N6] one-of(F) = F
[N7] one-of(Fs, one-of(Ft), Fs’) = one-of(Fs, Ft, Fs’)
[N8] one-of(Fs, F?, Fs’) = one-of(Fs, F, Fs’)?
[N9] more-of(F) = F

[N10] more-of(Fs, more-of(Ft), Fs’) = more-of(Fs, Ft, Fs’)
[N11] more-of(Fs, F?, Fs’) = more-of(Fs, F, Fs’)?
[N12] default = A = A

Figure 5: Normalization rules

all(carBody,
one-of(automatic, manual),
more-of(electric, gasoline),
one-of(lowPower, mediumPower, highPower),
pullsTrailer?)

Figure 6: Normalized feature expression for Car

3.1 Normalization Rules

The normalization rules N1–N12 are shown in Figure 5. An informal explanation of these rules is as follows:

N1 combines mandatory and optional features in a list.

N2 removes duplicates in a list.

N3 joins duplicate optionals.

N4-N5 normalize special cases ofall . Nestedall s are flattened.

N6-N7 normalize special cases ofone-of . Nestedone-of s are flattened.

N8 transforms aone-of containing one optional feature into an optionalone-of .

N9-N10 normalize special cases ofmore-of . Nestedmore-of s are flattened.

N11 transforms amore-of containing one optional feature into an optionalmore-of .

N12 eliminates thedefault = annotation.

The normalized feature expression for Car is shown in Figure 6.

3.2 Variability Rules

An important purpose of feature diagrams is to describe the variability of a software system and it is therefore
interesting to count the possibilities. Given a normalized feature diagram, the variability rules V1–V8 shown
in Figure 7 define the variability for each construct.

7

equations

[V1] var(A) = 1
[V2] var(F?) = var(F) + 1
[V3] var(all(F, Ft)) = var(F) * var(all(Ft))
[V4] var(all(F)) = var(F)
[V5] var(one-of(F, Ft)) = var(F) + var(one-of(Ft))
[V6] var(one-of(F)) = var(F)
[V7] var(more-of(F, Ft)) = var(F) + (var(F)+1)* var(more-of(Ft))
[V8] var(more-of(F)) = var(F)

Figure 7: Rules for computing variability

The variability of an atomic feature is one [V1] and the variability of an option adds one to the variability
of its argument [V2]. The variability ofall is the product of the variabilities of its arguments [V3,V4]. The
variability of one-of is the sum of the variabilities of its arguments [V5,V6]. The variability ofmore-
of (F1; : : : ;Fn) is slightly more complex and amounts to computing 2n� 1 for the case thatvar (Fi) = 1 for
i = 1; : : : ;n, corresponding to switching each feature on or off, but disallowing the empty configuration.

Assuming thatN1 = var(F) andN2 = var(more-of(Ft)) , the variability ofmore-of(F, Ft)
equalsN1+N1�N2+N2, representing the cases that onlyF is used, that the combination ofF andFt is used,
or that onlyFt is used. In [V7] this written in the formatN1+(N1+1)�N2 (which avoids recalculation ofN2

when executing these laws as rewrite rules).
In [12] the variability for the more-of case is formulated in the following (equivalent) manner:

var (more-of (F1; : : : ;Fn)) = (var (F1)+1)� (var (F2)+1)� � � �� (var (Fn)+1)�1

The variability for the feature expression for Car (Figure 6) is 36. The variability clearly grows expo-
nentially as can be appreciated by calculating the variability of the feature expression for the documentation
generator that we will discuss later on (Figure 14, Section 5). In that case, the variability is 3771425280!

3.3 Expansion Rules

The next step is to expand a normalized feature expression into adisjunctive normal formdefined as follows:

one-of(all(A11; : : : ;A1n1) ; : : : ; all(Am1; : : : ;Amnm))

The outermost operator of a disjunctive normal form is thusone-of . and its arguments are allall s with only
atomic features as arguments. The resulting representation is essentially a list of all possible configurations.

The expansion rules E1–E4 are shown in Figure 8 and amount to eliminating optionals,one-of s, and
more-of s that occur nested within anall :

E1,E2 translates anall containing an optional feature expression in two cases: one with and one without the
feature.

E3 translates anall containing aone-of in two cases: one with the first alternative and one with theone-
of with the first alternative removed.

E4 translates anall containing amore-of into three cases: one with the first alternative, one with the first
alternative and the remainingmore-of , and one with only the remainingmore-of .

The expansion of the feature expression for Car (Figure 6) is shown in Figure 9. As expected from the variability
computed in the previous section, it contains 36 alternatives.

8

equations

[E1] all(Fs, F?, Ft)
= one-of(all(Fs, F, Ft), all(Fs, Ft))

[E2] all(Ft, F?, Fs)
= one-of(all(Ft, F, F), all(Ft, Fs))

[E3] all(Fs, one-of(F, Ft), Fs’)
= one-of(all(Fs, F, Fs’), all(Fs, one-of(Ft), Fs’))

[E4] all(Fs, more-of(F, Ft), Fs’)
= one-of(all(Fs, F, Fs’),

all(Fs, F, more-of(Ft),Fs’),
all(Fs, more-of(Ft), Fs’)

)

Figure 8: Expansion rules

3.4 Satisfaction Rules

Now we are in a good position to explainconstraintsin feature diagrams. As defined in Figure 3, a constraint
can have one of the following forms:

� A1 requires A2 : if featureA1 is present, then featureA2 should be present as well.

� A1 excludes A2 : if featureA1 is present, then featureA2 should not be present.

� include A : featureA should be present.

� exclude A : featureA should not be present.

The first two kinds of constraints are calleddiagram constraintssince they express fixed, inherent, depen-
dencies between features in a diagram.

The last two kinds of constraints are calleduser constraintssince they express the user requirements re-
garding presence or absence of a feature. The user constraints may vary between subsequent uses of the feature
diagram.

The purpose of constraints is to further limit the variability of a feature diagram. This can be achieved
by introducing a notion ofsatisfactionthat determines for each disjunct of a feature expression in disjunctive
normal form whether it satisfies given constraints.

The satisfaction rules S1–S8 are shown in Figure 10. Typically, they check for a given disjunct whether
there is an applicable constraint and, if so, whether that constraint is satisfied or not. The binary constraints
excludes andrequires are handled in [S1,S2], respectively, [S3,S4]. Typically, if the disjunctive normal
form all(Fs, A1, Fs’) and one of the constraints have anA1 in common, the appropriate check is
performed whether a correspondingA2 in the constraint is absent or present. In as similar fashion, [S5,S6] and
[S7,S8] handle the unary constraintsincludes , respectively,excludes .

If we introduce the following two constraints in the car example:

� pullsTrailer requires highPower (not unreasonable if you don’t want to ruin your engine),
and

� include pullsTrailer (a user requirement).

and reduce the disjunctive normal form for Car we get the result shown in Figure 11. Observe that the original
36 possibilities have been reduced to just 6.

9

one-of(all(carBody, automatic, electric, lowPower, pullsTrailer),
all(carBody, automatic, electric, gasoline,lowPower,

pullsTrailer),
all(carBody, automatic, gasoline, lowPower, pullsTrailer),
all(carBody, automatic, electric, mediumPower,

pullsTrailer),
all(carBody, automatic, electric, gasoline,mediumPower,

pullsTrailer),
all(carBody, automatic, gasoline, mediumPower, pullsTrailer),
all(carBody, automatic, electric, highPower, pullsTrailer),
all(carBody, automatic, electric, gasoline,highPower,

pullsTrailer),
all(carBody, automatic, gasoline, highPower, pullsTrailer),
all(carBody, manual, electric, lowPower, pullsTrailer),
all(carBody, manual, electric, gasoline,lowPower,

pullsTrailer),
all(carBody, manual, gasoline, lowPower, pullsTrailer),
all(carBody, manual, electric, mediumPower, pullsTrailer),
all(carBody, manual, electric, gasoline,mediumPower,

pullsTrailer),
all(carBody, manual, gasoline, mediumPower, pullsTrailer),
all(carBody, manual, electric, highPower, pullsTrailer),
all(carBody, manual, electric, gasoline,highPower,

pullsTrailer),
all(carBody, manual, gasoline, highPower, pullsTrailer),
all(carBody, automatic, electric, lowPower),
all(carBody, automatic, electric, gasoline,lowPower),
all(carBody, automatic, gasoline, lowPower),
all(carBody, automatic, electric, mediumPower),
all(carBody, automatic, electric, gasoline,mediumPower),
all(carBody, automatic, gasoline, mediumPower),
all(carBody, automatic, electric, highPower),
all(carBody, automatic, electric, gasoline,highPower),
all(carBody, automatic, gasoline, highPower),
all(carBody, manual, electric, lowPower),
all(carBody, manual, electric, gasoline,lowPower),
all(carBody, manual, gasoline, lowPower),
all(carBody, manual, electric, mediumPower),
all(carBody, manual, electric, gasoline,mediumPower),
all(carBody, manual, gasoline, mediumPower),
all(carBody, manual, electric, highPower),
all(carBody, manual, electric, gasoline,highPower),
all(carBody, manual, gasoline, highPower))

Figure 9: Disjunctive normal form for Car (36 disjuncts)

10

equations

[S1] is-element(A2, Fs) | is-element(A2, Fs’) = true
===

sat(all(Fs, A1, Fs’), Cs A1 excludes A2 Cs’) = false

[S2] is-element(A2, Fs) | is-element(A2, Fs’) = false
==
sat(all(Fs, A1, Fs’), Cs A1 excludes A2 Cs’) =
sat(all(Fs, A1, Fs’), Cs Cs’)

[S3] is-element(A2, Fs) | is-element(A2, Fs’) = false
==
sat(all(Fs, A1, Fs’), Cs A1 requires A2 Cs’) = false

[S4] is-element(A2, Fs) | is-element(A2, Fs’) = true
==
sat(all(Fs, A1, Fs’), Cs A1 requires A2 Cs’) =
sat(all(Fs, A1, Fs’), Cs Cs’)

[S5] is-element(A,Ft) = true
==
sat(all(Ft), Cs include A Cs’) = sat(all(Ft), Cs Cs’)

[S6] is-element(A,Ft) = false
==
sat(all(Ft), Cs include A Cs’) = false

[S7] is-element(A,Ft) = true
==
sat(all(Ft), Cs exclude A Cs’) = false

[S8] is-element(A,Ft) = false
==
sat(all(Ft), Cs exclude A Cs’) = sat(all(Ft), Cs Cs’)

[default-S9]
sat(all(Ft), Cs) = true

Figure 10: Satisfaction rules

one-of(
all(carBody, automatic, electric, highPower, pullsTrailer),
all(carBody, automatic, electric, gasoline,highPower, pullsTrailer),
all(carBody, automatic, gasoline, highPower, pullsTrailer),
all(carBody, manual, electric, highPower, pullsTrailer),
all(carBody, manual, electric, gasoline,highPower, pullsTrailer),
all(carBody, manual, gasoline, highPower, pullsTrailer)

)

Figure 11: Reduced feature expression for Car

11

car.transmission=automatic
car.pullsTrailer=false
car.engine=electric,gasoline

Figure 12: Car instance specified as Java property file

4 Implementing Feature Diagrams

A feature diagram describes possible system configurations. To actually arrive at a working system, these
configurations must be implemented. In this section we analyze how feature diagrams can be implemented
using object-oriented models. We focus on the use of UML and Java as implementation targets. Observe that
the resulting UML only describes theconfiguration interfaceof a family of systems such as a product line. The
actual implementation of the underlying framework will involve many more classes, mostly dealing with the
featurescommonto all software products, as opposed to those that arevariablebetween them.

A first question is how to represent actual configurations, that is, feature diagram instances. Recall that a
configuration is just a set of features selected from the diagram. This suggests that a simpleproperty list, as
for example available through Java property files, suffices to indicate which features are switched on or off. As
an example, an instance of a car having automatic transmission, no trailer, and both an electric and a gasoline
engine is given as a Java property file in Figure 12.

The names of the properties are derived from the diagram, and constitute a path from the root to the selected
feature. In practice, many of the published feature diagrams are in fact veryflat, so these property names will be
sufficiently simple. For example, the feature diagram for describing ways in which different window managers
move windows covered by [19, p.64] is essentially a flat list of elementary features such asoverlappedLayout,
moveIcon, etc. Likewise, none of the feature diagrams presented in [5] have a depth larger than 3. Even if the
depth would be larger, we can always normalize feature diagrams, as we have seen in the previous section, to a
disjunctive normal form, in which the depth is at most 2.

Methods implementing the features need to be aware of the configuration chosen. In the simplest approach,
such methods perform an explicit check on the property values, and adapt their behavior accordingly. The
disadvantage of this is that it amounts to including if-then-else or case statements at various places, which is
generally considered bad object-oriented programming style [13, 21].

A more involved approach is to turn features into classes, and if possible to use inheritance in order to
specialize methods to particular feature instances. This amounts to deriving a UML class diagram from a
feature diagram. In Figure 13 we have done this in a systematic way for the car example of Figure 2. From this
diagram, we can make the following observations:

� Every feature corresponds to a class.

� Associations between classes are tagged with ahhstereotypeii indicating the sort of feature dependency
they originate from.

� The mandatory dependency between Car and CarBody is mapped to an aggregation between these
classes.

� The optional dependency between Car and PullsTrailer corresponds to an association with a cardinality
of 0 or 1.

� Theone-of andmore-of lists for Engine, Transmission, and Horsepower results in abstract classes
EngineandTransmission, with specific subclasses for each of the alternatives.

� The one-of dependency for Transmission and HorsePower results in a one-to-one association with
Car; Themore-of dependency between Engine and Car results in a one-to-many association, with
multiplicity equal to the cardinality of the number of or-features (in this case “1::3”).

12

Car
carBody

pullsTrailer

electricEnginegasolineEngine

Engine

Transmission

automatic manual

<<mandatory>>

<<optional>>0..1

pulledBy

0..1

pulls

<<more-off>>

1..*
<<one-of>>

HorsePower

<<one-of>>

lowPower

mediumPower

highPower

Figure 13: UML Class Diagram for Car Features

13

Since this example includes all FDL features, this approach corresponds to a systematic translation of FDL
to UML class diagrams. The mapping is based on the discussion Czarnecki and Eisenacker provide in [5, Sec-
tion 4.5]. They discuss several C++ implementations, involving static and dynamic parameterizations, mixins,
parameterized inheritance, and multiple inheritance. They do not, however, provide the intuitive diagram of
Figure 13. Compared to the options they discuss, our approach is simple, systematic, and independent of the
availability of a parameterization mechanism.

The result of translating FDL to UML can be represented using XMI, the XML Meta data Information
exchange format.3 XMI documents can be imported into UML modeling tools such as Rational, TogetherJ,
and Argo/UML, which in turn can use the diagrams to generate, for example, Java classes.

In addition to that, an FDL specification can be used to generate a “configuration editor”. Such an editor is
a user interface panel in which a product builder can select which features to include. The result of an editing
session is the input to the generated configuration classes. It consists of a concrete property file, or executable
code for creating the appropriate configuration objects.

A logical next step is to create a domain-specific language based on the FDL definition. This is particularly
useful if a natural language for expressing feature instantiations exist, or if product instances should be read,
manipulated, and put under revision control. Observe that the operators in an FDL definition are very close to
the operators in, for example, BNF or (as we have used) SDF:one-of corresponds to alternative productions,
? to optional productions, andmore-of to a list construct. Thus, an FDL definition can easily become the
basis for a grammar of a language for building systems for the underlying application domain.

5 DocGen Case Study

5.1 Background

In this section, we explore the use of feature diagrams for the purpose of designing a configuration DSL for
DocGen, a commercial documentation generator for software systems [9, 11]. It has been instantiated for
various languages, including Cobol, SQL, JCL, as well as various proprietary languages.

DocGen operates by populating a repository with a series of facts derived from legacy sources. These facts
are used to derive web-based documentation for the systems analyzed. This documentation includes textual
summaries, overviews, various forms of control flow graphs, architectural information, and so on. Information
is available at different levels of abstraction, which are connected through hyper links.

DocGen customers have different wishes regarding the languages to be analyzed, the specific set of anal-
yses to be performed, and the way in which the collected information should be retrieved. Thus, DocGen
is asoftware product line, providing a set of reusable assets well-suited to express and efficiently implement
different customized documentation generation systems.

The construction of DocGen is characterized by evolutionary design (DocGen is being developed following
the principles of extreme programming [1]). DocGen started as a research prototype described by [9]. This
prototype was not implemented as a reusable framework; instead it just produced documentation as desired by
one particular customer. As the commercial interest in applications of DocGen grew, more and more variation
points were introduced, evolving DocGen into a system suitable for deriving many different documentation
generation systems.

At present, DocGen is an object-oriented application framework written in Java and using a relational
database as its repository. It provides a range of core classes for analysis and presentation purposes. In order
to instantiate family members, a package specific to a given customer is created, containing specializations of
core classes where needed, including methods called by the DocGen factory for producing the actual DocGen
instantiation.

With the number of customer configurations growing, it is time to rethink the way in which DocGen product
instantiations are created, and what sort of variability the DocGen product line should offer. In this section, we
explore how FDL can help to organize the variable features of DocGen.

3Seehttp://xml.coverpages.org/xmi.html .

14

DocGen:
all(Analysis, Presentation)

Analysis:
all(RelationSet, AnalysisSpecializations?)

RelationSet:
more-of(annotationRelation, callRelation, entitiesRelation,

entityOperationRelation, ...)

AnalysisSpecializations:
more-of(callHandlers,

columnPositions,
codingConventions,
fileNameConventions, ...)

Presentation:
all(Localization,

Interaction,
MainBlocks,
SourceSections,
PresentationSpecializations?)

Localization:
one-of(default = english, dutch)

Interaction:
one-of(crawled, default = dynamic)

MainBlocks:
all(UsersGuide,

more-of(programBlock, copybookBlock, statisticsBlock, ...))

SourceSections:
more-of(annotationSection, activationSection, entitiesSection,

parametersSection, ...)

UsersGuide:
more-of(indexpage, programHelp, copybookHelp, statisticsHelp, ...,

annotationHelp, activationHelp, entitiesHelp,
parametersHelp, ...)

PresentationSpecializations:
more-of(frameSize, ...)

Figure 14: Configurable Features of DocGen

15

5.2 DocGen Features

A selection of the variable features of DocGen and their constraints are shown in Figures 14 and 15. The
features listed describe the variation points in the current version of DocGen. One of the goals of constructing
the FDL specification of these features is to search for alternative ways in which to organize the variable
features, in order to optimize the configuration of DocGen family members.

The features listed focus on just theAnalysis andPresentation configuration ofDocGen, as spec-
ified by the first dependency of Figure 14.

TheAnalysis features show how the DocGen analysis can be influenced. First, the data-model used can
be specified through theRelationSet , which indicates which relations of the DocGen data model are to
be populated. The Java implementation follows the UML diagram suggested in Section 4, where amore-of
results in a one-to-many association between a series of classes all inheriting from the abstractRelationclass.

Second, an optional list ofAnalysisSpecializations can be provided. Such specializations can
be implemented in several ways. Some are just simple parameter settings, such as thecolumnPositions ,
which are encoded in Java property files. Others correspond to specialized methods for performing certain
analyses — such features indicate which customer-specific classes need to be included.

ThePresentation features affect the way in which the facts contained in the repository are presented
to DocGen end users. One of the more obvious features is the need forLocalization , which in this case
amounts to choosing between English and Dutch. This is implemented through the web-browsers localization
scheme, thus making it a feature that the end-user can determine at any point during a session.

TheInteraction feature determines the moment the HTML pages are generated. Indynamic interac-
tion, a page is created whenever the end-user requests a page. This has the advantage that the pages always use
the most up-to-date information from the repository, and that interactive browsing is possible. Incrawled
mode, all pages are generated and stored on, for example, a CD-ROM. This has the advantage that no web-
server is needed to inspect the data, and that they can be easily easily viewed on a disconnected laptop. As we
will see, theInteraction feature puts constraints on other presentation features.

The MainBlocks feature indicates the contents of the root page of the derived documentation. It is a
list of standard blocks that can be reused, implemented again as a many-to-one association to subclasses of
the abstractBlock class. If necessary for a particular customer, a specific subclass of one of the blocks can
be created, and specified as one of thePresentationSpecializations . TheSourceSections is a
similar configuration of the contents of the main page used for documenting individual source files.

A mandatory block in theMainBlocks is theUsersGuide . The contents of the user’s guide can vary,
and depends on the features included. The feature description given indicates that it consists of a series of Help
sections, which together constitute the user’s guide (which is available as an integrated pdf file, as well as per
section from relevant pages).

5.3 DocGen Feature Constraints

Figure 15 lists several constraints restricting the number of valid DocGen configurations of the features listed
in Figure 14.

First, there are dependencies between the tables of the data-model. In other words, not every selection from
RelationSet is valid. For example, if a table uses a foreign key, the table providing that key as primary
key should be available as well. The figure shows this dependency for theentitiesRelation and the
entityOperationRelation .

Second, the pages that can be presented depend on the analyses that are conducted. For example, in order
to show the activation of modules, the call relation between modules must be extracted. Likewise, the contents
of the user’s guide depends on the pages that are presented to the user. Thus, if the documentation presented
should include statistics on the McCabe index, fan-in, and fan-out, the user’s guide should include a section
explaining what the meaning of these metrics is.

Last but not least, certain features are in conflict with each other. In particular, theannotationSection
can be used to let the end-user interactively add annotations to pages, which are then stored in the repository.

16

%%
%% Some of the dependencies between the tables in the repository
%%
entityOperationRelation requires entitiesRelation

%%
%% Some of the constraints between presentation blocks and sections,
%% and the RelationSet used for analysis.
%%
annotationSection requires annotationRelation
activationSection requires callRelation
entitiesSection requires entitiesRelation
entitiesSection requires entityOperationRelation

%%
%% Some of the constraints between presentation blocks and sections,
%% and the contents of the User’s Guide.
%%
programBlock requires programHelp
statisticsBlock requires statisticsHelp
annotationSection requires annotationHelp

%%
%% Mutually exclusive features
%%
crawled excludes annotationRelation
crawled excludes annotationSection

Figure 15: Constraints on variable DocGen features.

This is only possible in the dynamic version, and cannot be done if theInteraction is set tocrawled .

6 Concluding Remarks

6.1 Related Work

In this paper, we have tried to get a better understanding of the nature of feature diagrams as originating from
the FODA domain analysis methodology.

We do this based on a textual representation of feature diagrams. A similar representation is provided by
[2], primarily inspired by the need to exchange feature diagrams over the Internet.

The notion ofnormalizedfeature diagrams is also discussed by Czarnecki and Eisenacker [5, Section
4.4.1.5]. They provide two rewrite rules in a visual representation. They focus on the elimination of optional
features occurring within aone-of or more-of context, which corresponds to our rulesN8 andN11 (Fig-
ure 3.1) Mapping feature diagrams to UML is also discussed by Czarnecki and Eisenacker [5, Section 4.5].
They present a number of advanced alternatives, where as our focus is more on a simple, but systematic ap-
proach to mapping feature diagrams to class diagrams.

Not many feature diagram case studies have been published, making it difficult to assess the true benefits
of feature diagrams. We have collected every feature diagram we could find in the published literature (mostly
from [5, 19]) and translated them into FDL. Our DocGen case study aims at helping to fill this gap. Moreover,
the textual format of FDL makes it easier to exchange feature diagrams via, e.g., web sites.

The specifications we provide are directly executable in ASF+SDF, and thus can be the basis for tool sup-
port for feature diagrams. The original FODA method already contains some Prolog-based tools for checking
feature diagrams [19]. We were, however, unable to discover their precise functionality.

Most work on Domain Analysis & Engineering focuses on the development and refinement of aprocess
that will lead to a set of reusable assets (components and other work products) that can be used to construct a

17

family of related applications. This process has to solve a knowledge acquisition and management problem:
given knowledge sources (domain experts, documentation, source code, market surveys, pricing strategies, and
the like) create a structured view of the domain. The main goals are to build up a domain vocabulary, identify
features, identify variation points and ultimately construct feature diagrams that capture all this information.
Tool support mostly provides a blackboard-like architecture to accomplish these tasks. Examples of systems
are Sherlock Holmes [24, 25], DARE-COTS [14], and Feature RSEB [15]. A survey of this kind of systems
is given in [25]. The emphasis of these tools is on thedomain engineering process, and in this sense our work
can be seen as complementary to the systems mentioned above.

6.2 Results

We have presented results in three areas. First, we have formalized the notion of feature diagram. The Feature
Diagram Algebra presented in this paper has two benefits:

� It can be used as the basis for tool development. The rules presented here can be directly executed by the
ASF+SDF Meta-Environment [3] yielding prototype tools we have experimented with.

� It can be used to mediate between the options provided by software applications as expressed in their
feature diagram and the requirements of a user. Typically, a user indicates on a check list which features
he wants and which he certainly does not want. Given the disjunctive normal form of the feature diagram,
we can apply the satisfaction rules and obtain a reduced feature expression that contains zero or more
satisfactory disjuncts. These disjuncts form the alternatives in an offering that can be made to the user.
Each disjunct may be enriched with additional information such as total costs or planning constraints.

Second, we have shown how feature diagrams can be directly mapped to UML diagrams which in their turn
can be used for Java code generation. Although we did not completely formalize this two stage process, we
strongly believe that a large degree of automation can be achieved.

Third, we have presented a case study of the use of FDL by analyzing the variation points of the documen-
tation generator DocGen.

The design of domain-specific languages requires a detailed analysis of the domain of interest. The op-
erational view on feature descriptions as presented in this paper is a powerful tool to support such a domain
analysis.

6.3 Future work

This paper is only a first step in the direction of using feature diagrams for designing domain-specific languages
and for describing product families.

A major obstacle for using feature diagrams is the question how to create them at all. Usually, a flat list of
atomic features is known about a software family or application area and it is not so easy to find concepts that
can be used to introduce hierarchical structure in this list. One possible approach is to usecluster analysisor
concept analysisto find these concepts, as for example also used to find objects in legacy procedural code [10].

In the current paper, we have used only very simple constraints. Experience shows that these are sufficient
to describe realistic systems but it is conceivable that more expressive constraints may lead to more concise
feature diagrams. Examples of extensions are:

� Add Booleans expressions, e.g.,include A1 or include A2 .

� Associate numeric values with atomic features, e.g.,HorsePower = 75 .

� Add relational operator, e.g.,HorsePower > 100 .

Another limitation of feature diagrams is that they do not contain information relevant for the binding
time of features. For instance,cross-cuttingfeatures like error reporting and transaction logging have a major

18

impact on the actual classes that implement a given feature diagram. It is of practical importance to explore
how feature diagrams can be extended with all the information that is needed to fully automatically generate
an implementation. Such information will also have to contain a mapping between feature names and existing
code that implements the feature. In our DocGen case study it is important not include class files for packages
of which it can be statically concluded that they are not needed. We are currently investigating whether usage
of software packagesandpackage bundles[18] can be used to influence code packaging for features with a
static binding time.

In this paper we have given a very naive approach to computing the satisfaction of the constraints in a fea-
ture diagram. Since the size of a disjunctive normal form grows exponentially, it becomes very soon infeasible
to compute it, let alone to check the constraints. We envisage that using well-known techniques from model
checking such asordered binary-decision diagrams[4] will make it possible to avoid computing the disjunc-
tive normal form and check the constraints directly. Note that one has to strike a balance between efficient
satisfaction techniques and further extension of the expressive power of constraints as outlined above.

To summarize, a lot of work is still needed to turn feature diagrams in a widely applicable technique. The
longer term perspective is to have a “Feature Analysis and Manipulation Environment” to develop a product
family and its feature diagram simultaneously. The feature diagram then really gets a dual purpose: it helps to
structure the code base into independent features implemented by independent components or packagesand it
can be used by a customer to explore the possibilities of the product family and to make a selection that suits
its needs at acceptable costs.

Acknowledgements

We gratefully acknowledge the comments on drafts of this paper made by Krzysztof Czarnecki, Leon Moonen,
Joost Visser, the editors Marjan Mernik and Ralf L¨ammel, and the anonymous referees.

References

[1] K. Beck. Extreme Programming Explained. Embrace Change. Addison Wesley, 1999.

[2] Feature Model Diagrams in text and HTML, 2001.http://www.boost.org/more/feature_
model_diagrams.htm .

[3] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Development Environment. In R. Wilhelm, editor,Compiler
Construction (CC ’01), volume 2027 ofLecture Notes in Computer Science, pages 365–370. Springer-
Verlag, 2001.

[4] R.E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.ACM Computing
Surveys, 24(3):293–318, September 1992.

[5] K. Czarnecki and U. Eisenecker.Generative Programming. Addison-Wesley, 2000.

[6] A. van Deursen, J. Heering, and P. Klint, editors.Language Prototyping: An Algebraic Specification
Approach, volume 5 ofAMAST Series in Computing. World Scientific Publishing Co., 1996.

[7] A. van Deursen and P. Klint. Little languages: Little maintenance?Journal of Software Maintenance,
10:75–92, 1998.

[8] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated bibliography.ACM
SIGPLAN Notices, 35(6):26–36, June 2000. On line atwww.program-transformation.org/ .

19

[9] A. van Deursen and T. Kuipers. Building documentation generators. InProceedings International Con-
ference on Software Maintenance, pages 40–49. IEEE Computer Society, 1999.

[10] A. van Deursen and T. Kuipers. Identifying objects using cluster and concept analysis. In21st Interna-
tional Conference on Software Engineering, ICSE-99, pages 246–255. ACM, 1999.

[11] Automatic documentation generation; white paper. Software Improvement Group, 2001.http://www.
software-improvers.com/PDF/DocGenWhitePaper.pdf .

[12] U. Eisenecker, M. Selbig, F. Blinn, and K. Czarnecki. Feature modeling of software system families (in
german).OBJECTspektrum, pages 23–30, September/Octobre 2001.www.objectspektrum.de .

[13] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[14] W. Frakes, R. Prieto-Diaz, and C. Fox. DARE-COTS: A domain analysis support tool. InProceedings
17th International Conference of the Chilean Computer Science Society. IEEE Computer Society, 1997.

[15] M. Griss, J. Favaro, and M. d’ Alessandro. Integrating feature modeling with the RSEB. InProceedings
of the Fifth International Conference on Software Reuse, pages 76–85. IEEE Computer Society, 1998.

[16] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in software product lines. In
Proceedings 2nd Working IEEE / IFIP Conference on Software Architecture (WICSA), pages 45–54. IEEE
Computer Society, 2001.

[17] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism SDF - reference
manual.SIGPLAN Notices, 24(11):43–75, 1989.

[18] M. de Jonge. Source tree composition. Technical report, CWI, 2001.

[19] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented domain anal-
ysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[20] P. Klint. A meta-environment for generating programming environments.ACM Transactions on Software
Engineering and Methodology, 2(2):176–201, April 1993.

[21] B. Meyer.Object-Oriented Software Construction. Prentice Hall, second edition, 1997.

[22] J. M. Neighbors. The Draco approach to constructing software from reusable components.IEEE Trans-
actions on Software Engineering, SE-10(5):564–74, September 1984.

[23] M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang. Organization domain modelling (ODM)
guidebook version 2.0. Technical Report STARS-VC-A025/001/00, Synquiry Technologies, Inc, 1996.

[24] G. Succi, A. Eberlein, J. Yip, K. Luc, M. Nguy, and Y. Tan. The design of Holmes: a tool for domain
analysis and engineering. InIEEE Pacific Rim Conference on Communications, Computers, and Signal
Processing (PACRIM’99), 1999.

[25] G. Succi, J. Yip, and E. Liu. Analysis of the essential requirements for a domain analysis tool. InICSE
Workshop on Software Product Lines Economics, Architectures, and Implications, 2000.

[26] R. N. Taylor, W. Tracz, and L. Coglianese. Software development using domain-specific software archi-
tectures.ACM SIGSOFT Software Engineering Notes, 20(5):27–37, 1995.

[27] E. Visser.Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam, 1997.

20

