
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Thermodynamics of computation and information distance

Research Issues in Software Renovation

Software Engineering (SEN)

SEN-R9908 April 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301640018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9908
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Research Issues in the
Renovation of Legacy Systems

Arie van Deursen1, Paul Klint1,2, and Chris Verhoef2

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
2 University of Amsterdam, Programming Research Group

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

arie@cwi.nl, http://www.cwi.nl/˜arie
paulk@cwi.nl, http://www.cwi.nl/˜paulk

x@wins.uva.nl, http://adam.wins.uva.nl/˜x

ABSTRACT

The goals of this tutorial are to: (i) give the reader a quick introduction to the field of software renovation as
a whole; (ii) show that many techniques from compiler technology and formal methods can be applied; (iii)
demonstrate that research should be driven by real-life, industrial, case studies; and (iv) indicate that many
challenging problems are still unsolved. During the presentation of this turorial, demonstrations will be given
of several of the case studies discussed here.

1991 Computing Reviews Classification System: D.2.2, D.2.3, D.2.7., D.3.4, F.3.1, I.2.2.

Keywords and Phrases: Software maintenance, program transformation, object identification.

Note: To appear inFundamental Approaches to Software Engineering(FASE’99), Lecture Notes in Computer
Science, Springer-Verlag, 1999.

Note: Work carried out under projects SEN-1.1,Software Renovation, and SEN-1.5,Domain-Specific Lan-
guages.

1 Introduction

Software renovation is using tomorrow’s technology to bring yesterday’s software to the level of today. In this
paper, we provide an overview of this research area. We start (in this section) by exploring the need for software
renovation. Moreover, we provide definitions of the basic terminology, and pointers to the most important literature.
We then proceed to discuss two aspects of software renovation in more detail. In Section 2 we study how we can
increase our understanding of a given legacy system, and how we can apply this knowledge for the purpose of
migrating the legacy to object technology. Techniques like type inference and concept analysis play an essential
role here. In Section 3 we deal with ways of building renovation factories that are capable of restructuring legacy
systems of millions of lines of code in an entirely automatic manner. In Section 4 we conclude this tutorial and
present some findings based on our experience in software renovation research.

Initially triggered by concerns regarding the renovation of our own software, we have since 1996 closely
cooperated with several Dutch banks, and (inter)national software houses and telecommunications firms on the
question how to prepare their software system assets for future flexibility. The work presented here is directly
driven by their industrial needs.

Language Statements/FP

Assembler 320
C 128
Fortran77 107
Cobol85 107
C++ 64
Visual Basic 32
Perl 27
Smalltalk 21
SQL 13

Language Used in % of total

COBOL 30
Assembler 10
C 10
C++ 10
500 other languages 40

(a) (b)

Table 1. (a) Function PointsversusLines of Code; (b) Distribution of languages

1.1 Setting the stage

Is there enough legacy software in the world to justify investments in software renovation technology? It turns out
that we are living on a softwarevolcano: large numbers of new and old software systems control our lives. We
admire the sheer bulk of the magnificent volcano, benefit from the fertile grounds surrounding it, yet at the same
are suffering from frequent eruptions of lava, steam, and poisonous gas, uncertain what is going on within the
volcano, and when the next large eruption will be.

The figures collected by Jones [31] provide insight in the size of the problem. He uses thefunction point(FP)
as unit of measurement for software. It abstracts from specific programming languages and specific presentation
styles of programs. The correlation between function points with the measurement in lines of code differs per
programming language, and is summarized in Table 1(a). Another point of reference is that the size of Windows
95 is equal to 8.5×104 FP.

Thetotal volume of softwareis estimated at 7×109 FP (7Giga-FP). The distribution of the various program-
ming languages used to implement all these function points is summarized in Table 1(b). Older languages dominate
the scene: even today 30% of the 7 Giga-FP is written in COBOL. If we (hypothetically) assume that all software
is written in COBOL we get an estimation (via 107 COBOL statements per FP) of 6.4×1011 COBOL statements
for the total volume of software.

As measure of software quality (or rather, the lack of it), Jones has estimated that on average 5 errors occur per
function point. This includes errors in requirements, design, coding, documentation and bad fixes. The result is a
frightening figure of 35×109 programming errors (35Giga-bugs) waiting for a chance to burst out sooner or later.

Developing better ways of developingnewsoftware will not solve this problem. When an industry approaches
50 years of age—as is the case with computer science— it takes more workers to perform maintenance than to
build new products. Based on current data, Table 2 shows extrapolations for the number of programmers working
on new projects, enhancements and repairs. In the current decade, four out of seven programmers are working on
enhancement and repair projects. The forecasts predict that by 2020 only one third of all programmers will be
working on projects involving the construction of new software.

Therefore, we must conclude that the importance of maintenance and gradual improvement of software is ever
increasing and deserves more and more attention both in computer science education and research.

1.2 Goals of this tutorial

The goals of this tutorial are to

2

YearNew projectsEnhancementsRepairs Total

1950 90 3 7 100
1960 8500 500 1000 10000
1970 65000 15000 20000 100000
1980 1200000 600000 200000 2000000
1990 3000000 30000001000000 7000000
2000 4000000 4500000150000010000000
2010 5000000 7000000200000014000000
2020 7000000 11000000300000021000000

Table 2.Forecasts for numbers of programmers (worldwide) and distribution of their activities

– give the reader a quick introduction to the field of software renovation as a whole;
– show that many techniques from compiler technology and formal methods can be applied;
– demonstrate that research should be driven by real-life, industrial, case studies;
– indicate that many challenging problems are still unsolved.

We will present the approach we have taken in Amsterdam to solve a variety of problems in the area of system
renovation. In the remainder of this introduction we will now first define what software renovation is (Section 1.3),
sketch the technological infrastructure we use (Section 1.4), and give pointers for further reading (Section 1.5).

1.3 What is software renovation?

Chikofsky and Cross [17] have proposed a terminology for the field of re-engineering. The termreverse engineer-
ing has its origins in hardware technology and denotes the process of obtaining the specification of a complex
hardware system. Today the notion of reverse engineering is also applied to software. Whileforward engineering
goes from a high-level design to a low-level implementation,reverse engineeringcan be seen as the inverse pro-
cess. It amounts to analyzing a software system to both identify the system’s components and their interactions
and to represent the system on a higher level of abstraction.

This higher level of abstraction can be achieved by filtering out irrelevant technical detail, or by combining
legacy code elements in novel ways. Alternatively, it can be realized by recognizing instances of a library of higher
levelplansin the program code [44, 55, 23]. This latter technique is in particular applied to the problem ofprogram
comprehension, which aims at explaining pieces of source code to (maintenance) programmers. Techniques from
the debugging and program analysis area, such asslicing [53], can be used for this purpose. The problem of
explaining the overallarchitectureof a legacy system, indicating all the components and their interrelationships, is
referred to assystem understanding.

Adaptation of a system is the goal ofsystem renovation. This can be done in one of two ways. The first is
system restructuring, which amounts to transforming a system from one representation to another at the same
level of abstraction. An essential aspect of restructuring is that the semantic behaviour of the original system and
the new one remain the same; no modification of the functionality is involved. The alternative way is to perform
the renovation via a reverse engineering step, which is calledre-engineering: first a specification on a higher
level of abstraction is constructed, then a transformation is applied on the design level, followed by a forward
engineering step based on the improved design. Arenovation factoryis a collection of software tools that aim
at the fully automatic renovation of legacy systems by organizing the renovation process as an assembly line of
smaller, consecutive, renovation steps.

3

Last but not least, one can distinguishmethodologyandtechnologyfor system renovation. The former deals
with process and management aspects of renovation and typically identifies phases like system inventory, strategy
determination, impact analysis, detailed planning, and conversion. The latter provides the necessary techniques to
implement the steps prescribed by the methodology. Although methodology and technology form a symbiosis, we
will here mostly concentrate on the technological aspects of system renovation. In this tutorial, we will deal with
system understanding (Section 2) as well as system renovation (Section 3).

1.4 ASF+SDF

The technical infrastructure we will use for renovation is primarily based on the ASF+SDF Meta-Environment.
The specification formalism ASF+SDF [3, 29, 19] is a combination of the algebraic specification formalism ASF

and the syntax definition formalism SDF. ASF+SDF specifications consist of modules, each module has an SDF-
part (defining lexical and context-free syntax) and an ASF-part (defining equations). The SDF part corresponds to
signatures in ordinary algebraic specification formalisms. However, syntax is not restricted to plain prefix notation
since arbitrary context-free grammars can be defined. The syntax defined in the SDF-part of a module can be used
immediately when defining equations, the syntax in equations is thususer-defined. The equations in an ASF+SDF

specification have the following distinctive features:

– Conditional equations with positive and negative conditions.
– Non left-linear equations.
– List matching.
– Default equations.

It is possible to execute specifications by interpreting the equations as conditional rewrite rules. The semantics
of ASF+SDF is based on innermost rewriting. Default equations are tried when all other applicable equations have
failed, because either the arguments did not match or one of the conditions failed.

One of the powerful features of the ASF+SDF specification language is list matching. The implementation of
list matching may involve backtracking to find a match that satisfies the left-hand side of the rewrite rule as well
as all its conditions. There is only backtracking within the scope of a rewrite rule, so if the right-hand side of the
rewrite rule is normalized and this normalization failsnobacktracking is performed to find a new match.

The development of ASF+SDF specifications is supported by an interactive programming environment, the
ASF+SDF Meta-Environment [32]. In this environment specifications can be developed and tested. It provides
syntax-directed editors, a parser generator, a pretty printer generator, and a rewrite engine. Given this rewrite
engine terms can be reduced by interpreting the equations as rewrite rules. An overview of industrial applications
of the system can be found in [6, 10].

1.5 Further Reading

General introductions to renovation are books on data reverse engineering [1], the migration of legacy systems [14],
the transition to object technology [49], and software maintenance [43]. An annotated bibliography of current
renovation literature can be found in [9]. The following workshops and conferences are of interest:

– Working Conferences on Reverse Engineering[5].
– European Conferences on Maintenance and Reengineering[39].
– International Workshops on Program Comprehension[52].
– International Conferences on Software Maintenance[2].

4

Regularly, sessions on maintenance and renovation occur in general software engineering conferences. Another
useful source is theJournal of Software Maintenance. Other relevant information includes:

– An on-line database of publications on renovation (including abstracts)1.
– A CASE tool vendor list2 (useful for tools that can be used in reverse engineering).
– The home page of the SEI Reengineering Centre3.
– An overview4 of the Georgia Tech reverse engineering group presenting papers, tools and pointers to other

groups.
– A description5 of the research activities related to program comprehension and reengineering performed at

the CARE (Computer-Aided Reengineering) Laboratory in the Computer Science Department of Tennessee
Technological University.

2 Object Identification

A key aspect of software renovation ismodernization: letting a legacy system, developed using the technology
of decades ago, benefit from current advancements in programming languages. In this section, we will look at
techniques that can help when going from a system developed following the traditional, procedural methodology,
towards a system set up according to the principles of object orientation.

2.1 Challenges

A transition from a traditional COBOL environment to an object oriented platform should enhance a system’s
correctness, robustness, extendibility, and reusability, the key factors affecting software quality6. Moreover, object
technology is an enabler forcomponentization: splitting a large application into reusable components, such that
they can be accessed independently, and possibly replaced incrementally by commercial off-the-shelf components.
Sneed discusses several other, highly practical, reasons for renovation7 [49]. In short, finding objects8 in legacy
systems is a key research area in software renovation.

The literature reports several systematic approaches to object identification, some of which can be partially
automated, such as [42, 36, 18, 40, 26, 54]. These typically involve three steps: (1) identify legacy records as can-
didate classes; (2) identify legacy procedures or programs as candidate methods; (3) determine the best class for
each method via some form of cluster analysis [34].

There are several problems, however, with the application of these approaches to actual systems.

1 http://www.informatik.uni-stuttgart.de/ifi/ps/reengineering/
2 http://www.qucis.queensu.ca/Software-Engineering/vendor.html
3 http://www.sei.cmu.edu/reengineering/
4 http://www.cc.gatech.edu/reverse/
5 http://www.csc.tntech.edu/˜linos/
6 Of course, object-technology will create its own renovation problems since features like multiple inheritance, unwieldy

class hierarchies, and polymorphism severely complicate program analysis. In this tutorial, we will not further explore this
interesting topic.

7 As an example, an additional reason is that it will become more and more difficult to find mainframe maintenance program-
mers, since young programmers coming from university are not willing to learn about old technology, but want to work using
modern languages instead.

8 Strictly speaking, we search forclasses. The termobject identification, however, is so commonly used that we stick to this
terminology.

5

Lexical Analysis

RepositorySyntax Analysis

Dataflow Analysis

Report Generation

Cross Referencing
Metrics, Style,
Comments, ...

Cluster Analysis
Groups of Data/
Functionality, ...

Visualization Call Graph
Perform Graph

Database Usage, ...

Legacy Sources

Fig. 1. Repository-based System Understanding

1. Legacy systems greatly vary in source language, application domain, database system used, etc. It is not easy
to select the identification approach best-suited for the legacy system at hand.

2. It is impossible to select asingleobject identification approach, since legacy systems typically are heteroge-
neous, using various languages, database systems, transaction monitors, and so on.

3. There is limited experience with actual object identification projects, making it likely that new migration
projects will reveal problems not encountered before.

Thus, when embarking upon an object identification project, one will have to select and compose one’s own
blend of object identification techniques. Moreover, during the project, new problems will have to be solved.

In this section, we will look at three object identification issues in more detail: support for providing legacy
system understanding (Section 2.2), ways to find types in a COBOL system (Section 2.3), and techniques for
combining the types found with selected legacy functionality, thus arriving at candidate classes (Section 2.4).

2.2 System Understanding

Finding meaningful objects in a fully automatic way is impossible. The higher the level of automation, the stronger
the components found will rely on the actual technical implementation of the legacy code. The purpose, however,
is to find object that are close to the application domain, not to the technical infrastructure.

Therefore, tool support for object identification must not aim at full automation, but rather at providing interac-
tivesystem understanding, i.e., at assisting the re-engineer in understanding what components (modules, databases,
screens, copybooks, ...) the system consists of, and how these are related to each other.

Figure 1 shows the extractor–query–viewer approach used in most reverse engineering tool sets [37, 16, 20].
It can be used to extract all sorts of facts from the legacy sources into a database. This database, in turn, can be
queried, and relations of interest can be visualized.

In the extractor phase, syntactic analysis will help to unravel the structure of the legacy code. This requires
the availability of a parser (or grammar) for the legacy language, which is not always the case. Issues pertaining
to parser development are discussed in more detail in Section 3. If no parser is available, and if the required fact
extraction is sufficiently simple, lexical analysis methods may be used: these are less accurate, but simpler, faster
to develop and to run, and tolerant with respect to unknown language constructs or errors in the source code [38,
20].

6

In the querying phase, operations on the repository include relational queries, restriction of relations to names
matching regular expressions, taking transitive closures of, for example call relations, lifting call relations from
procedures to files, etc. A crucial aspect of querying isfiltering: restricting the relations to those items that are
relevant for the understanding task at hand, Such a task could be, e.g., finding variables and programs representing
businessentities and rules. Several heuristics for filtering in the COBOL domain, for example based on call graph
metrics or the database usage, are discussed in [20].

In the viewing phase, the derived relations can be shown to the re-engineer in various forms. One way is to use
metrics for this purpose, pointing the re-engineer to, for example, programs with a complexity measure higher than
average. An alternative technique is the use ofcluster analysisin which a numeric distance between items is used
for the purpose of grouping them together. Of particular importance is systemvisualization. Most common in the
area of system understanding is the use of graph visualization, to display, for example, call graphs, database usage,
perform graphs, etc. Interesting other ways of program visualization are discussed by Eick [24], who, for example,
is able to visualize extremely large code portfolios by representing each source line by just one colored pixel.

The main benefit of this three-phase tooling approach is that the repository permits arbitrary querying, making it
possible to apply the tool set to a wide variety of renovation problems. Generally speaking, a system understanding
session will iterate through these three phases, using, for example, visualization to see which filtering techniques
to apply in the next iteration.

Obviously, the application of system understanding tools goes beyond mere object identification: other possi-
bilities include generation of (interactive) documentation, quality assessment, and introducing novice programmers
to a legacy application.

2.3 Type Inference

Many object identification methods work by grouping procedures based on the type of the arguments they process
[34]. Unfortunately, COBOL is an untyped language, blocking this route for object identification purposes. To
remedy this problem, we propose to infer types for COBOL variables based on their actual usage [22]

At first sight COBOL mayappearto be a typed language. Every variable occurring in the statements of the
procedure division, must be declared in the data division first. A typical declaration may look as follows:

01 TAB100.
05 TAB100-POS PIC X(01) OCCURS 40.
05 TAB100-FILLED PIC S9(03) VALUE 0.

Here, three variables are declared. The first isTAB100, which is the name of a record consisting of two fields:
TAB100-POS, which is a single character byte (picture “X”) occurring 40 times, i.e., an array of length 40; and
TAB100-FILLED , which is an integer (picture “9”) comprising three bytes initialized with value zero.

Unfortunately, the variable declarations in the data division suffer from a number of problems, making them
unsuitable to fulfill the role of types. First of all, since it is not possible to separate type definitions from variable
declarations, when two variables for the same record structure are needed, the full record construction needs to be
repeated. This violates the principle that the type hides the actual representation chosen.

Besides that, the absence of type definitions makes it difficult to group variables that represent the same kind
of entities. Although it might well be possible that such variables have the same byte representation, the converse
does not hold: One cannot conclude that whenever two variables share the same byte representation, they must
represent the same kind of entity.

In addition to these important problems pertaining to type definitions, COBOL only has limited means to
accurately indicate the allowed set of values for a variable (i.e., there are no ranges or enumeration types). More-

7

over, in COBOL, sections or paragraphs that are used as procedures are type-less, and have no explicit parameter
declarations.

To solve these problems, we have proposed the use oftype inferenceto find types for COBOL variables based
on their actualusage[22]. We start with the situation that every variable is of a unique primitive type. We then
generate equivalences between these types based on their usage: if variables are compared using some relational
operator, we infer that they must belong to the same type; and if an expression is assigned to a variable, the type of
the expression must be a subtype of that of the expression.

Primitive Types We distinguish three primitive types: (1) elementary types such as numeric values or strings; (2)
arrays; and (3) records. Initially every declared variable gets a unique primitive type. Types are made unique by
encoding a label into them: since variable occurrences must have unique names in a COBOL program (module),
the variable names can be used for this. We qualify variable names with program names to obtain uniqueness at
the system level. We useTA to denote the primitive type of variableA.

Type Relations By looking at theexpressionsoccurring in statements, anequivalence relationbetween primitive
types can be inferred. The following cases are distinguished:

– For relational expressions such asv = u or v≤ u, an equivalence betweenTv andTu is inferred.
– For arithmetic expression such asv+ u or v∗u, an equivalence betweenTu andTv is inferred.
– For two different array accessesa[v] anda[u] an equivalence betweenTv andTu is inferred.
– From an assignmentv := u we infer thatTu is asubtypeof Tv,

By type, we will generally mean anequivalence class of primitive types. Subtyping is important to avoid the
problem ofpollution, the derivation of counter-intuitive equivalences due to commutativity and transitivity of the
equivalence relation [22].

System-Level AnalysisIn addition to inferring type relations within individual programs, we infer type relations
at the system-wide level. Such relations ensure that if a variable is declared in a copybook (include file), its type is
the same in all the different programs that copybook is included in. Furthermore, we infer that the types of the actual
parameters of a program call at the module level (listed in theUSINGclause) are subtypes of the formal parameters
(listed in the linkage section), and that variables read from or written to the same databases have equivalent types.

Related Work Type inference for COBOL is related to earlier work on type inference for C [41] and on various
approaches for detecting and correcting year 2000 problems [28]. An approach for dealing with the year 2000
problem based on type theory is presented by [25]. A detailed overview of related work is given in [22].

Clearly, type inference for COBOL has applications beyond mere object identification: in [22] we explain how
types can also be used to replace literal values by symbolic constants, year 2000 and Euro conversions, language
migrations, and maintenance monitoring.

2.4 Concept Analysis

For many business applications written in COBOL, the data stored and processed represent the core of the system.
For that reason, the data records used in COBOL programs are the starting point for many object identification
approaches (such as [18, 40, 26]). These records are then in turn combined with procedures or programs, thus
arriving at candidate classes. A common way of finding the desired combinations is to usecluster analysis[34].

8

40C 40 38

STREET

37C 37

CITY

ZIPCD HOUSE CITYCD

89C 89

STR-ORD PROV-CD IND-CTY ODD ...

42

NAME

36C 36

PREFIX INITL TITLCD

29C

RELNR

19C

MORTGNR

09

MORTSEQNR

09C

BANK-GIRONR

CITY-BANK P-RELNR PAY GIRONR-BANK ...

COUNT

31C 31

FIRSTNM TELB-AREA TELB-NR TELP-AREA ...

10

MOD-DAT

10C

Fig. 2. Concept lattice combining data fields with programs

Recently, the use of mathematicalconcept analysishas been proposed as an alternative to the use of cluster
analysis for the purpose of legacy code analysis [35, 48, 50, 51]. As has been argued in [21], concept analysis avoids
some of the problems encountered when using cluster analysis for the purpose of object identification.

Concept analysis starts with a table indicating thefeaturesof a given set ofitems. It then builds up so-called
conceptswhich are maximal sets of items sharing certain features. All possible concepts can be grouped into a
single lattice, the so-calledconcept lattice. The smallest concepts consist of few items having potentially many
different features, the largest concepts consist of many different items that have only few features in common.

An example concept lattice is shown in Figure 2. This lattice was derived automatically from a 100,000 LOC
COBOL case study. Theitemsin this lattice arefieldsof records that are read from or written to file. They are
shown as names below each concept in Figure 2. Thefeaturesare based on the use of fields inprograms: If a
field (or in fact, thetype inferred for that field) is used in a given program, this program becomes a feature of
that field. The programs are written above each concept in Figure 2. Each concept in that figure corresponds to a
combination of fields and the programs using them, as occurring in the legacy system. Each concept is a candidate
class. Connections between classes correspond to aggregation, association, or inheritance.

9

Docs

Tool-1

Tool-2

Tool-3

Tool-n

......

T
ool-B

asis

CALE-Tools

Native Pattern

Language

Grammar

Development

Mass Change

Factory

com
ponent repository

original system

renovated system

manager
factory

processing
post

Component
DevelopmentGeneration of generic factory

transformations
generic

generic
analyzers

Pretty

Printer

Project
Grammar

preprocessing

Fig. 3.Four phases in the creation and use of software renovation factories

To see how the lattice of Figure 2 can help to find objects, let us browse through some of the concepts. The row
just above the bottom element consists of five separate concepts, each containing a single field. As an example, the
leftmost concept deals withmortgage numbersstored in the fieldMORTGNR. With it is associated program19C,
which according to the comment lines at the beginning of this program performs certain checks on the validity
of mortgage numbers. This programonly uses the fieldMORTGNR, and no other ones. As another example, the
conceptSTREET(at the bottom right) has three different programs directly associated with it. Of these,40 and
40C compute a certain standardized extract from a street, while program38 takes care of standardizing street
names.

If we move up in the lattice, the concepts become larger, i.e., contain more items. The leftmost concept at
the second row containsthreedifferent fields: themortgage sequence numberMORTSEQNRwritten directly at the
node, as well as the two fields from the lower concepts connected to it,MORTGNRandRELNR. Program09 uses
all three fields to search for full mortgage and relation records.

Another concept of interest is the last one of the second row. It represents the combination of the fieldsZIPCD
(zip code),HOUSE(house number), andCITYCD(city code), together withSTREETandCITY . This combination
of five is a separate concept, because it actually occurs in four different programs (89C, 89 , 31C, 31). However,
there are no programs thatonly use these variables, and hence this concept has no program associated with it. It
corresponds to a common superclass for both the89C,89 and the31,31C concepts.

In short, the lattice provides insight into the organization of the legacy system, and gives suggestions for group-
ing programs and fields into classes. The human re-engineer can use this information to select initial candidate
classes based on the data and functionality available in the legacy.

The crucial step with both cluster and concept analysis is to apply the correct filtering criteria, in order to
reduce the overwhelming number of variables, sections, programs, databases, and so on, to the relevant ones. Such
selection criteria may differ from system to system, and can only be found by trying several alternatives on the
system being investigated—this is exactly where the system understanding tool set discussed in Section 2.2 comes
in. The selection criteria used to arrive at Figure 2 are based on persistent data and metrics derived from the call
relation, as discussed in [20, 21].

10

3 Renovation Factories

As soon as the architecture of a legacy system has been recovered and the overall understanding of the system
has been increased using the techniques described in the previous sections, we are in a position to determine what
should bedonewith it. Should it be abandoned or renovated? In reality, there is a close interplay between analysis
and renovation since the analysis of well-structured code will yield more precise analysis results than the analysis
of badly structured code. It is not uncommon that analysis/renovation is an iterative process. For simplicity we
treat them in this section as sequential steps and concentrate on a factory-like approach to renovation (Section 3.1).
Next, we discuss two examples (Section 3.2).

Unlike system understanding, which is inherently interactive, here the ultimate goal is a completely automated
renovation factory, which can process millions of lines of code without human interaction.

3.1 Creation and use of renovation factories

In practice, there are many needs for program transformations and program restructuring like simple global changes
in calling conventions, migrations to new language dialects, goto elimination, and control flow restructuring. Since
these transformations will affect millions of lines of code, a factory-like approach, with minimal human inter-
vention, is desired to achieve a cost-effective, high-quality, solution. Recall from Section 1.3, that we define a
renovation factory as a collection of software tools that aim at the fully automatic renovation of legacy systems by
organizing the renovation process as an assembly line of smaller, consecutive, renovation steps.

Legacy systems show a lot of variety regarding their overall architecture, programming languages used, database
organization, error handling, calling conventions, and the like. Experience shows that each renovation project is
unique and requires an extensively tailored approach. The generation and customization of renovation factories is
therefore a major issue. In order to promote flexibility and reusability, renovation factories should be built-up from
from individual tools that are as small and general as possible. Our approach is illustrated in Figure 3 and consists
of four phases:

– Grammar development: determine the project grammar.
– Factory generation: generate a generic framework for the renovation factory. This amounts to automatically

deriving generic tools (parser, pretty printer, frameworks for analysis and transformation) from the project
grammar.

– Component development: develop dedicated tools for the factory that are specific for this project.
– Factory production environment: configure and run the factory.

We will now discuss these phases in turn.

Grammar developmentGrammars form the basis for our factory generation approach. However, in practice it is
completely non-trivial to obtain and manage such grammars. The grammar may be included in an international
standard, it may be contained in a manual for a proprietary language, or it may be embedded in the source code of
existing tools such as compilers or pretty printers [46]. Another problem is that these grammars tend to be huge
(several thousands of grammars rules) since they cover various language dialects as well as various local language
extensions. From a grammar maintenance perspective, standard LR parsing techniques become unsuitable here,
since they tend to generate too many shift/reduce conflicts after each modification to the grammar. We completely
depend on the Generalized LR parsing method provided by the ASF+SDF Meta-Environment which is capable
of handling arbitrary context-free grammars. It is a research issue how to obtain grammars for languages in a
cost-effective manner. We have labeled this activityComputer Aided Language Engineering(CALE) and have a
collection of tools for grammar extraction and manipulation.

11

Factory GenerationOnce the project grammar has been determined, we can focus on the automatic generation of
components that are language parameterized such as frameworks for generic analysis, transformation, and pretty
printing [13]. Since we are working in a first-order setting, we cannot use higher-order analysis and transformation
functions. Instead, we generate from the grammar specific analysis and transformation functions which perform
a default operation for each language construct. This default behaviour can be overruled by writing conditional
equations that define the desired behaviour for specific language constructs.

This immediately raises the question, who should write these equations: a formal specification expert or a pro-
grammer knowledgeable in the legacy languages of the project? It is clearly necessary to be able to describe certain
patterns in the code to facilitate analysis and automatic change. The approach we take is to automatically generate
a pattern language[47] from the project grammar that resembles the language defined by the project grammar
as much as possible. Thanks to the tight integration between abstract and concrete syntax in ASF+SDF, we can
express patterns over the abstract syntax tree using the concrete syntax of the language being reengineered. In this
way, a programmer knowledgeable in that language can specify search and replacement patterns in conditional
equations without needing to know all the formal machinery that is used in the factory as a whole.

It is important to have complete control over what steps are taken during a (automated) renovation process and
over how their intermediate results are handled. We automatically generate support for a form of “scaffolding”
which is similar to the inclusion of pseudo-code or assertions in comments during traditional code development. In
our case, we see a scaffolding as an extension to the project grammar that allows the representation of intermediate
results of analysis or transformation as annotations of the program code.

Component prototypingAs already mentioned, renovation factories should be built-up from individual tools that
are as small and general as possible. This results not only in better flexibility and reuse, but also in increased control
over and understanding of each tool. Apart from general tools for bringing program parts in certain standard
forms and for performing program simplifications, we have developed tools for upgrading embedded SQL, for
normalizing the control flow of embedded CICS, and for step by step restructuring of COBOL code [11, 45].

Factory Production EnvironmentThe final phase in our approach is actually building the renovation factory. The
components that have been developed and prototyped need to be put into operation in an efficient production
environment.

Given the size of legacy systems, issues like scalability and multi-processor execution of the factory are now
also coming into play. Important supporting technologies are compilers that turn prototype specifications into
efficient stand-alone C programs [7] and middleware that is optimized for the connection of language-oriented
tools [4]. References [8, 33, 10, 15] give overall pictures and further discussions of renovation factories.

3.2 Two examples

We will now discuss two examples. The first example concerns the grammar extraction and factory generation
for a proprietary language for switching systems. The second example illustrates the use of a COBOL factory for
extracting business logic from programs by separating computation from coordination.

Grammar development for a switching system’s languageMost software and hardware for switching systems
is proprietary. This includes central processing units, compilers and operating systems that have been developed
in-house. For instance, Lucent Technologies, uses UNIX and C targeted towards their own proprietary processor.
They have to maintain their own UNIX and their own C compiler. The same phenomenon occurs at Ericsson:
they have developed their own central processor and their own operating systems, languages and compilers. The

12

Fig. 4. Original COBOL code withGOstatements

difference between the two situations is that Ericsson uses tools that arenotwidely used for other processors. As a
result, software renovation tools are not available in large amounts for their software. The Ericsson case is therefore
an ideal test case for our approach.

As described in the previous section, the first step in generating a renovation factory is the development of a
relevant project grammar. In this case, it concerns the proprietary language SSL (Switching System Language). A
program in SSL is in fact a collection of programs in 20 different languages that are combined into a single file.

The only complete and reliable source for the SSL grammar is the source code of the SSL compiler. Several
steps are needed to extract this grammar. First, the compiler source code is reverse engineered so that the grammar
part is identified. Then the essential grammar information is extracted from this part of the compiler. This resulted
in the extraction of more than 3000 lexical and context-free production rules in Backus-Naur Form (BNF). Unfor-
tunately, this grammar is not yet usable for reengineering since it is too heavily oriented towards compilation. For
instance, the compilation-oriented grammar removes comments, whereas during renovation, the comments should
be seen as part of the source since they have to be retained in the final result of the renovation.

As a preparatory step for the reengineering of this intermediate SSL grammar, we have generated a renovation
factory for the language BNF itself and have added a number of components that are useful for the reengineering
of grammars, such as a transformation of BNF into SDF (the syntax definition language of the ASF+SDF Meta-
Environment). This BNF-factory has been used to retarget the extracted SSL grammars.

13

Fig. 5. Final COBOL code with allGO’s removed

Using the BNF-factory, we could transform the grammar of one of the sublanguages of SSL in 7 minutes
processing time (on a standard workstation) from its initial BNF version into an SDF version that is usable for ren-
ovation purposes. Next, we were able to parse about 1 MLOC in this sublanguage in about 70 minutes processing
time. Finally, a complete renovation factory for this sublanguage could be generated. When completed with the
desired renovation components, it can be used for the factory-like renovation of programs in this particular SSL
subset.

Currently, the complete SSL grammar is being assembled by combining the 20 embedded subgrammars. As
a next step, we will generate a complete SSL-factory. When that SSL-factory is ready, we have in fact generated
from the compiler source code a production line for the rapid development of component-based tools that facilitate
the automated solution of software reengineering problems.

Separating coordination and computation in COBOL A typical renovation problem is to migrate transaction
systems from a mainframe to a networked PC environment. Such systems are strongly tied to mainframes by the
use of embedded languages like CICS that deal with transaction monitors and the coordination of data. In order
to migrate to a client/server architecture, it is therefore necessary to remove this embedded CICS code. Once that
is done, the code needs to be made more maintainable by removing all traces of the platform migration from the
source code.

In the example that we will now discuss, a German company (SES GmbH) had already eliminated some
dangerous CICS code, and we have constructed a migration tool to separate coordination from computation so that
all CICS code could be removed. One of the main problems was to eliminate jump instructions from the code.

14

Figure 4 shows a strongly simplified version of the “spaghetti” code of the original program. The code fragment is
representative of the overall quality of the code that can be found on mainframes. The firstGO ... DEPENDING
... is actually a case statement, and contains four cases that are allGOs. So in fact in this small fragment we have
8 jump instructions.

Using a restructuring method based on a systolic algorithm we can remove theGOs in about 25 steps in such
a way that the coordination and computation are separated, and the logic of the program becomes more clear. In
Figure 5 the final output is shown. As can be seen, the code has been changed dramatically. Superfluous code is
gone and coordination is separated from computation.

ParagraphHV-050 provides the coordination part of the program and resembles amain program in C.
TheEVALUATE ... END-EVALUATE statement is the result of migrating the originalGO ... DEPENDING
... statement; the original four cases could be collapsed into two cases. In theHAUPTVERARB-SUBROUTINES
section, we can see that two computations are present. They are only reachable via the coordination part, since the
STOP RUNblocks other access. This is comparable to a preamble in say Pascal where procedures are declared.

An original program and all intermediate steps that are carried out to remove the jump instructions and to
separate computations from coordination are available on Internet.9 We discuss this kind of restructuring in more
detail in [45].

4 Conclusions

In this tutorial, we have covered a variety of issues in the area of system renovation. Starting with a discussion
on the economic need for maintenance and renovation, we have presented our approaches to problems like object
identification, system understanding, grammar reengineering, and the creation of renovation factories.

Several observations can be made about the field of software renovation as a whole. A most challenging aspect
of software renovation research is the number of different areas in which proficiency is required. These include:

– Historic programming languages and systems, such as COBOL and the mainframe environment.
– Target new programming language technologies, such as CORBA or Java, and the current and future market

standards.
– Migration technology, such as the ASF+SDF Meta-Environment.
– Software engineering theory and commercial practice.
– Knowledge transfer, coping with conservatism (“COBOL is the best”), unrealistic expectations of new tech-

nology (“Java will solve everything”), and unfamiliarity with migration technology (“What did you say a
grammar was?”).

Clearly, this should also have an effect on the curricula for software engineering.
Concerning the migration technology used, we benefited from the use of the ASF+SDF Meta-Environment.

Three of its distinctive technical properties turned out to be of great significance for renovation purposes:

– The techniques used aregeneric: they do not depend on one particular programming language, such as COBOL
or PL/I, but they are parameterized with a language definition. As a result, major parts of our renovation
techniques can be directly reused for different languages. To give an example, the Year 2000 problem resides
probably in systems written in 500 “standard” languages [31] plus another 200 proprietary languages [30].

9 An on-line demonstration of all steps involved is available athttp://adam.wins.uva.nl/˜x/systolic/
systolic.html.

15

– The techniques used areformal: the underlying formal notions are many-sorted signatures and positive/negative
conditional rewriting. Program conversions are, for instance, expressed as rewrite rules. This formalization in-
creases the quality of analyses and conversions [27].

– Syntactic analysis is based ongeneralized LR parsing(GLR). This enables the construction of modular gram-
mars and parsers for languages with large grammars and many dialects (like COBOL) [12]. More traditional
parsing techniques (e.g., LALR(1) as used in parser generators like Yacc and Bison) lead to increased main-
tenance problems for large grammars: the time needed to add language constructs needed for new dialects
becomes prohibitive.

The driving force behind software renovation is the strong need to maintain and renovate parts of the software
volcano. This implies that software renovation research has to be carried out in close cooperation with industrial
partners that are in the possession of problems thathaveto be solved. Fortunately, we can be confident that progress
in areas like compiler and programming language technology and formal methods, will continue to help to offer
the right tools at the right time. At the same time, the analysis of legacy systems provides the empirical foundation
for programming language research. It uncovers the effects, both positive and negative, of years of intensive use of
a programming language in the real world.

As we have tried to show here, software renovation research also reveals new challenging problems. Techniques
for analysis or code generation that were satisfactory from the perspective of a traditional compiler may no longer
be satisfactory from the perspective of interactive program understanding. The gigantic scale of renovation projects
presents implementation problems (and opportunities) that may inspire research for many years to come.

Finally, the largest challenge we see is to try to bridge the gap between research aimed at buildingnewsoftware
and research aimed at maintaining or renovating old software. We strongly believe that an integrated approach
to both is the best way to proceed. This implies introducing maintenance and renovation considerations much
earlier in the software construction process than is usual today. This also implies designing new languages and
programming environments that are more amenable to maintenance and renovation.

Acknowledgments

Although the three of us wrote this text, it represents the work of many colleagues with whom we have cooperated
or are cooperating. We thank them all for their direct or indirect contributions to the current paper. Tobias Kuipers
commented on initial drafts of this tutorial.

References

1. P.H. Aiken.Data Reverse Engineering. McGraw-Hill, 1996.
2. K. Bennett and T.M. Khoshgoftaar, editors.Proceedings of the International Conference on Software Maintenance. IEEE

Computer Society, November 1998.
3. J.A. Bergstra, J. Heering, and P. Klint, editors.Algebraic Specification. ACM Press Frontier Series. The ACM Press in

co-operation with Addison-Wesley, 1989.
4. J.A. Bergstra and P. Klint. The discrete time TOOLBUS—a software coordination architecture.Science of Computer

Programming, 31:205–229, 1998.
5. M.H. Blaha, A. Quilici, and C. Verhoef, editors.Proceedings of the Fifth Working Conference on Reverse Engineering.

IEEE Computer Society, October 1998.
6. M. G. J. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E. van der Meulen. Industrial applications of ASF+SDF.

In M. Wirsing and M. Nivat, editors,Algebraic Methodology and Software Technology (AMAST ’96), volume 1101 of
Lecture Notes in Computer Science, pages 9–18. Springer-Verlag, 1996.

16

7. M.G.J. van den Brand, P. Klint, and P. Olivier. Compilation and memory management for ASF+SDF. InProceedings of
the 8th International Conference on Compiler Construction, CC’99, LNCS. Springer-Verlag, 1999. To appear.

8. M.G.J. van den Brand, P. Klint, and C. Verhoef. Core technologies for system renovation. In K.G. Jeffery, J. Kr´al, and
M. Bartos̆ek, editors,SOFSEM’96: Theory and Practice of Informatics, volume 1175 ofLNCS, pages 235–255. Springer-
Verlag, 1996.

9. M.G.J. van den Brand, P. Klint, and C. Verhoef. Reverse engineering and system renovation – an annotated bibliography.
ACM Software Engineering Notes, 22(1):57–68, 1997.

10. M.G.J. van den Brand, P. Klint, and C. Verhoef. Term rewriting for sale. In C. Kirchner and H. Kirchner, editors,Sec-
ond International Workshop on Rewriting Logic and its Applications, Electronic Notes in Theoretical Computer Science.
Springer-Verlag, 1998.

11. M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Control flow normalization for COBOL/CICS legacy systems.
In P. Nesi and F. Lehner, editors,Proc. 2nd Euromicro Conf. on Maintenance and Reengineering, pages 11–19. IEEE
Computer Society, 1998.

12. M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Current parsing techniques in software renovation considered
harmful. In S. Tilley and G. Visaggio, editors,Proc. Sixth International Workshop on Program Comprehension, pages
108–117. IEEE Computer Society, 1998.

13. M.G.J. van den Brand and E. Visser. Generation of formatters for context-free languages.ACM Transactions on Software
Engineering and Methodology, 5:1–41, 1996.

14. M. L. Brodie and M. Stonebraker.Migrating Legacy Systems: Gateways, interfaces and the incremental approach. Morgan
Kaufman Publishers, 1995.

15. J. Brunekreef and B. Diertens. Towards a user-controlled software renovation factory. In P. Nesi and C. Verhoef, editors,
Proc. Third European Conference on Software Maintenance and Reengineering. IEEE Computer Society, 1999. To Appear.

16. Y.-F. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wallach. Ciao: A graphical navigator for software and document
repositories. In G. Caldiera and K. Bennett, editors,Int. Conf. on Software Maintenance; ICSM 95, pages 66–75. IEEE
Computer Society, 1995.

17. E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: A taxonomy.IEEE Software, 7(1):13–17, 1990.
18. A. Cimitile, A. De Lucia, G. A. Di Lucca, and A. R. Fasolino. Identifying objects in legacy systems using design metrics.

Journal of Systems and Software, 1998. To appear.
19. A. van Deursen, J. Heering, and P. Klint, editors.Language Prototyping: An Algebraic Specification Approach, volume 5

of AMAST Series in Computing. World Scientific Publishing Co., 1996.
20. A. van Deursen and T. Kuipers. Rapid system understanding: Two COBOL case studies. In S. Tilley and G. Visaggio,

editors,Sixth International Workshop on Program Comprehension; IWPC’98, pages 90–98. IEEE Computer Society, 1998.
21. A. van Deursen and T. Kuipers. Finding objects using cluster and concept analysis. In21st International Conference on

Software Engineering, ICSE-21. ACM, 1999. To appear.
22. A. van Deursen and L. Moonen. Type inference for COBOL systems. In I. Baxter, A. Quilici, and C. Verhoef, editors,

Proc. 5th Working Conf. on Reverse Engineering, pages 220–230. IEEE Computer Society, 1998.
23. A. van Deursen, S. Woods, and A. Quilici. Program plan recognition for year 2000 tools. InProceedings 4th Working

Conference on Reverse Engineering; WCRE’97, pages 124–133. IEEE Computer Society, 1997.
24. S. G. Eick. A visualization tool for Y2K.IEEE Computer, 31(10):63–69, 1998.
25. P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H. Sorensen, and M. Tofte. Anno Domini: From type theory to Year

2000 conversion tool. In26th Annual Symposium on Principles of Programming Languages, POPL’99. ACM, 1999. To
appear.

26. H. Fergen, P. Reichelt, and K. P. Schmidt. Bringing objects into COBOL: MOORE - a tool for migration from COBOL85
to object-oriented COBOL. InProc. Conf. on Technology of Object-Oriented Languages and Systems (TOOLS 14), pages
435–448. Prentice-Hall, 1994.

27. W.J. Fokkink and C. Verhoef. Conservative extension in positive/negative conditional term rewriting with applications to
software renovation factories. InFundamental Approaches to Software Engineering, LNCS, 1999. To Appear.

28. J. Hart and A. Pizzarello. A scaleable, automated process for year 2000 system correction. InProceedings of the 18th
International Conference on Software Engineering ICSE-18, pages 475–484. ACM, 1996.

29. J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism SDF — Reference manual.SIGPLAN
Notices, 24(11):43–75, 1989.

17

30. C. Jones.Estimating Software Costs. McGraw-Hill, 1998.
31. Capers Jones.The Year 2000 Software Problem – Quantifying the Costs and Assessing the Consequences. Addison-Wesley,

1998.
32. P. Klint. A meta-environment for generating programming environments.ACM Transactions on Software Engineering and

Methodology, 2:176–201, 1993.
33. P. Klint and C. Verhoef. Evolutionary software engineering: A component-based approach. In R.N. Horspool, editor,IFIP

WG 2.4 Working Conference: Systems Implementation 2000: Languages, Methods and Tools, pages 1–18. Chapman &
Hall, 1998.

34. A. Lakhotia. A unified framework for expressing software subsystem classification techniques.Journal of Systems and
Software, pages 211–231, March 1997.

35. C. Lindig and G. Snelting. Assessing modular structure of legacy code based on mathematical concept analysis. In19th
International Conference on Software Engineering, ICSE-19, pages 349–359. ACM, 1997.

36. S. S. Liu and N. Wilde. Identifying objects in a conventional procedural language: An example of data design recovery. In
International Conference on Software Maintenance; ICSM’90, pages 266–271. IEEE Computer Society, 1990.

37. H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A reverse engineering approach to subsystem structure identification.
Journal of Software Maintenance, 5(4):181–204, 1993.

38. G. C. Murphy and D. Notkin. Lightweight lexical source model extraction.ACM Transactions on Software Engineering
Methodology, 5(3):262–292, 1996.

39. P. Nesi and C. Verhoef, editors.Proceedings of the Third European Conference on Software Maintenance and Reengineer-
ing. IEEE Computer Society, March 1999.

40. P. Newcomb and G. Kottik. Reengineering procedural into object-oriented systems. InSecond Working Conference on
Reverse Engineering; WCRE’95, pages 237–249. IEEE Computer Society, 1995.

41. R. O’Callahan and D. Jackson. Lackwit: A program understanding tool based on type inference. In19th International
Conference on Software Engeneering; ICSE-19. ACM, 1997.

42. C. L. Ong and W. T. Tsai. Class and object extraction from imperative code.Journal of Object-Oriented Programming,
pages 58–68, March–April 1993.

43. T. M. Pigoski.Practical Software Maintenance – Best Practices for Managing Your Software Investment. John Wiley and
Sons, 1997.

44. C. Rich and R. Waters.The Programmer’s Apprentice. Frontier Series. ACM Press, Addison-Wesley, 1990.
45. M.P.A. Sellink, H.M. Sneed, and C. Verhoef. Restructuring of COBOL/CICS legacy systems. In P. Nesi and C. Verhoef,

editors,Proc. Third European Confrence on Software Maintenance and Reengineering. IEEE Computer Society, 1999. To
appear.

46. M.P.A. Sellink and C. Verhoef. Development, assessment, and reengineering of language descriptions. InProceedings of
the 13th International Automated Software Engineering Conference, pages 314–317. IEEE Computer Society, 1998.

47. M.P.A. Sellink and C. Verhoef. Native patterns. In M. Blaha, A. Quilici, and C. Verhoef, editors,Proceedings of the 5th
Working Conference on Reverse Engineering, pages 89–103. IEEE Computer Scociety, 1998.

48. M. Siff and T. Reps. Identifying modules via concept analysis. InInternational Conference on Software Maintenance,
ICSM97. IEEE Computer Society, 1997.

49. H.M. Sneed.Objectorientierte Softwaremigration. Addison-Wesley, 1998. In German.
50. G. Snelting. Concept analysis — a new framework for program understanding. InProceedings of the ACM SIG-

PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE’98), 1998. SIGPLAN No-
tices 33(7).

51. G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. InFoundations of Software Engineering,
FSE-6, pages 99–110. ACM, 1998. SIGSOFT Software Engineering Notes 23(6).

52. S. Tilley and G. Visaggio, editors.Proceedings of the Sixth International Workshop on Program Comprehension. IEEE
Computer Society, June 1998.

53. F. Tip. A survey of program slicing techniques.Journal of Programming Languages, 3:121–189, 1995.
54. T. Wiggerts, H. Bosma, and E. Fielt. Scenarios for the identification of objects in legacy systems. In I.D. Baxter, A. Quilici,

and C. Verhoef, editors,4th Working Conference on Reverse Engineering, pages 24–32. IEEE Computer Society, 1997.
55. S. Woods, A. Quilici, and Q. Yang.Constraint-based Design Recovery for Software Reengineering: Theory and Experi-

ments. Kluwer Academic Publishers, 1997.

18

