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ABSTRACT

So-calledlittle, ordomain-specificlanguages (DSLs), have the potential to make software mainte-
nance simpler: domain-experts can directly use the DSL to make required routine modifications.
At the negative side, however, more substantial changes may become more difficult: such changes
may involve altering the domain-specific language. This will require compiler technology knowl-
edge, which not every commercial enterprise has easily available. Based on experience taken from
industrial practice, we discuss the role of DSLs in software maintenance, the dangers introduced
by using them, and techniques for controlling the risks involved.
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POPL’97 satellite meeting, Paris, January 1997.

Note: Work carried out under project SEN-1.1,Software Renovation.

1 Introduction

Little languages, tailored towards the specific needs of a particular domain, can significantly ease
building software systems for that domain (Bentley, 1986). To cite Herndon and Berzins (1988),

If a conceptual framework is rich enough and program tasks within the framework
are common enough, a language supporting the primitive concepts of the framework
is called for. (...) Many tasks can be easily described by agreeing upon an appropriate
vocabulary and conceptual framework. These frameworks may allow a description
of a few lines long to replace many thousand lines of code in other languages.

We will use the following terminology (see also Figure 1):
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Product Definition (DSD)

DSL Compiler
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Figure 1: A DSL compiler.

Domain-Specific Language (DSL)A small, usually declarative, language expressive over the
distinguishing characteristics of a set of programs in a particular problem domain (Walton,
1996).

Domain-Specific Description (DSD)A “program” (specification, description, query, process,
task, ...) written in a DSL.

Domain-Specific Processor (DSP)A software tool for compiling, interpreting, or analyzing domain-
specific descriptions.

A well-designed DSL will help the application builder to write short, descriptive, and platform-
independent DSDs. Moreover, the good DSL will be effectively implementable, where the DSPs
capture the stable concepts and algorithmic ingredients of the particular domain. Using such
a DSL for constructing domain-specific applications, increases reliability and repairability, pro-
vides self-documenting and portable descriptions, and reduces forward (and backward) engineer-
ing costs (Herndon and Berzins, 1988).

In this paper, we elaborate on the advantages and problems of the use of domain-specific lan-
guages, emphasizing their role in software maintenance. Evidently, the attributes listed above will
help reduce maintenance costs, and for that reason domain-specific approaches are investigated
in order to arrive at “inherently maintainable software” (Glover and Bennet, 1996). However,
using a domain-specific language can also make a system more difficult to maintain, for example
if changes to the underlying domain model become necessary.

To discuss these issues, we first give an example of the commercial use of a DSL taken
from the area of financial engineering (Section 2). We then cover the implications for software
maintenance, and identify the risks and opportunities involved in the use of a DSL (Section 3).
We conclude by describing two techniques (Sections 4 and 5) that will help to address two of the
potential problems in the use of DSLs.



LITTLE LANGUAGES: LITTLE MAINTENANCE? 3

2 The Financial Engineering Domain

2.1 Interest Rate Products

Financial engineering deals, amongst others, withinterest rate products. Such products are typi-
cally used for inter-bank trade, or to finance company take-overs involving triple comma figures
in multiple currencies.1 Crucial for such transactions are the protection against and the well-timed
exploitation of risks coming with interest rate or currency exchange rate fluctuations.

The simplest interest rate product is the loan: a fixed amount in a certain currency is borrowed
for a fixed period at a given interest rate. More complicated products, such as thefinancial future,
the forward rate agreement, or thecapped floater(Coggan, 1995, Chapter 12), all aim atrisk
reallocation. Banks can invent new ways to do this, giving rise to more and more interest rate
products. Not surprisingly, different interest rate products have much in common, making finan-
cial engineering an area suitable for incorporating domain-specific knowledge in tools, languages,
or libraries.2

2.2 Challenges

A software system supporting the use of interest rate products typically deals with the bank’s
financial administration (who is buying what), and — more importantly — provides management
information allowing decision makers to assess risks involved in the products currently processed.
Typical problems found in such systems are that it is:

� too difficult to introduce a new type of product, even if it is very similar to existing ones;

� impossible to ensure that the instructions given by the financial engineer are correctly im-
plemented by the software engineer.

The first problem leads to a long time-to-market for new products;3 the second leads to potentially
incorrect behavior.

2.3 The Risla Language

Dutch bank MeesPierson, together with software house CAP Volmac saw the use of a specific
language for describing interest rate products as the solution to the problems of long time-to-
market and potentially inaccurate implementations. The language was to be readable for financial
engineers, and descriptions in this language were to be compiled into COBOL. In this section
we summarize earlier (and more detailed) accounts given by van Deursen (1994); Arnoldet al.
(1995); van den Brandet al. (1996) of the development and use of this language.

The development of this language, called RISLA (for Rente Informatie Systeem Language —
Interest rate information system language), started in 1992, and can be summarized as follows:

1As an example, Dutch PTT (KPN) recently bought the Australian company TNT for 2 billion Australian dollars. A
clever cocktail of multi-currency loans, options, and swaps was used to finance this transaction, protecting KPN against
interest rate differences and exchange rate fluctuations between the Australian and the Dutch financial markets.

2As an example, Eggenschwiler and Gamma (1992) describe the ET++ Swaps Manager, an object-oriented library for
manipulating interest rate products.

3This can be very important: as an example, one Dutch bank decided mid-February 1996 to introduce a special one-day
“leap year deposit” — a big success, but relying heavily on the flexibility of the bank’s automated systems.
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Figure 2: From questionnaire, via Modular and flat Risla, to COBOL

� MeesPierson had a very good library of COBOL routines for operating on cash flows,
intervals, interest payment schemes, date manipulations, etc.;

� Using this library directly in COBOL did not provide the right level of abstraction, and
cumbersome encoding tricks were needed to use, e.g., lists without a fixed length;

� An interest rate product can be considered as a “class”: it contains instance variables to be
assigned at creation time (the principal amount, the interest rate, the currency, etc.), infor-
mation methods for inspecting actual products (when is interest to be paid), and registration
methods for recording state changes (pay one redemption).

The language RISLA was designed to describe interest rate products along these lines. An
instantiated product is called acontract, fixing the actual amount, rate, etc. of a particular product
sold. The language is based on a number of built-in data types for representing cash flows,
intervals, etc., and has a large number of built-in operations manipulating these data types (the
operations correspond to the subroutines in the COBOL library). A product definition specifies
the contract parameters, information methods, and registration methods.

RISLA is translated into COBOL. Other systems in the bank can invoke the generated COBOL
to create new contracts, to ask information about existing contracts, or to update contract infor-
mation. The initial version of RISLA was used to define about 30 interest rate products.

After a few years of working with RISLA, the users experienced the modularization features
of RISLA as inadequate. A RISLA description defines a complete product; but different products
are constructed from similarcomponents. To remedy this situation, a projectModular RISLA

was started. RISLA was extended with a small modular layer, featuring parameterization and
renaming. Moreover, acomponent librarywas developed, and the most important products were
described using this library.

In addition to that, the RISLA development team made an effort to make the language more
accessible to the financial experts. To that end, an inter-activequestionnaireinterface to the com-
ponent library was developed. End-users can combine existing components into a new product
by filling in the answers of a questionnaire.

This use of questionnaires and modular RISLA gives rise to the financial product life cycle as
shown in Figure 2. An interactive questionnaire is filled in, and the answers are used to select
the relevant RISLA components. This definition may contain some holes that are specific to this
product, which can be filled by writing the appropriate RISLA code. The modular definition is
then expanded to a flat (non-modular) definition, which in turn is compiled into COBOL.

As a last point of interest, the actual questionnaire used is defined using a second domain-
specific language: RISQUEST. This is a language for defining questions together with permitted
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answers (choice from a fixed set, free text). Moreover, RISQUESThas constructs for indicating
in which order questions are to be asked, and how this sequencing may depend on the actual
answers given. Last but not least, RISQUESTcan be used to associate library components with
the possible answers. A RISQUESTdefinition is entered in textual form, and it is generated into a
Tcl/Tk program. This program can be invoked by a financial engineer to fill in the questionnaire
and to generate the corresponding modular RISLA.

2.4 Evaluation

At the positive side, the RISLA project has met its targets: the time it costs to introduce a new
product is down from an estimated three months to two or three weeks. Moreover, financial
engineers themselves can use the questionnaire to compose new products. Last but not least, it
has become much easier to validate the correctness of the software realization of the interest rate
products.

At the negative side, it is not so easy to extend the language. When a new data type or a new
built-in function is required, the compiler, as well as the COBOL library, needs to be adapted.
This requires skills in compiler construction technology, which is not the typical background of
people working mainly in a COBOL environment. Finally, the RISLA product definitions have
become longer and longer. Whenever there was a new software system requiring information
about products that was not provided in the existing methods, new methods had to be provided,
sometimes requiring new data types or extensions to the RISLA language.

3 The Maintenance Perspective

3.1 Benefits of DSLs

The single most important benefit of using domain-specific languages is that the domain-specific
knowledge is formalized at the right level of abstraction. This, in turn, has the advantages that:

� Domain experts themselves can understand, validate, and modify the software by adapting
the domain-specific descriptions (DSDs).

� Modifications are easier to make and their impact is easier to understand.

� Domain-specific knowledge is explicitly available, and not hidden into, e.g., COBOL code
(the use of a DSL avoids the need forbusiness rule extraction).

� The explicitly available knowledge can be re-used across different applications.

� The way the knowledge is represented is independent of the implementation platform; the
DSPs hide whether the DSDs are translated into C, Fortran, COBOL,: : :.

Concerning the costs of using DSLs, there is empirical evidence suggesting that the use of
DSLs increases flexibility, productivity, reliability, and usability (Kieburtzet al., 1996). In the
context of the FAST approach developed at Bell Labs, a productivity increase with a factor of
four to five has been reported (Weiss, 1997). Within this approach, small languages (calledjar-
gons) can be defined for representing information dealing with, e.g., employees, recipes, email-
messages, etc. Files containing descriptions written in jargons can then be processed by a series
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of language-specific tools calledwizers. A wizer is written in a syntax-directed manner using pat-
tern matching, and can take advantage of a well-developed library of functions typically required
when writing wizers (Nakatani and Jones, 1997).

As a way of reducing the costs of the initial development of the DSL and DSPs, the language
and its tools can be sold as a product to competitors in the same field. In this way, it is possible to
earn back initial development costs but at the same time keeping secret the suite of DSDs (DSL
programs) that describe the company’s proprietary products.

3.2 DSL Development

The development of a DSL requires a thorough understanding of the underlying domain. The
steps to be taken include (see also (Cleaveland, 1988)):

� Identify problem domain of interest.

� Gather all relevant knowledge in this domain. Techniques from the area ofdomain analysis
such as described by Arango (1989); Lam and Whittle (1996) will be of use for this step.

� Cluster this knowledge in a handful of semantic notions and operations on them.

� Construct a library that implements the semantic notions.

� Design a DSL that concisely describes applications in the domain.

� Design and implement a compiler that translates DSL programs to a sequence of library
calls.

� Write DSL programs for all desired applications and compile them.

From the maintenance perspective, it is extremely important to predict what sort of typical mod-
ification requests are to be expected, and to design the language such that such requests are ex-
pressible in the language, and do not lead to modifications to the library or compiler.

3.3 DSL Design Questions

With respect to software maintenance, there are a number of considerations to be taken into
account during the design of a DSL:

� Who will be writing the DSDs? What is the expected domain-specific background, and
how much programming knowledge is required?

� How many DSDs will there be needed, and how long will they be? It may be possible to
validate the correctness of three pages of DSL code, but who is going to predict the impact
of a change in one out of 100 DSDs, each 25 pages long?

� Which (decidable) forms of static analysis and which integrity checks on DSDs are antici-
pated?
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# Maintainability Factor DSL Influence
1. Ease of expressing anticipated modifications ++

2. Small development costs per application ++

3. Small code size (low LOC) ++

4. Low annual change traffic (ACT) 0

5. Code readability ++

6. System modularity ++

7. Locality of changes ++

8. Testability +

9. Code portability +

10. Maintenance process followed +

11. Maintainability as an objective +

12. Quality of configuration management 0

13. Repository for modification requests 0

14. Small number of languages used ��

Figure 3: Maintainability factors, and the best possible effect (ranging from negative�� via
neutral 0 to positive++) the use of a DSL has on each of these factors.

� What should happen if it turns out that the language requires new data types or new func-
tionality?

One approach could be to give the DSL sufficient expressive power to define new data types
or data operations, but this complicates the construction of the DSPs. For example, some
form of iteration or recursion increases expressive power, but making the language Turing
complete will make the verification of important properties (termination) undecidable.

� Does the DSL support user-definable syntax for, e.g., naming procedures? This may in-
crease the readability, an important issue in DSLs, but it seriously complicates the construc-
tion of DSPs, including analysis tools that are needed during later maintenance phases.

� Is the main library written in the DSL or written in the target language? Who will be
responsible for maintaining the library?

� Is the interface (data representation) to other systems easily adaptable or is it hidden inside
the implementation of the DSL compiler?

� Who will be responsible for maintaining the DSPs? Is the knowledge about the domain
sufficiently stable such that changes in the design of the DSL or the DSP are not to be
expected?

The actual trade-off to be made for each of these issues clearly depends on the domain and the
application at hand, and on the prominence maintenance considerations take during the DSL
design.
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3.4 Maintainability Factors

Define high maintainability as low expected costs per modification request. Figure 3 lists a series
of “maintainability factors” affecting these costs, taken mostly from (Pigoski, 1997; Peercy, 1996;
Oman and Hagemeister, 1994). For each of these factors, we have indicated what the best possible
effect on it will be from using a DSL. Observe that:

� The maintenance costsM for a given application are often expressed as (Boehm, 1981):

M = F �D �ACT

whereD is the initial development costs of that application,F is some weight factor de-
pending on, e.g., the type of system, the language used, experience of the maintainers team,
andACT is theAnnual Change Traffic, the fraction of code changed due to maintenance.

When using a DSL,D will decrease significantly (factor # 1. in Figure 3 has label “++”),
F may decrease, andACTwill remain the same (factor # 4. has label “0”), when compared
to a system developed in a general purpose language. Here we assume a linear relationship
between the number of lines needed in the general purpose and in the domain-specific
language to implement a typical modification request.

� Using a DSL, the end-user (the domain expert) can be involved in the maintenance process:
he or she may be able to express the modification request in terms of the DSL, or to validate
the correctness of the modifications made. For this reason, factors # 10 and # 11 have been
given a “+” label.

3.5 Risks

The maintenance risks involved in the use of DSLs can partly be related to making the wrong
trade-offs in the design questions listed before. Other issues include:

� The use of a DSL involves a shift from maintaining hand-built applications towards main-
taining (a) DSDs (DSL programs defining each application); (b) DSPs (the DSL compiler);
(c) a DSL library of predefined objects. Especially maintaining the DSL compiler requires
skills not available in every organization.

� For existing, widely used, languages one can profit from readily available manuals, tuto-
rials, courses, and experienced people. For a new DSL one has to develop this all from
scratch.

� Any language needs a minimal number of users in order to survive: It may be the case that
there will be too few users of the particular DSL.

� An organization that is active in various domains, may need a large number of DSLs. This
can be advantageous, in that it will help the organization to build up routine in language
development. Care has to be taken, however, to minimize the differences between the
various languages.

� For related, but different, application areas different DSLs are needed. How can applica-
tions based on them cooperate?

In the remaining sections, we will discuss two techniques to alleviate two (the first and the last)
of these risks.
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4 Designing and Implementing DSLs

As mentioned above, the use of a DSL has important benefits, but moves part of the maintenance
problems to the DSP level. In this section, we discuss the ASF+SDF Meta-Environment, and how
it supports the development and maintenance of application languages. It was in fact used during
the design of RISLA and RISQUEST, the languages described in Section 2.

It is the aim of ASF+SDF to assist during the design and further development of (domain-
specific) languages (Bergstraet al., 1989; Klint, 1993; van Deursenet al., 1996). It consists of a
formalism to describe languages and of a Meta-Environment to derive tools from such language
descriptions. Ingredients often found in an ASF+SDF language definition include the description
of the (1) context-free grammar, (2) context-sensitive requirements, (3) transformations or opti-
mizations that are possible, (4) operational semantics expressing how to execute a program, and
(5) translation to the desired target language. The Meta-Environment turns these into a parser,
type checker, optimizer, interpreter, and compiler, respectively.

4.1 The ASF+SDF Formalism

The language ASF+SDF grew out of the integration of the Algebraic Specification Formalism
ASF and the Syntax Definition Formalism SDF (Bergstraet al., 1989). An ASF+SDF specifi-
cation consists of a declaration of the functions that can be used to buildterms, and of a set of
equations expressingequalitiesbetween terms.

If we use ASF+SDF to define a languageL, the grammar is described by a series of functions
for constructing abstract syntax trees. Transformations, type checking, translations to a target
languageL0, etc., are all described as functions mappingL to, respectively,L, Boolean values,
andL0. These functions are specified using conditional equations, which may have negative
premises. In addition to that, ASF+SDF supports so-calleddefault-equations, which can be used
to “cover all remaining cases”, a feature which can result in significantly shorter specifications
for real-life situations (van Deursenet al., 1996). Specification in the large is supported by some
basic modularization constructs.

Terms can be written in arbitrary user-defined syntax. In fact, an ASF+SDF signature is
at the same time a context-free grammar, and defines a fixed mapping between sentences over
the grammar and terms over the signature. Thus, an ASF+SDF definition of a set of language
constructors specifies the concrete as well as the abstract syntax at the same time. Moreover,
concrete syntax can be used in equations when specifying language properties. This smooth
integration of concrete syntax with equations is one of the factors that makes ASF+SDF attractive
for language definition.

4.2 The ASF+SDF Meta-Environment

The role of the ASF+SDF Meta-Environment (Klint, 1993) is to support the development of lan-
guage definitions, and to produce prototype tools from these. It is best explained using Figure 4.
A modular definition of languageL, generatesparsers, which can mapL-programs toL-terms,
rewriters, which compute functions overL-programs by reducing terms to their normal form,
andpretty printers, which map the result to a textual representation. In the Meta-Environment,
the generators are invisible, and run automatically when needed. The derived pretty printer can
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Figure 4: A language definition forL in the ASF+SDF Meta-Environment.

be fine-tuned, allowing one to specify compilers to languages in which layout is semantically
relevant (e.g., COBOL) (van den Brand and Visser, 1996).

This pattern gives rise to a series of language processors, with a functionality as specified in
the language definition. Basic user-interface primitives can be used to connect the processors to
an integratedL-specific environment.

The ToLaTeX facility of the ASF+SDF Meta-Environment encourages the language designer
to write his or her definition as aliterate specification.

4.3 Industrial Applications

The typical industrial usage of ASF+SDF is to build tools for the analysis and transformation
of programs in existing languages as well as for the design and prototyping of domain-specific
languages. In this paper we will concentrate on the latter. The ASF+SDF formalism is used
to write a formal language definition, and the Meta-Environment is used to obtain prototype
tools. Once the language design is stable and completed successfully, the prototype tools can
— depending on the needs of the application — be re-implemented in an efficient language like
C, although there are also examples in which the generated prototype is satisfactory, and re-
implementation is not even considered.

The underlying observation is that language design is both critical and difficult, and that it
should not be disturbed by implementation efforts in a language like C. At the same time, proto-
type tools are required during the design phase to get feedback from language users. ASF+SDF

helps to obtain these tools with minimal effort, by executing the language definitions, and by
offering a number of generation facilities.

This requires an extra investment during the design phase, since ASF+SDF enforces users to
write a thorough language definition. The assumption is that this investment will pay for itself
during the implementation phase, an assumption confirmed by the various projects carried out so
far, such as the ones discussed by van den Brandet al. (1996).
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P1 P2 P3 ::: Pn

snd snd
TOOLBUS:

T1 T2 ::: Tm

eval
do

ack-event

value

event

Tools:
Adapters:

Figure 5: Global organization of the TOOLBUS

5 Coordinating different DSLs

So far we have seen how language technology can be applied to design and prototype a specific
DSL and how to build supporting tools for DSL programs. In general, however, one will need a
whole range of DSLs to cover the application areas that occur in a large organization. How can
applications that have been built by means of different DSLs be coordinated? We answer this
question in two steps: first we introduce the TOOLBUS coordination architecture and then we
show how it solves the coordination issue just raised.

5.1 TheTOOLBUS coordination architecture

Bergstra and Klint (1996b,a) have proposed the TOOLBUS coordination architecture facilitating
the interoperability of heterogeneous, distributed, software components. To get control over the
possible interactions between components (“tools”) direct inter-tool communication is forbidden.
Instead, all interactions are controlled by a “T script” that formalizes all the desired interactions
among tools. This leads to a communication architecture resembling a hardware communication
bus.

The global architecture of the TOOLBUS is shown in Figure 5. The TOOLBUS serves the
purpose of defining the cooperation of a variable number oftoolsTi (i = 1; :::;m) that are to
be combined into a complete system. The internal behavior or implementation of each tool is
irrelevant: they may be implemented in different programming languages, be generated from
specifications, etc. Tools may, or may not, maintain their own internal state. Here we concentrate
on the external behavior of each tool. In general anadapterwill be needed for each tool to adapt
it to the common data representation and message protocols imposed by the TOOLBUS.

The TOOLBUS itself consists of a variable number of processesPi (i = 1; :::; n). The parallel
composition of the processesPi represents the intended behavior of the whole system. Tools
are external, computational activities, most likely corresponding with operating system level pro-
cesses. They come into existence either by an execution command issued by the TOOLBUS or
their execution is initiated externally, in which case an explicit connect command has to be per-
formed by the TOOLBUS. Although a one-to-one correspondence between tools and processes
seems simple and desirable, this is not enforced and tools are permitted that are being controlled
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by more than one process as well as clusters of tools being controlled by a single process.
At the implementation level, theT script is executed by an interpreter that makes connections

with tools via TCP/IP. In various case studies tools for user-interfacing, data storage and retrieval,
parsing, compiling, constraint solving, scheduling, simulation and game-playing have been suc-
cessfully integrated in various combinations yielding seamlessly integrated applications although
the building blocks used are heterogeneous and may even execute in a distributed fashion.

5.2 Exchanging data

When coordinating distributed, heterogeneous, components, two key questions should be an-
swered:

� How do components exchange data?

� How is the flow of control between components organized?

The former is discussed here, the latter is postponed to Section 5.3. There are two alternatives
for exchanging data between components. One can either provide a direct mapping between the
machine/language-specific representations of data in the various components or one can provide
a common representation to which all machine/language-specific representations are converted.

In the case of the TOOLBUS the latter approach has been chosen and simple prefix terms are
used as common data representation. Terms may consist of integers, strings, reals, function appli-
cations (e.g.,f(1,2) ) and lists (e.g.,[1, "abc", 3] ). For most applications this suffices,
but as a general escape mechanism, terms may contain so-called binary strings that can represent
arbitrary binary data such as, for instance, object files and bitmaps.

At the implementation level, terms are compressed before they are shipped between compo-
nents, thus enabling fast exchange of large amounts of data.

5.3 T scripts

A T script describes the overall behavior of a system and consists of a number of definitions for
processes and tools and one TOOLBUS configuration describing the initial configuration of the
system. A process is defined by a process expression, and a tool by the name of its executable.
Process behavior is based on a variant of Discrete Time Process Algebra and provides primitives
for

� synchronous, binary, communication (“messages”);

� asynchronous, broadcasting communication (“notes”);

� tool-related actions such as creation/connection, communication, and termination/disconnection;

� process composition operators such as sequential composition, choice, iteration, parallel
composition, and conditional;

� remote monitoring of processes and tools;

� delay and timeout.
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::: P1 ::: P2 :::TOOLBUS:

GUI DBMS

Machine A Machine B

Figure 6: A Typical distributed application.

5.4 Examples

A typical application of the TOOLBUS approach is shown in Figure 6. From the user’s perspec-
tive, a database management system (DBMS) can be queried through a graphical user-interface
(GUI). From an architectural perspective, the GUI and the DBMS are completely decoupled and
they are even running on different machines. The key issue here is that there is no fixed connection
between the components; both only communicate with the TOOLBUS and the processes running
there (e.g.,P1 andP2) determine the routing of GUI requests to the DBMS. This is achieved using
the various communication primitives available inT scripts. The routing may even be changed
dynamically, without disturbing the overall operation of the application.

Other examples are a distributed auction (where one auction master and a variable number of
bidders cooperate in an auction, each working via his/her own workstation), distributed multi-user
games, multi-user distributed programming environments and the like.

In all these examples, theT script defines the global architecture of each application and a
wide variety of components based on a range of implementation technologies can be fitted into
this architecture provided that they obey the protocol imposed by theT script.

5.5 Coordinating DSLs with theTOOLBUS

Applications that have been constructed by means of different DSLs can be coordinated using the
TOOLBUS technology as well. Recall from Figure 1 the case of a product definition in some DSL
and its compilation to the desired IT support for that product. Next, we sketch in Figure 7 the
case where two different products are being defined using two different DSLs and how they can
be coordinated. Typically, all DSL compilers will generate TOOLBUS compatible components
and an overall script will describe the cooperation of all (generated) components.

There are several issues involved here related to maintenance, renovation, and gradual evolu-
tion:

� The TOOLBUS acts as a form of “middleware” that can connect new and old software
components. It enables the gradual transition from a system based on traditional, hand-
crafted, components to a system based on generated components using DSLs.
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DSL1 Compiler

Product
Definition
(DSL1)

DSL2 Compiler

Product
Definition
(DSL2)

Figure 7: Coordination of DSLs using the TOOLBUS.

� Maintenance of a specific DSL or its compiler does not affect the whole system.

� Different DSLs can use different technology (when relevant). This enables transitions to
new technology during the evolution of a system.

� For flexibility and ease of maintenance, each DSL compiler can also be based on a private
TOOLBUS (not shown in Figure 7).

6 Concluding remarks

6.1 Assessment

DSLs are no panacea for solving all software engineering problems, but a DSL designed for a
well-chosen domain and implemented with adequate tools may drastically reduce the costs for
building new applications as well as for maintaining existing ones.

On the positive side, in a DSL-based approach one concentrates all knowledge about an appli-
cation in the DSL and its supporting component libraries, while all implementation knowledge is
concentrated in the DSP (DSL compiler). From the perspectives of flexibility, quality assurance,
maintenance, and knowledge management this is a highly desirable situation.

On the negative side, an application domain may not yet be sufficiently understood to warrant
the design of a DSL for it or adequate technology may not be available to support the design
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and implementation of the DSL. Under such circumstances a more traditional approach to system
design and maintenance should be preferred.

An alternative to a DSL is using a general purpose (object-oriented) language together with
a library of data types and functions for the domain in question. Software development based on
DSLs (following the steps from Section 3.2) is a way to encourage software engineers to indeed
build such a library, to provide the most natural notation (the DSL) for accessing the library, and
to think in advance of the typical changes to be expected in that particular domain.

6.2 Future directions

We have already mentioned that the usability of DSLs by application domain experts (as opposed
to programmers) is a decisive factor for their acceptance and success. There are several directions
for increasing the ease of use of DSLs:

� Visual DSLs in which visual/iconic user-interfaces are used to compose library compo-
nents.

� Natural language DSLs in which stylized natural language sentences are used to compose
applications.

� Interactive DSLs in which domain experts are guided through a list of queries in order to
select and assemble an application from library components.

� Prototyping environments for DSLs that support the realistic simulation of applications.

Regarding the design and implementation of DSLs we see the following needs:

� Further development of tools for designing and implementing DSLs. Typical issues: (a)
modular structure of the DSL; (b) static checking of DSDs (DSL programs); (c) correctness
of the translation rules used by the DSP.

� Tools for designing and implementing supporting component libraries. Typical issues: (a)
modular structure and design of the component library; (b) implementation of the modular
structure in given implementation languages, e.g., how to implement parameterized mod-
ules in COBOL? There is a relation here with current work on designing so-calledbusiness
objects.

� Tools for connecting different DSLs. Typical issue: while coordination architectures as
described in Section 5 provide basic connectivity and interoperability, a more abstract,
application level, model of coordination is needed.

� Collection of empirical data concerning maintenance costs in systems built using domain-
specific languages, following, e.g., the maintenance metrics as proposed by Grady (1987),

Domain specific languages (“little languages”) introduce an appropriate abstraction level for
packaging domain-specific knowledge and technology. “Little maintenance” is becoming feasi-
ble for applications using them, provided that state-of-the-art techniques are used like the ones
discussed in this paper.
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