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Abstract
In recent years, a number of Dutch companies have used the algebraic specification
formalism ASF+SDF. Bank MeesPierson has specified a language for describing interest
rate products, their translation into COBOL, and their generation from interactive ques-
tionnaires. A consultancy company has specified a language to represent the company’s
object-oriented models, and the compilation of this language into Access. Bank ABN-
AMRO has started investigating the use of algebraic specifications for renovating legacy
COBOL systems. We discuss the implications of such projects for teaching algebraic
specifications and software engineering, and the role students have been playing in these
projects.
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1 Introduction

Day to day automation in trade and industry makes little or no use of formal methods.
Instead, software construction and maintenance in the real world deals with COBOL,
PL/I, IMS or Fortran, and at best with SQL, C++, graphical user interfaces, or CORBA-
like middleware. Of all software running in the world, the fraction developed using
formal methods is practically equal to zero.

In spite of that, many computer science departments training their students to become
professional software engineers, have included formal method courses in their curricula.
The reason for this is not only that such courses help to understand the foundations
of computing; most departments strongly believe that the use of formal methods will
greatly enhance the software development process. But we should ask ourselves whether
teaching these classes is not simply a waste of time and energy. Is it not so that students,
once they have found a software engineering job in industry, will find it almost impossible
to spot opportunities for applying their formal methods skills?



If we take these questions seriously, we have to teach students how to apply their
knowledge in practice. We must train them to recognize which situations may be ripe
for formalization, and when the cost of using formal techniques will not outweigh the
benefits. We have to show students how we tried to use formal methods, how our business
partners reacted, and which techniques we mainly used. Wherever possible, we have to
involve students in our collaboration with industry, and make them participate actively.

In this paper, we address such questions in the context of the algebraic specification
formalism ASF+SDF. We report on our experiences with the use of ASF+SDF in Dutch
industry, and on the role students have been playing in these.

1.1 Language Prototyping

Languages are ubiquitous in software engineering: they are used for specification and
implementation, as interfaces between components, to access databases, to build user
interfaces, and so on. Many software systems are centered around one or more domain-
specific languages, which are tailored to the specific needs of the system in question and
which can be used to extend a system easily with new application software.

It is the aim of ASF+SDF to assist during the design and further development of
such languages [2, 14, 7]. It consists of a formalism to describe languages and of a
Meta-Environment to derive tools from such language descriptions. Ingredients often
found in an ASF+SDF language definition include the description of the (1) context-free
grammar, (2) context-sensitive requirements, (3) transformations or optimizations that
are possible, (4) operational semantics expressing how to execute a program, and (5)
translation to the desired target language. The Meta-Environment turns these into a
parser, type checker, optimizer, interpreter, and compiler, respectively.

1.2 ASF+SDF

The Formalism The language ASF+SDF grew out of the integration of the Alge-
braic Specification Formalism ASF and the Syntax Definition Formalism SDF [2].
An ASF+SDF specification consists of a declaration of the functions that can be used to
build terms, and of a set of equations expressing equalities between terms.

If we use ASF+SDF to define a language L, the grammar is described by a series
of functions for constructing abstract syntax trees. Transformations, type checking,
translations to a target language L�, etc., are all described as functions mapping L to,
respectively, L, Boolean values, and L�. These functions are specified using conditional
equations, which may have negative premises. In addition to that, ASF+SDF supports
so-called default-equations, which can be used to “cover all remaining cases”, a fea-
ture which can result in significantly shorter specifications for real-life situations [7].
Specification in the large is supported by some basic modularization constructs.

Terms can be written in arbitrary user-defined syntax. In fact, an ASF+SDF signature
is at the same time a context-free grammar, and defines a fixed mapping between
sentences over the grammar and terms over the signature. Thus, an ASF+SDF definition
of a set of language constructors specifies the concrete as well as the abstract syntax
at the same time. Moreover, concrete syntax can be used in equations when specifying
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language properties. This smooth integration of concrete syntax with equations is one
of the factors that makes ASF+SDF attractive for language definition.
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Fig. 1. A language definition for L in the ASF+SDF Meta-Environment.

The Meta-Environment The role of the ASF+SDF Meta-Environment [14] is to support
the development of language definitions, and to produce prototype tools from these.
It is best explained using Figure 1. A modular definition of language L, generates
parsers, which can map L-programs to L-terms, rewriters, which compute functions
over L-programs by reducing terms to their normal form, and pretty printers, which
map the result to a textual representation. In the Meta-Environment, the generators are
invisible, and run automatically when needed. The derived pretty printer can be fine-
tuned, allowing one to specify compilers to languages in which layout is semantically
relevant (e.g., COBOL) [6].

This pattern gives rise to a series of language processors, with a functionality as
specified in the language definition. Basic user-interface primitives can be used to
connect the processors to an integrated L-specific environment.

The ToLaTeX facility of the ASF+SDF Meta-Environment encourages the language
designer to write his or her definition as a literate specification.

2 Applying ASF+SDF in Practice

The typical industrial usage of ASF+SDF is to support the design of a domain-specific
language. The formalism is used to write a formal language definition, and the Meta-
Environment is used to obtain prototype tools. Once the language design is stable
and completed successfully, the prototype tools can be re-implemented in an efficient
language like C, although there are also examples in which the generated prototype is
satisfactory, and re-implementation is not even considered.
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The underlying observation is that language design is both critical and difficult, and
that it should not be disturbed by implementation efforts in a language like C. At the
same time, prototype tools are required during the design phase to get feedback from
language users. ASF+SDF helps to obtain these tools with minimal effort, by executing
the language definitions, and by offering a number of generation facilities.

This requires an extra investment during the design phase, since ASF+SDF enforces
users to write a thorough language definition. The assumption is that this investment
will pay for itself during the implementation phase, an assumption confirmed by the
various projects carried out so far, such as the ones discussed below.

2.1 Structure Definition in Compiler Production

An example of the use of ASF+SDF for the development of a successful industrial lan-
guage is the “full Structure Definition Language” (fSDL) [13]: a language for data struc-
ture descriptions, developed in the ESPRIT compiler generation project COMPARE.
It has been used by Associated Computer Experts B.V. to develop their commercially
available CoSy Compiler Suite. Using the primitives of fSDL, a compiler developer can
define complex data types such as lists, tables, and graphs, together with functions for
manipulating these. fSDL definitions are compiled to C.

During the design of fSDL, a flattener and the compilation to C were specified using
ASF+SDF. The language design phase was a ponderous process, with various parties
involved, during which a series of changes and language releases were issued. The
ASF+SDF code describing the language took approximately 3000 lines, corresponding
to roughly one person-year. However, once the design was completed, the final C
implementation could be written very easily, and required no significant changes in
fSDL.

2.2 Interlocking in Railway Applications

An example of the use of ASF+SDF for prototyping tools comes from the safety guaran-
teeing systems as used by the Dutch Railways (NS) [11]. To ensure that signals along
railway yards are turned to green only when this is safe, devices called Vital Processor
Interlockings (VPIs) are used. VPIs are programmed using the Vital Logic Code lan-
guage (VLC). In collaboration with Utrecht University and NS, a project was carried
out to verify safety properties of VPIs by expressing VLC in process algebra. Several
tools were prototyped using ASF+SDF, mostly for transforming VLC programs, or for
translating them to propositions that can be given as input to a tautology checker. The
ASF+SDF specifications, covering a total of 400 lines of code, were used as the basis
for an efficient implementation in C. An interesting observation is that NS had initially
estimated that building a complete implementation would cost them one person year.
Using ASF+SDF, a full functional prototype was constructed in only seven person-days.

2.3 RISLA: A Specification Language for Financial Products

RISLA is a language for describing financial products such as mortgages, interest
rate swaps, etc. It has been developed by Bank MeesPierson and software house Cap
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Volmac. In principle, a product defines a scheme of agreements between a bank and its
customers. A product may have several parameters, such as the principle amount, the
interest rate, whether or not irregular redemptions are allowed, etc. An instance of such
a scheme is called a contract. Several software systems running in the bank, such as
the financial administration or the risk analysis programs, require information about the
various financial contracts established. For a large part, this information is characterized
by the cash flows each product generates. A cash flow is a list of (payment, date) pairs.

Originally, a product was described informally by a financial engineer, and then
implemented in COBOL by the software engineer. However, products are subject to
changes, and new products are introduced on a regular basis. This involved a severe
maintenance effort. Moreover, it was difficult to guarantee the correspondence between
the informal description and the implementation. Therefore, in 1992, the software en-
gineers involved with interest rate products started to think about the specification
language RISLA; a language that should be readable by financial experts on the one
hand, and that should permit automatic COBOL-code generation on the other hand.

A first version of RISLA The starting point for RISLA was the observation that all
elementary operations could be defined as functions in a COBOL library. The first step
was the semi-formal description of several existing products in terms of these functions.

Using ASF+SDF a formal language definition for RISLA has been extracted from
these example descriptions [1]. Furthermore, some ideas about information hiding and
structuring have been formulated in an object-oriented manner.

Since then a product has been regarded as an object. It has an internal state, and
is parameterized by its contract data, which are given a value upon contract creation.
Informationmethods can be defined to retrieve data from a contract; registration methods
can be used to update the state of a contract (for example, to register a redemption).
Auxiliarymethods can be defined, which are invisible for the outside world, and methods
can be parameterized. At present, recursion is not allowed.

RISLA product descriptions can be translated to COBOL. The current compiler is
written in C, although the COBOL generator has also been specified in ASF+SDF as part
of a M.Sc. project [16].

By now about 40 financial products have been defined in RISLA. Their generated
COBOL code is in daily operation. The product descriptions, however, have become
longer and longer; low level computations are specified in great detail for each product
again. This showed that the specifications were not yet at the right abstraction level.
As a consequence, only a small group of RISLA experts could read them, and the
communication with the financial experts still occurred on the basis of the informal
descriptions.

Modular RISLA In order to solve this problem the Upgrade RISLA project was started
in the summer of 1995. The project team consisted of people from various disciplines:
accountants, software consultants and people who knew about ASF+SDF.

To reduce the size of RISLA specifications, RISLA was extended with modu-
larization features to construct products from separate components. Like a product, a
component has contract data and methods. Components represent common notions such
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as interest payment schemes. Products and components can import other components,
and, if necessary, rename the contract parameters or the method names.

The import/renaming mechanism has been provided with a semantics by an expan-
sion function translating a modular specification into a flat one. The specification of the
syntax of RISLA, the syntax of the modularization mechanisms, a type checker and the
expansion procedure takes about 100 pages of ASF+SDF. The obtained flat form can be
compiled further to COBOL using the existing RISLA to COBOL compiler.

Currently, a library of components has been developed, and about 10 products have
been specified in terms of these components. A financial expert can use the components
as simple building blocks to construct new products.

Risquest: A Language for Questionnaires The RISLA-environment should also sup-
port the smooth introductionof new products. Therefore the language Risquest has been
developed, which can be used to specify a questionnaire, i.e., a list of interactive ques-
tions by which information about the new product is extracted in a structured manner
from a user. While filling in a questionnaire, a first product specification is built up by
selecting components from the library corresponding to the answers given. Comments
are gathered as free text, in case the questions are not sufficiently detailed. After answer-
ing the questions, the resulting product description can be fine-tuned; the comments can
be formalized by, for example, adapting renamings of certain components. Currently,
approximately 20 Risquest procedures have been implemented at MeesPierson.

To run the questionnaire, Risquest is translated into TCL/TK. The specification of
the syntax of Risquest, some type checking, part of the syntax of TCL/TK, and the
translation takes about 40 pages of ASF+SDF. The pretty printer generator [6] was used
to conform to TCL/TK’s strict layout conventions.

Select COBOLCompile

Some editing

Expand

Interactive

RISLA

Modular

Questionnaire

Flat

RISLA

Fig. 2. From Questionnaire via RISLA to COBOL.

Assessment In Figure 2 an overview is given of the environment that combines the
questionnaire formalized in Risquest, the modular RISLA obtained from selecting the
components according to the answers given, the corresponding flat RISLA, and the
resulting COBOL. This environment for financial products meets its requirements; fi-
nancial engineers can construct their own product specifications, from which COBOL
can be generated. Software experts are only needed for the maintenance of the environ-
ment (the library of components, the compiler to COBOL, etc.), but are not needed as
intermediary between the users and the RISLA specifications.
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Only a small part (about one third, or 6 person-months) of the work of the Upgrade
RISLA team was dedicated to the development of the environment using ASF+SDF. For
a great deal these 6 months were spent on engineering matters that come with the use
of the ASF+SDF Meta-Environment on a problem of such a large scale, and were caused
by the fact that also for the ASF+SDF-experts many aspects were rather new.

The modeling of the financial knowledge itself, such as the definition of the compo-
nent library and the concrete questionnaire, took most of the effort.

2.4 Renovating Legacy Systems

Unlike the work described in the other sections of this paper, application of ASF+SDF

to the renovation of software systems should be labeled as work in progress rather
than as work already completed. However, we have just (January 1996) embarked on a
large project dealing with this subject, in collaboration with several industrial partners
including the Dutch ABN-AMRO bank, and we feel that this application is too interesting
to leave undiscussed in a paper on industrial applications of ASF+SDF.

The problem at hand involves the analysis, cleaning-up and reconstruction of a
large suite (25,000 programs, 30M LOC) of mainframe-based COBOL applications.
The two main problems currently studied are conversions between COBOL dialects and
identification and correction of software errors related to the “year 2000.”

In principle, all techniques available in the ASF+SDF Meta-Environment can be
applied to these renovation problems. More specifically, we intend to develop new
techniques and tools to support impact analysis, data flow analysis, parsing, pretty
printing, code uniformization, goto-elimination, etc.

However, some size problems have to be tackled first. Take, for instance, the COBOL
grammar itself. Currently, we have an SDF version of the COBOL grammar of 25 pages.
Using this as the basis for any formally defined operation on COBOL programs will lead
to unwieldy specifications. Simplification of the COBOL grammar is thus a primary task
here. Clearly, applying formal techniques to COBOL is not an activity that has received
much attention in the research community, hence we have to start from scratch. On the
positive side, we already have a pretty printer for a COBOL subset and we expect that
the documentation tools from [6] can be used to build typesetting tools for full COBOL.

Another size problem concerns the amount of information that can be gathered
during program analysis. It may, for instance, turn out that program slicing (see [17])
cannot be applied due to the size of the programs to be analysed. We are currently
investigating whether more traditional techniques for data flow analysis can be applied,
although their results are less precise than those of slicing. A topic here is that we need
insight in the data flow of complete applications, as opposed to a single program. This
implies that we need to analysed not only individual COBOL programs but also the JCL
scripts that combine these COBOL programs into a complete application.

In addition to these size problems, several research questions have to be addressed.
Many renovation activities consist of an analyse-regenerate cycle: first information is
gathered about a particular source module and then it is regenerated (with the purpose of
performing some improvement, e.g., producing another dialect, repairing date-related
problems, and the like). In all these activities the question arises how the linkbetween the
regenerated code and the original source code can be maintained. For transformations
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expressed using rewriting, such links can be derived fully automatically using origin
tracking [8]. We will investigate which adaptations are necessary to apply origin tracking
to the COBOL migration and year 2000 problems.

A last topic directly related to ASF+SDF deals with logging editing actions. Since
the state of the art in system renovation is not a fully automated process, the standard
mode of operation of a renovation system will be a mixture of fully automatic subtasks
and human interventions. In order to enable the complete replay of the whole renovation
process, all human interventions have to be captured in editing scripts that can be
executed automatically later on. Currently, the ASF+SDF Meta-Environment does not
support such an editor command language.

3 Concluding Remarks

Education The general pattern displayed in the various projects is the following.
Domain-specific languages are important in industrial practice and the use of a for-
mal method such as ASF+SDF helps a language developer to improve the language
design significantly, and to obtain prototype tools in a fast and simple manner.

It is easy to convince students as well as potential industrial users of the validity of
this claim. At the University of Amsterdam, ASF+SDF5 has been used in various classes,
covering such topics as algebraic specification, software engineering, and compiler
construction. The industrial case studies are discussed in such classes, and help the
students to recognize similar situations in which formal methods could be applied.
Students are encouraged to do their M.Sc. project in the context of ASF+SDF. Many
students express interest in carrying out a case study in industry, which has resulted in a
series of practical results [1, 15, 10, 20, 5]. We will discuss one of these in more detail.

First Result Consultants (FRC), is a small software house specialized in the field
of information systems. Together with two students, FRC initiated a research project
investigating the opportunities for automatic code generation from the company’s pro-
prietary object-oriented design models (so-called FRC Models). These are expressed
using a graphical modeling language. The students used ASF+SDF to describe the FRC
Models formally and to develop a prototype of a code generator translating FRC Models
to Access database commands [4]. Both FRC and the students were satisfied with the
results and one of the students has been hired to build a production implementation in
C++ on the basis of the ASF+SDF specification.

Industrial Participation Cooperation between industry and universities is not without
its problems. Managers are under pressure to minimize the risks their companies take,
whereas it is a researcher’s job to try new and not-yet-proven technology. Moreover,
there is a conflict between the company’s desire to keep their competitors ignorant of
improvements in technology it paid for, and the researcher’s ambition to write a paper
reporting on this interesting case study. Some of these cultural differences between
academia and business partners are covered by [19]. Nonetheless, when these are over-
come, industries may gain much more efficient software construction methods, and

5 An account of the use of ASF+SDF for teaching formal methods is given in [9].
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computer scientists will obtain an opportunity to identify the most relevant problems in
their field of research – and to what extent their theories help to address these.

Returning to more ASF+SDF-specific issues, the main factor contributing to the
acceptance of ASF+SDF is that the formalism is executable, and can be used to actually
build something. In some cases, this was the main reason to start using ASF+SDF.
Improving the efficiency of the derived prototype tools will increase the industrial
applicability, and will lead to further cost reduction if it could eliminate the need to
build the final re-implementation in a language like C.

Another point is that in all projects the industries paid academic people to help
them during language design or to write prototype tools. It is not (yet) the case that the
companies train their own people to start using ASF+SDF. However, there are already
several examples of companies hiring people specifically for their ASF+SDF expertise.

Research Questions Language design and tool building based on term rewriting tech-
nology has a high potential, and further research will help to increase the acceptance
and industrial applicability. We mention two topics that need to be addressed:

– The efficiency of the prototypes is for a large part determined by the efficiency
of the rewrite machinery used. Some results from functional programming can be
used here, but the problem is both simpler – there is no need for dealing with �-
expressions – and more complicated – the pattern matching can be arbitrarily deep.
Current research has led to a prototype ASF2C compiler [12].
One technical problem is how and when to output the resulting term: for realistic
specifications (such as the one for fSDL) the normal form may be several megabytes
in size, and in order to keep the prototype’s runtime memory small such results
should be written to file as early as possible. But when can one be sure that part of
a term is in normal form, and will not be changed later? It may be that results of
combining rewriting with I/O are of help here [18].

– Another critical issue is the openness of the prototypes built. In an industrial setting,
a tool never runs alone. Instead, it will require application-specific data from other
components, or functionality available in libraries modeled in other languages. At
present, we are investigating to what extent the TOOLBUS6, a software bus based on
process algebra [3], can help to address these problems.
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Visser, Machteld Vonk, and Pum Walters. The authors acknowledge Bank MeesPierson
and the Centre of Excellence for Risk Management, Finance division Cap Volmac, for
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6 A demonstration of the TOOLBUS will be given during this AMAST conference.
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