
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J. Haering, P. Klint, J. Rekers

Principles of lazy and incremental program generation

Computer Science/Department of Software Technology Report CS-R87 49 November

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 . 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

1 l Lt
Copyright © Stichting Mathematisch Gentrum, Amsterdam ,,

Principles of lazy and incremental program generation

J. Heering
Department of Software Technology, Centre for Mathematics and Computer Science

P. Klint
Department of Software Technology, Centre for Mathematics and Computer Science

Department of Computer Science, University of Amsterdam

J. Rekers
Department of Software Technology, Centre for Mathematics and Computer Science

Current program generators usually operate in a greedy manner in the sense that a program must be
generated in its entirety before it can be used. If generation time is scarce, or if the input to the genera­
tor is subject to modification, it may be better to be more cautious and to generate only those parts of
the program that are indispensable for processing the particular data at hand. We call this lazy program

generation. Another, closely related, strategy is incremental program generation. When its input is
modified, an incremental generator will try to make a corresponding modification in its output rather than
generate a completely new program. It may be advantageous to use a combination of both strategies in
program generators that have to operate in a highly dynamic and/or interactive environment.

Key Words & Phrases: program generator, fourth generation language, greedy, lazy, and incremental
program generation, lazy and incremental generation of lexical scanners, lazy and incremental genera­
tion of parsers, lazy and incremental compilation, dynamic compilation.

1987 CR Categories: D.1.2 [Programming Techniques]: Automatic programming; 0.3.4 [Program·
ming languages]: Processors.

1985 Mathematics Subject Classification: 68N20 [Software]: Compilers and generators.

Note: Partial support received from the European Communities under ESPRIT project 348 (Generation

of Interactive Programming Environments - GIPE).

Note: This paper will be submitted for publication elsewhere.

1. INTRODUCTION

1

"Automatic programming" necessarily means production of programs by means of other programs.
The latter are usually called program generators. The use of program generators dates back almost to the
beginning of the programmable electronic computer. In her keynote address to the ACM History of Pro­
gramming Languages Conference in June 1978 Grace Murray Hopper recalled how she became aware of
the possibility of "program writing programs": "/think the first step to tell us that we could actually use a

computer to write programs was Betty Holberton's 'Sort-Merge Generator.' You fed it the specifications of

the files you were operating on, and the Sort-Merge Generator produced the program to do the sorting and

merging, including not only carrying out the operations, but also managing all of the input and output in

the various tape units, and it contained, I think, what I would define as the first version of a virtual memory

in that it made use of overlays automatically without being told to by the programmer. I think that meant a

great deal to me. It meant that I could do these things automatically; that you could make a computer write

a program. Of course, at that time [around 1952] the Establishment promptly told ua-at least they told

me quite frequently-that a computer could not write a program; it was totally impossible; that all that

computers could do was arithmetic, and that it couldn't write programs; that it had none of the imagination

Report CS-R87 49
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

and dexterity of a human being. l kept trying to explain that we were wrapping up the human being's dex­
terity in the program that lze wrote, the generator, and that of course we could make a computer do these
things so long as they were completely defined'' [6].

Compilers for high-level programming languages are the most successful and widely used program
generators to date. The arguments for using program generators and the high-level specification languages
associated with them (sometimes called "fourth generation languages") are exactly the same as those for
using high-level programming languages and compilers. The fact that many program generators are
tailored towards a specific and rather limited application area does not detract from these arguments. There
is a general tradeoff between the "depth" of the generation process and the application area covered by the
generator. Depth can be gained only at the expense of scope. The code generation phase of compilers
tends to be rather "shallow", reflecting the fact that high-level programming languages have a general pur­
pose character.

Usually, the time spent by a program generator is not that important as long as the program produced
by it is efficient. If there is ample time available for the generator. the complete program can be generated
before it is used. We call this greedy program generation (section 2.1). There is another general tradeoff
here. Generating a more efficient program takes more time.

There are basically two (more or less related) reasons why greedy program generation is not always
an efficient or feasible strategy:

(A) The generated program is used so little that the time invested in generating it is largely lost.

(B) The real-time requirements (interactive response time requirements) that have to be met by the
environment in which the generator runs are too stringent for the generator to finish its task com­
pletely.

So, rather than generating a program all at once, it may be better to generate only those parts of it that are
indispensable for processing the particular data at hand. We call this lazy program generation (section 2.2).
Another, closely related, strategy is incremental program generation. When its input is modified, an incre­
mental generator will try to make a corresponding modification in its output rather than generate a com­
pletely new program. It may be advantageous to use a combination of both strategies in program genera­
tors that have to operate in a highly dynamic m1d/or interactive environment (section 2.3).

Using the principles outlined in this paper, we have successfully converted greedy scanner and parser
generators to versions that are both lazy and incremental. This is briefly discussed in section 3. Full details
will be given in [4] and [5]. To avoid misunderstanding it should be emphasized that such conversions
cannot be done in a purely mechanical or routine fashion.

In spite of their indisputable importance, very little has been written on the general principles under­
lying program generators. It is perhaps no coincidence that the terms "program generator" and "program
generation" do not occur in the index to the 1987 version of the Computing Reviews classification system.
The literature on partial evaluation contains some relevant theoretical considerations of a general nature.
In [3] Ershov clearly explains the basic ideas involved. A recent bibliography is [8]. Although these ideas
have influenced our discussion of greedy program generation in section 2.1 to some degree, our viewpoint
in this paper is not that of partial evaluation, and we have not yet attempted to interpret our work in that
particular context.

2. GREEDY, LAZY, AND INCREMENTAL PROGRAM GENERATION

2.1. The traditional (greedy) case

Suppose a dyadic function

F: AxB--7C

has to be implemented in a context in which for each aeA the value F(a,b) is required for a relatively
large number of be B. In such cases the efficiency of computing F (a,b) for some fixed a can often be
improved by replacing F with a higher-order function ("program generator") of curried type

G: A-7(B-7C)

which, when given a particular a EA, returns ("generates") a specialized function (program)

Ga: B-7C

such that

Ga(b)=F(a,b)

3

for all bEB, and with the additional property that computing Ga(b) takes (much) less time than computing
F(a,b). If, for instance, the former is more efficient than the latter by a multiplicative speed-up factor S > l,
the investment of time T0 in generating Ga will start paying off after Ga has run for a total time t defined by

t
t=Ta+s,

leading to a break-even point

(l+-
1
-)Ta.

S-l

Within certain limits, the larger the investment Ta made in generating Ga, the larger the speed-up S that can
be achieved. In practice, a speed-up S of l 0 or more can often be achieved at acceptable cost.

For the sake of concreteness, it may be instructive to consider a parser generator from the general
viewpoint. In that case. F would be a general parser, A would be a domain of grammars (probably
described in BNF), B would consist of sentences to be parsed, and C would contain parse trees and some
failure value. The associated parser generator would be G, and Ga would be a parser for a specific gram­
mar a.

Compilation of a programming language l is another instructive example. In this case, F would be
an interpreter for L-programs, A the collection of L-programs, B a domain of input values, and C a domain
of result values, such that F(a,b) is the result of program a with input b. The compiler for l would be G,
and Ga would be the object code for a.

2.2. Lazy program generation

As indicated in the introduction, investing time Ta in generating Ga is not always justified:

(A) For some aEA the number of b for which F (a,b) has to be computed may tum out to be so small that

the break-even point (l+-S
1

)Ta is not reached.
-1

(B) The real-time requirements (interactive response time requirements) that have to be met may be so
stringent that there simply is no time Ta available between two successive responses of the system.

Rather than generating G., all at once, a lazy generator produces for each b only those parts of Ga
that are actually needed to compute the required result. Parts generated for previous inputs b (if any) are
retained, so the lazy generation process is cumulative. Whether the complete program Ga is ever generated
in this way, depends on the particular sequence of inputs involved. Parts of G0 that are not needed by any
bare not generated. Clearly, lazy program generation only makes sense if computing F(a,b) always or
nearly always involves only a relatively small part a,, of a, and if Ga can be approximated incrementally
from below.

More precisely, let A be a domain with a (reflexive) partial order~ ("part of"). Let aEA be fixed
and let Ube a subset of B. Computing F(a,U)= {F(a,b)lbEU} is said to involve apart au~a if the com­
putation of F(a,U) does not use parts of a outside au. (Note that F(a,U) is just an abbreviated notation. It
does not mean that F is given argument U. F(a, U) is computed by computing F(a,b) separately for each
bE U.) The notion of what it means for the computation of F(a,U) to involve au is hard to characterize
precisely, but au may reasonably be expected to have the following properties:

(a) F(au.b)=F(a,b) for all bE U;

(b) tJu~v if U~V;

4

(c) au=au for all a' with au~a'~a;

(d) au~u ifa'~.

Whether the involve-relation actually has these properties has to be verified in each particular instance.
Property (d) is not satisfied in the case oflazy/incremental compilation (section 3.3).

An immediate consequence of (a) and (c) is that F(a',b)=F(a,b) for all be U and all a' with
au~'~a. However, au need not be the smallest part of a having this property, because au is not primarily
determined by the functional behavior of F, but by its algorithmic behavior. It may happen, for instance,
that for some be Uthe algorithm explores parts of a that are subsequently found to be dead ends. Although
superfluous from an extensional viewpoint, these parts do in fact belong to au.

In practice, a8 will usually be equal to a, but it may ~appen that some parts of a are never needed at
all. For ~ed a, each U r;;B gives rise to a completion U which is the largest superset of U such that

au= au. U contains all beB such that computing F(a,b) involves au.

In what follows it is assumed that the involve-relation defined by F stays the same if F is imple­
mented by means of a greedy or la=y program generator.

Now consider a fixed aeA and a sequence b 1,b 2, ••• of elements of B. Let U,.={b; I ls;is;n} ~_§and
consider the part a,.~a involved in computing F(a,U,.). Like I U,. }11;;::1t the sequences {a,. J,.;;::1 and I U,. }11 ;;::1

are non-decreasing. The greedy generator G of the previous_section produces a program G11 =Ga
11

for each

a,.. G,. is a function of type B~C which behaves like Ga on U,.:

Outside U,. the behavior of G,. is different from that of Ga, but G,. itself is unable to detect this. This ina­
bility makes it unsuitable as an approximation to Ga in the lazy case. So, rather than G,., consider the
incomplete program (partial function) g,.: B~C which is similar to G,., excee!_ that it contains gaps
corresponding to parts of the program involved in computing F(a,b) for b outside U,.. These parts have not
yet been generated. Any attempt to execute a gap causes an appropriate exception to be raised requesting
the lazy generator H to "fill" the gap in question. Having done this to the extent necessary, H restarts exe­
cution of the expanded version of g,. at the point where the exception occurred.

H can best be described as a higher-order function of type

AxBx(B ~C) ~ Cx(B ~C),

such that

H(a,b11 ,g11_1) = (g11 (b11),g11) = (G11 (b11),g11) = (G0 (b11),g11) = (F(a,b11),g11). (n~l)

In view of the foregoing the corresponding program (expressed in some suitable language) is:

H(a,b,g)
begin

return(g (b), g);

when attempting to execute gap yin g
do

g:=expand(y,g,a)
resume

od
end.

For each new b=b,. H initially tries to compute the required result by means of the incomplete program
g,,_1 generated during the previous steps. For n=I this is the program g0 which consists of nothing but a
single gap. Only if execution of g,,_1 (b,.) hits a gap yin g11 _ 1, H generates an additional piece of program
by calling procedure expand in the body of the exception handler. This procedure produces the required
extension using the gap descriptor y, the original program g11 _ 1, and the original a. It fills the gap only to the
extent necessary, so part of the gap (in the form of one or more new gaps) may remain. Computation is
then resumed at the point where the exception occurred using the extended version of g,,_1• The computa­
tion may hit several gaps in succession, so the extension of g11 _ 1 to g11 may require several activations of

5

expand. If bnE Un-t •no extension is necessary and gn=gn-t · Hence, expand is not called and H(a,bn,gn-t)
runs as fast as Ga(bn). (Needless to say, the language used to implement a lazy generator need not have
user-defined exceptions. These can be simulated in any programming language.)

There is a natural partial order (the subsumption order) on incomplete programs. An incomplete pro­
gram g subsumes g' (g~') if g' can be obtained from g by partially or completely filling the gaps in g.
The lazy generator H produces a sequence { gn } n:<:O such that

go~g,~g2~···~Ga,

with corresponding domains

0~U1 ~U1 ~···~B.

An extreme and, from the viewpoint of lazy program generation, undesirable case is a 1 =a. This means that

g I =Ga. H has to generate the whole program Ga just to handle b 1 • Obviously, the lazy character of H is
lost in this case. If, on the other hand, the sequence f bn ln~t is such that an remains small, gn may be
expected to remain relatively small too, resulting in less generation overhead and a more favorable break­
even point in comparison with the greedy case.

Lazy program generation may alleviate the two problems (A) and (B) mentioned in the beginning of
this section if the following conditions are met:

(1) Computing F(a,b) always or nearly always involves only a small part ab of a. In that case the

sequence {an ln~t does not increase too fast, expand has to generate only relatively small extensions
at each step n, and the total generation time is distributed evenly.

(2) The additional overhead in comparison with the overhead of greedy program generation is relatively

small, i.e., there is a relatively small Oa such that for every sequence { bn }n~t

l;Tn ~Ta+Oa,
n~I

where Tn is the time (2::0) used by expand to extend 8n-I to 8n• and T0 the time used by the greedy
generator G to generate Ga (section 2.1).

2.3. The combination of lazy and incremental program generation

In the previous section a was kept fixed. Now suppose that a is subject to modification, perhaps
because it is being developed and experimented with interactively. Ordinarily, a completely new program
would have to be generated for each new version of a. If modifications follow each other in quick succes­
sion, chances are that only a small part of each a is used before it is modified. This fact may be exploited
by a lazy program generator. The program generated for the old version of a is still thrown away, but, as it
will be incomplete most of the time, less time is wasted than before.

Although lazy generation may certainly offer a partial solution, the above scheme is still rather crude
in that it does not attempt to retain as much of the old program as possible. Suppose a is modified to a'

after input bk has been processed. The old program 8k can be retained if 8k ~Ga'• where~ is the subsump­
tion order introduced in the previous section. For instance, if a part of a that has not yet been involved in

any computation is deleted, then ak~a'~a and property (c) of the involve-relation (section 2.2) guarantees
that the incomplete program g1c remains valid in the context of a', except that some of its gaps may now

correspond to parts of a that no longer exist. These gaps can simply be removed in advance or, alterna­
tively, on the fly by expand. Hence, gk need not be thrown away, and F(a',b1c+i) is correctly computed by

H(a',b1c+t •gk).

One might be inclined to think that the same would apply to all modifications such that a1c~'.
Unfortunately, this is not true as g1c does not contain gaps corresponding to new parts of a' that may be

needed for computing H(a',bk+t •g1c), i.e., ak~a' does not imply 81c~Ga'-

To see this more clearly, it may be helpful to consider a lazy/incremental generator for context-free
parsers (section 3.2). In this case, Fis a universal context-free parser, A the domain of context-free gram­
mars, B consists of sentences to be parsed, and C consists of sets of parse trees (parses can be ambiguous!)
and a trulure value. Let a be a grammar and b a sentence such that parsing b with grammar a involves a

6

subgrammar ab<;;;.a. What happens if syntax rules are added to a? There are basically the following possi­
bilities:

(l) Parsing b with the expanded grammar a' involves the same subgrammar as before, i.e., a/,=ab. As
F(a',b) = F(a/,,b) = F(a,,,b) = F(a,b), this means that b has the same parse as before or that parsing

fails in both cases.

(2) Parsing b with a' involves a subgrammar a/, which is larger than ah• but b has the same parse as
before. This may happen if the parser explores syntax rules of a' outside ah that do not affect the
final parse (see section 2.2).

(3) Parsing b with a' involves a subgrarnmar a~ which is larger than ah, and either the parse succeeds for
a' while it failed for a, or the degree of ambiguity of the parse is larger for a' than it was for a.

Note that properties (c) and (d) of the involve-relation (section 2.2) are satisfied in this case.

Now define the greatest common ancestor (greatest lower bound) g Ah of two incomplete programs g
and has the most specific (least general) incomplete program that can still "become" both g and h, i.e.,

gAh ~g,
gAlz ~ lz, and
f ~gAh for all/such that/~ g and l~ h.

It is assumed that the greatest common ancestor of two incomplete programs always exists. In the worst
case it is equal to the program that consists of nothing but a single gap. Two useful properties of A are:

gAg =g,
gAh =g if g:5J1.

Consider a domain D of modifications with a function apply: DxA-7A such that apply(o,a) is the
element of A obtained by applying modification o to a. Not every o need be applicable to every a, so apply
is a partial function. Let OED be the null modification with apply(O,a)=a for every aeA. A
lazy/incremental program generator I is a higher-order function of type

DxAxBx(B-7C) -7 (Cx(B-7C))xA,

with corresponding program

I(o,a,b,g)
begin

(a',g'):=modify(o,a.g)
return (H(a',b,g'),a')

end,

where H is the lazy generator discussed in the previous section and procedure modify computes

a'= apply(o,a).

and

g'=gAGa'·

Obviously, g' should not be computed by first computing Ga·· It turns out that in many concrete cases g'
can be efficiently computed on the basis of o, a, and g without computing Ga·· Whether this is feasible has
to be investigated separately in each specific case. This is crucial to the success of the proposed
lazy /incremental strategy.

If O=O, modify has no effect, and I reduces to H:

a',,,; apply(O,a) =a,

and, assuming g~Ga (which is true if I is used properly),

g'=gAGa' =gAGa =g.

When a is modified after input k, l(o,a,bk+I•gk) retains in g' the large possible part of gk that is still

7

valid in the new context. Subsequently, H expands g' to gk+I by need. Actually, the part of gk that is

retained is maximal only in a relative sense. It depends on the domain of incomplete programs in which

the greatest common ancestor is interpreted. From the viewpoint of abstract syntax, the simplest incom­

plete programs are .Q-terms in the sense of [7, section 6.5.2]. Inn-terms the special constant .Q acts as a

gap. The subsumption order s; is also called prefix order in this case. For instance,

program(if(.Q,.Q,.Q)) s; program(if(eq(x,0),assign(y,.Q),assign(.Q,.Q))).

If incomplete programs are .Q-terms, the greatest common ancestor always exists. For instance,

program(if(eq(x,0),assign(y,.Q),assign(.Q,.Q))) /\ program(if(lt(x,0),assign(y, l),.Q)) =
program(if(.Q,assign(y,.Q),.Q).

A larger part of gk may be retained if incomplete programs are generalized .Q-terms containing n-adic gaps

for any n~ rather than conventional n-terms containing only zero-adic gaps. For instance, in that case

program(if(eq(x,0),.Q)) /\ program(while(lt(x,0),.Q))

would be equal to

program(.Q(.Q(x,0),.Q))

rather than to

program(.Q).

In the lazy/incremental lexical scanner and context-free parser generators discussed in the next section

incomplete programs are graphs with gaps rather than trees with gaps.

3. APPLICATIONS

In this section we briefly discuss three concrete applications of the general principles outlined in the

previous sections.

3.1. ISG • a fully lazy/incremental lexical scanner generator

ISG is a fully lazy/incremental lexical scanner generator developed by us. In this case, A is the

domain of regular grammars, B contains the sentences to be scanned, and C consists of legal strings with

their lexical type(s) and a failure value. For each regular grammar there is a deterministic finite automaton

recognizing the language generated by the grammar. ISG constructs thi.s automaton "by need", so the

incomplete programs gn produced by ISG may be viewed as approximations to the automaton for the input

grammar. The domain D of modifications consists of additions and deletions of a single regular expres­

sion. ISG has been implemented in LISP and is currently operational. Full details will be given in [4].

Suffice it to say that, in so far as a meaningful comparison can be made, the generation time used by ISG

compares very favorably with that of the greedy lexical scanner generator LEX [l, section 3.8], while the

lexical scanners produced by it (in LISP) have about the same performance as those generated by LEX (in

C). ISG is used in conjunction with the lazy/incremental parser generator described in the next section.

3.2. IPG - a fully lazy/incremental parser generator for finitely ambiguous context-free grammars

Taking Tomita's context-free parsing algorithm [9] as our point of departure, we developed the fully

lazy/incremental parser generator IPG. In thi.s case, A is the domain of finitely ambiguous context-free

grammars, B contains the sentences to be parsed, and C consists of sets of parse trees and a failure value

(see also section 2.3). The programs gn generated by IPG are incomplete (possibly ambiguous) LR parse

tables which are constructed "by need". These tables may be viewed as incomplete programs for

Tomita's algorithm, which is a pseudo-parallel table driven parser. The domain D of modifications consists

of additions and deletions of a single production rule. IPG has been implemented in LISP and is currently

operational. A detailed description of it will be published shortly [5]. The combination ISG/IPG will be

used in an environment for the interactive development of formal language definitions.

8

3.3. Lazy/incremental compilation

In this case A is a domain of programs in some language L, B is a domain of input values for L­

programs, and C is a domain of result values. The programs gn generated by a lazy/incremental compiler l
for some program a consist of pieces of object code interspersed with gaps containing source code. The ini­
tial program g 0 consists of a single gap containing the entire program a. Each time a gap is encountered
during the execution of gn-I (bn), the corresponding source code is (partially) compiled by expand, the
resulting object code (with gaps) is put into the gap, and execution is resumed. Hence, in addition to the

object code of gn-I • gn contains the object code needed by bn. Unreachable parts of a will never be com­
piled, but an already compiled part of a may become unreachable when a is modified.

When statements are added to a program a, the new version a' may behave rather differently than a.
In particular, the part ah needed by b need not be a part of a;,. So property (d) of the involve-relation (sec­
tion 2.2) is not satisfied in this case.

Also known as dynamic compilation, lazy compilation is used in many BASIC systems. We have
been unable to ascertain whether a fully lazy/incremental compiler has been implemented for some
language, but something very close to it is bound to exist somewhere. See also an interesting paper by
Brown [2].

REFERENCES

l. Aho, A.V., Sethi, R., and Ullman, J.D. Compilers: Principles, Techniques and Tools. Addison­
Wesley, 1986.

2. Brown, P.J. Throw-away compiling. Software Practice and Experience 6 (1976), 423-434.

3. Ershov, A.P. On the partial computation principle. Information Processing Letters 6, 2 (April 1977),
38-41.

4. Heering, J., Klint, P., and Rekers, J. Incremental generation of lexical scanners. Department of
Software Technology, Centre for Mathematics and Computer Science. Amsterdam, in preparation.

5. Heering, J .• Klint, P., and Rekers, J. Incremental generation of parsers. Department of Software Tech­
nology, Centre for Mathematics and Computer Science, Amsterdam, in preparation.

6. Hopper, G.M. Keynote address to the ACM History of Programming Languages Conference. In Wex­
elblat, R.L. (ed.). History of Programming Languages. Academic Press, 1981, 7-20.

7. Huet, G. Formal structures for computation and deduction. CMU Course Notes, INRIA, Rocquen­
court, May 1986.

8. Sestoft, P. Partial evaluation bibliography. Preliminary version, Bulletin of the European Association

for Theoretical Computer Science, No. 31 (February 1987), 50-54.

9. Tomita, M. Efficient Parsing for Natural Language. Kluwer, 1985.

