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There are several alternatives for transforming algebraic specifications into executable prototypes. 
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1. Motivation 
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Transforming formal specifications into executable prototypes has several applications: one can 
either use the executable prototype to validate the specification or one may be interested in using the 
prototype system itself. Two alternatives for deriving executable prototypes from algebraic 
specifications are 

(1) transform the specification into a complete (conditional) term rewriting system.and execute it by 
means of an existing rewrite rule interpreter; 

(2) transform the specification into a set of Horn clauses and use an existing Prolog system for their 
execution. 

Here, we are interested in the relative efficiency of the end products which can be obtained 

along these two lines using the Equation Interpreter [HOD82a, HOD82b] and the UNH Prolog 
interpreter from the University of New Hampshire, respectively. 

Two issues will not be addressed: 
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(1) The way in which an algebraic specification can be transformed into either a term rewriting 
system or Horn clauses. 

(2) The relative merits of either the Equation Interpreter or Prolog as programming systems per se. 

We restrict ourselves to the relative efficiency of both systems considered as (abstract) computing 
machines. 

In the remainder of this note the measurement method and the measurements themselves are 
described and some conclusions are drawn. The appendices give detailed information on the 
programs used for the measurements. 

2. Measurement method 

The efficiency of the Equation Interpreter and Prolog have been compared by executing a series 
of examples using both systems. Each example consists of a program and input for that program. 
The listings of the programs, the input, and resulting output are given in the appendices. In choosing 
the examples we had to avoid violating implementation limitations of the systems involved. We have 
avoided, for instance, very long input expressions (which cause overflow of the parse stack used in the 
Equation Interpreter), input expressions using too many different variables (a restriction of the Prolog 
interpreter), or too many user defined symbols (a restriction of the Equation Interpreter). Any of 
these limitations could have been removed by increasing the relevant parameter in each system, but 
we decided not to do that and to use the standard version. 

The examples are now described in more detail. The first program (EMPTY) is the empty 
program. It serves to measure the initialisation times for both systems. 

The second program (REV) performs list reversal. It reads a list of 7 elements from input and 
replicates it 16 times. The resulting list of 112 elements is reversed two times and ijnally its length is 
determined. This program serves to measure the processing of large data structures, 

The third program (ACK) computes Ackermann's function for the value (31,2). This program 
serves to measure the speed of recursion and integer arithmetic. 

The fourth program (ALPHA) is actually a series of programs of increasing size. These 
programs define an alphabet of N characters with an equality predicate. Each program defines the 
Boolean functions and and or, the conditional function if, and the successor (succ) and equality 
(eq_INTEGER) functions on natural numbers. For given N, each program defines N constants 
(representing the characters in the alphabet), a function ord that injects these constants in the 
integers, and an equality function on characters (eq_ CHAR) that is defined by means of ord and 
eq_ INTEGER. The input for each program is a conditional expression containing fifteen applications 
of eq_ CHAR with the fifteen last characters in the alphabet as argument; this conditional expression 
returns the last character in the alphabet as value. This program has as purpose to measure the effect 
of an increasing number of equations on the time needed for preprocessing and for execution. 

Measurements have been performed on a V AXl 11780 with Berkeley Unix Version 4.2. We 
used the first distribution of the Equation Interpreter dated 5-16-83 and version 1.3 of UNH Prolog 
from the University of New Hampshire. 

Initial experiments showed that the timing of the Equation Interpreter presented problems due 
to the fact that it has been implemented as a pipeline of five concurrent processes: two preprocessors, 
the actual interpreter and two postprocessors. This organisation makes the timing highly sensitive to 
the scheduling of the individual processes in the pipeline. To avoid these fluctuations, we have 
replaced the pipeline by a sequence of five processes. This causes a slight increase in the execution 
times measured, but we observed that the execution time of the whole system is completely dominated 
by the execution time of the actual interpreter (this accounts for more than 95% of the total execution 
time). 
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3. Measurements 

The results of the experiment are summarized in Table I. Preprocessing times have been 
measured 5 times. Execution times have been measured 10 times. The table gives the averages of 
these measurements in seconds. The standard deviation, expressed as percentage of the average of 
each series of measurements, never exceeded 6%. 

Equation Interpreter Pro log 
Example Preprocessing Execution Execution 

time time time 
tE TE Tp 

EMPTY 136.5 2.1 0.2 
REV 172.6 61.4 50.5 
ACK 155.5 18.5 3.6 
ALPHA (N = 15) 331.9 7.8 4.3 
ALPHA (N = 20) 428.5 10.7 7.3 
ALPHA (N = 25) 528.3 13.7 9.7 
ALPHA (N = 30) 688.0 16.3 12.9 
ALPHA (N = 40) 911.2 22.1 19.7 
ALPHA (N = 50) 1278.4 28.5 27.5 
ALPHA (N = 60) 1681.1 34.l 33.3 
ALPHA (N = 70) 2168.4 39.8 41.7 
ALPHA (N = 80) 2668.1 45.5 54.4 
ALPHA (N = 90) 3277.0 50.8 62.7 

Table I. Summary of measurements. 

Preprocessing times will be denoted by t and execution times by T. The total preprocessing 
time tE of the Equation Interpreter includes syntactic and semantic checking of the input program, 
generation of an equivalent Pascal program (which includes tables for fast pattern matching of terms 
at execution time) and compilation of this program. This compilation time varies between 95 and 160 
seconds in the above examples. TE indicates the execution time of the Equation Interpreter. 

The Prolog system does no preprocessing, i.e. tp =O. The execution times Tp given include the 
time needed by the Prolog system to read the example programs. 

4. Conclusions 

(1) It is surprising that a system without preprocessing performs so well as compared with a system 
with extensive preprocessing. 

(2) The preprocessing time tE of the Equation Interpreter tends to become prohibitive. The trends 
in the measurements suggest that the Equation Interpreter outperforms Prolog on large sets of 
equations. It depends on the particular application which system should be chosen. In the case 
of prototyping the same program will probably only be executed a few times. In that case, the 
disadvantage of considerable preprocessing time outweighs the advantage of the shorter 

tE-tP 
execution time. If the number of executions is larger than n0= Tp -TE the large preprocessing 

time of the Equation Interpreter starts to pay off. In example ALPHA, n0= 1141, 300 and 275 
for N =70, 80, 90, respectively. 
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(3) All Prolog programs in the measurements were interpreted and not compiled. If compilation 
instead of interpretation will be used one may expect a speed up of the execution time by a 
factor between 5 and 15. 
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Appendix I: EMPIY 

1.1 Equational program 

Symbols 
a:O; 
noop:1. 

For all x: 
noop(x) = x. 

1.2. Input 

a 

1.3. Output 

a 

1.4. Prolog program 

(* empty program *> 

1.5. Input 

Note: all Prolog programs are assumed to reside on the file "prodef'. 

[prodefJ. 

1.6. Output 

?-
[ prodef consulted J 

yes 
I ?-

--- UNH Prolog 1.3 ---

5 
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Appendix II: REV 

11.1 Equational program 

Symbols 
cons: 2; 
nil: O; 
rev: 1; 
append: 2· , 
repl2: 1; 
repl4: 1; 
repl 16: 1. , 
Length: 1; 
job: 1; 
add: 2; 
include atomic symbols; 
include integer_numerals. 

For all x, y, z, h, t, l: 

include addint; 

appendCnil, x> = consCx, ni L>; 
appendCconsCx, y), z) = consCx, appendCy, z)); 
rev(ni L> = nil; 
rev(cons(x, y)) = append(rev(y), x>; 
repl2Cni L> = nil; 
repl2Ccons(h, t)) = consCh, cons(h, repl2Ct>>>; 
repl4C L> = repl2Crepl2Cl)); 
repl16CL> = repl4C repl4C l)); 
lengthCni L> = O; 
lengthCconsCx, y)) = addClengthCy>, 1>; 
jobCl> = lengthCrevCrevCrepl16(L)))). 

11.2. Input 

jobCconsCa,consCb,consCc,consCd, cons<e, cons(f, consCg, nil)))))))) 

11.3. Output 

112 



11.4. Prolog program 

appendCnil, L, L). 
appendCconsCX, L1), L2, consCX,L3)) • appendCL1, L2, L3). 

revCnil, nil>. 
revCconsCH,T), L) ·- revCT,Z), appendCZ, cons(H, nil), L). 

repl2Cnil, nil). 
repl2CconsCH,T1), consCH, cons<H, T2))) :- repl2CT1, T2). 

repl4CX, Y) • 
repl 16CX,Y) 

repl2CX, Z), repl2CZ, Y). 
·- repl4CX,Z), repl4CZ,Y). 

lenCnil,0). 
lenCconsCH, T), N) :- lenCT, M), N is M+1. 

jobCL, R) :- repl16CL, X), revCX, Y), revCY, Z>, lenCZ, R). 

11.5. Input 

[prodefJ. 
job(consCa,consCb,consCc,consCd,consCe,consCf,consCg,nil))))))), N). 

11.6. Output 

Note: in all following Prolog output we have removed irrelevant system messages and have only retained 
essential information. 

N = 112 

7 
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Appendix Ill: ACK 

m.1 Equational program 

Symbols 
add: 2; 
subtract: 2; 
equ: 2; 
if: 3; 
ack: 2; 
include atomic symbols; 
include truth_values; 
include integer_numerals. 

For all m, n: 

include addint, subint, equint; 

= m; ifCtrue, m, n) 
if(false, m, n) = n; 
ack<m, n> = if(equ(m, 0), add(n,1), 

if(equCn, 0),ackCsubtractCm, 
ackCsubtractCm,1>, ack(m, 

m.2. Input 

ackC3,2) 

Ill.3. Output 

29 

.m.4. Prolog program 

·- R is N+1. 
M1 is M-1, ack(M1, 1, R). 

1>, 1), 

subtractCn,1))))). 

ackCO, N, R) 
ack(M, 0, R) .. _ 

ackCM, Iii, R) • M1 is M-1, N1 is N-1, ack(M, N1, R1), ack(M1, R1, R). 

ID.5. Input 

[prodefJ. 
ack(3, 2, R). 



m.6. Output 

R = 29 

9 



10' 

Appendix IV: ALPHA 

Note: we only show the ALPHA example for the case N = 15. 

IV.1 Equational program 

Symbols 
char 0: O; 
char 1: O; 
char 2: O; 
char 3: O; 
char 4: O; 
char 5: O; 
char 6: O; 
char 7: O; 
char 8: O; 
char 9: O; 
char 10: O; 
char 11: O; 
char 12: O; 
char 13: O; 
char 14: O; 
char 15: O; 
eq_ INTEGER: 
eq_ CHAR: 
TRUE: O; 
FALSE: O; 
AND: 2; 
IF: 3; 
succ: 1; 
ord: 1; 

2; 
2; 

include integer_numerals; 
include atomic_symbols. 

For all x, y, c1, c2: 
ANDCTRUE, TRUE) = TRUE; 
AND(TRUE, FALSE) = FALSE; 
ANDCFALSE, TRUE) = FALSE; 
AND(FALSE, FALSE) = FALSE; 
IFCTRUE, x, y) = x; 
IF(FALSE, x, y) = y; 
eq_INTEGERCO, 0) = TRUE; 
eq_INTEGERCsucc(x), succ(y)) = eq_INTEGER(x, y); 
eq_INTEGERCO, succ(x)) = FALSE; 
eq_INTEGERCsucc(x), 0) = FALSE; 
eq_CHAR(c1, c2) = eq_INTEGER(ord(c1), ordCc2)); 
ord(char 0) = O; 
ord<char 1) = succ<succ<succ(succCsucc(ord(char_O>>>>>>; 
ord(char 2) = succ(succ(succ<succ<succ(ord(char_1)))))); 
ord(char 3) = succ(succ(succ(succ(succCord(char_2)))))); 
ord(char 4) = succ(succ(succ(succCsucc(ordCchar_3)))))); 
ord(char 5) = succ(succ(succ(succ(succ(ord(char_4)))))); 



ordCchar 6) = 
ordCchar 7> = 
ordCchar 8) = 
ordCchar 9) = 
ordCchar 10) 
ordCchar 11) 
ordCchar 12> 
ordCchar 13) 
ordCchar 14) 
ordCchar 15) 

IV.2. Input 

= 
= 
= 
= 
= 
= 

succCsuccCsucc(succCsucc(ordCchar_5>>>>>>; 
succCsuccCsuccCsuccCsuccCordCchar_6)))))); 
succCsuccCsucc<succCsuccCordCchar_7>>>>>>; 
succCsuccCsuccCsuccCsuccCordCchar_8>>>>>>; 
succCsuccCsuccCsuccCsucc(ordCchar_9)))))); 
succCsucc(succCsuccCsuccCordCchar_10)))))); 
succCsuccCsuccCsuccCsuccCordCchar_11)))))); 
succCsuccCsucc(succ(succCordCchar_12)))))); 
succCsuccCsuccCsuccCsucc(ordCchar_13)))))); 
succCsuccCsucc(succ(succ(ordCchar 14)))))). 

IFCAND(eq CHAR(char_O, char_O), 
AND(eq_CHARCchar_1, char_1>, 
ANDCeq_CHARCchar_2, char_2), 
ANDCeq_CHARCchar_3, char_3>, 
AND(eq_CHAR(char_4, char_4>, 
AND(eq_CHARCchar_5, char_5>, 
ANDCeq_CHAR(char_6, char_6>, 
ANDCeq_CHARCchar_7, char_?>, 
ANDCeq_CHARCchar_8, char_8), 
AND(eq_CHAR(char_9, char_9>, 
ANDCeq_CHARCchar_10, char_10>, 
AND(eq_CHARCchar_11, char_11), 
AND(eq_CHARCchar_12, char_12), 
AND(eq_CHAR(char_13, char_13), 
AND(eq_CHARCchar_14, char_14>, 

eq_CHARCchar_15, char_15)))))))))))))))), 
char_15, FALSE) 

IV.3. Output 

char 15 

11 
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IV.4. Prolog program 

and(true, true, true). 
and{true, false, false). 
and(false, true, false). 
and(false, false, false). 
if<true, X, Y, X). 
if(false, X, Y, Y). 
eq_INTEGERCO, 0, true). 
eq_INTEGER(succ(X), succ(Y), R) • eq_INTEGERCX, Y, R). 
eq_INTEGERCO, succ(X), false). 
eq_INTEGERCsucc(X), O, false). 
eq_CHARCC1, C2, R) :- ordCC1, N1), ord(C2, N2), eq_INTEGERCN1, N2, R). 
ord(char_O, 0). 
ordCchar_1, succ<succ(succ(succ<succ(R)))))) • 
ordCchar_2, succ(succCsucc(succCsucc(R)))))) ·­
ord(char_3, succ(succ(succ(succ(succ(R)))))) ·-

ord(char_O, R). 
ord(char_1, R). 
ord(char_2, R). 

ord(char_4, succ(succ(succ(succ(succ(R)))))) • ordCchar_3, R). 
ord(char_S, succ(succ(succ(succ(succ(R)))))) • ord(char_4, R). 
ordCchar_6, succ(succ(succ(succ(succ(R)))))) ·- ord(char_S, R). 
ord(char_7, succ<succ(succ(succ(succ(R)))))) ·- ord(char_6, R). 
ord(char_8, succ(succCsucc(succCsucc(R)))))) ·- ord(char_7, R). 
ord(char_9, succ(succ(succ(succ(succ(R)))))) ·- ord(char_8, R). 
ord(char_10, succ(succCsucc(succ(succ(R)))))) • ord(char_9, R). 
ord(char_11, succ(succ(succ(succ(succ(R)))))) • ord(char_10, R). 
ord(char_12, succ(succ(succ<succ(succ(R)))))) ·- ordCchar_11, R). 
ordCchar_13, succ(succ(succ(succ<succ(R)))))) ·- ord(char_12, R). 
ordCchar_14, succ<succ(succ<succ(succ(R)))))) • ord(char_13, R). 
ord<char_15, succ(succ(succ(succ(succ(R)))))) ·- ord(char_14, R). 
job(T) :- eq_CHAR(char 0, char O, RO), 
andCRO, RO, TO), 
eq_CHARCchar_1, char_1, R1>, 
andCTO, R1, T1), 
eq_CHAR(char_2, char_2, R2), 
and(T1, R2, T2), 
eq_CHARCchar_3, char_3, R3), 
andCT2, R3, T3), 
eq_CHARCchar_4, char_4, R4), 
and(T3, R4, T4), 
eq_CHARCchar_S, char_S, R5), 
andCT4, RS, T5), 
eq_CHARCchar_6, char_6, R6), 
andCTS, R6, T6), 
eq_CHARCchar_7, char_?, R7), 
andCT6, R7, T7), 
eq_CHAR(char_8, char_8, R8), 
and(T7, R8, T8), 
eq_CHARCchar_9, char_9, R9), 
andCT8, R9, T9), 
eq_CHAR(char_10, char_10, R10), 



andCT9, R10, T10), 
eq_CHAR(char_11, char_11, R11), 

. andCT10, R11, T11), 
eq_CHARCchar_12, char_12, R12), 
andCT11, R12, T12), 
eq_CHARCchar_13, char_13, R13), 
andCT12, R13, T13), 
eq_CHARCchar_14, char_14, R14), 
andCT13, R14, T14), 
eq_CHARCchar_15, char_15, R15), 
andCT14, R15, T15), 
ifCT15, char_15, false, T). 

IV.5. Input 

[prodefJ. 
job(T). 

IV.6. Output 

T = char 15 
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