
stichting 

mathematisch 

centrum 

AFDELING INFORMATICA 
( DEPARTMHff OF COMPUTER SC I ENCE) 

T. HAGEN, P.J.W. TEN HAGEN, P. KLINT & 
H. NOOT 

ILP 
INTERMEDIATE LANGUAGE FOR PICTURES 

(Pre I iminary report) 

~ 
MC 

IW 68/77 OKTOBER 

2e boerhaavestraat 49 amsterdam 
1/{-

Slbl.ivli-iei.:K MATHEMATISCH C~NTk..,.,.-. 

--...... AMSTERDAM -



PJun.te.d a.t .the. Ma.thema.:ti.c.ai. Ce.n.tJr.e., 49, 2e. BoeJLhaa.vetdJr..aa;t, AmtdeJLdam. 

The. Ma.thema.:ti.c.ai. Ce.n.tJr.e., 6ou.nde.d .the. 11-.th o 6 Fe.b4uaJLy 1946, -l6 a. non
p4o 6U .in6.ti....tutlon cum.ing a.t .the. p4omotion 06 pUll.e. ma.thema.:ti.C6 a.nd Uh 
a.ppUc.ati.on6. I.t -l6 .6pon6o4e.d by .the. Ne.theJLR.a.ndt, GoveJLnme.n.t .th4ou.gh .the. 
N e.theJLR.a.ndt, 0Jz.g a.n.iza.:ti.o n 6 o4 .the. Adva.nc.eme.n.t o 6 PU/Le. Ru e.a.Jz.c.h ( Z • W. 0) • 

AMS(MOS) subject classification scheme (1970): 68K30, 68T35 

ACM-Computing Review-categories: 8.2 



ILP 

Intermediate Language for Pictures 

by 

T. Hagen, P.J.W. ten Hagen, P. Klint & H. Noot 

ABSTRACT 

The Intermediate Language for Pictures (ILP) determines the 
structure of an interactive graphics system, in which pictures 
are represented as ILP programs. 
ILP contains elementary drawing actions, state information that 
can modify actions, structuring functions that combine state and 
actions in a directed graph structure and a mechanism for exter
nal referencing. 
The semantics of ILP are described very precisely. 
ILP is structured in such a way (mainly by means of the new con
cept of attributes) that it can be extended for special applica
tion area's and for interactive use. 

KEYWORDS & PHRASES: Computer graphics, 
Graphic language, 
Picture representation. 

This report has been produced on an HRD-1 Laser Display/Plotter. 





CONTENTS 

I • INTRODUCTION .................................... . 
I.I. The kernel of an Interactive Graphics System .. . 
I • 2 . The :::fes i gn of I LP ............................. . 
1.3. The description of ILP ........................ . 
2. AN' OVERVIEW' OF ILP .............................. . 
2. I. Introduction .................................. . 
2.2. Picture elements .............................. . 
2 .3. Attribute classes ............................ . 
2. 4. Data structure ............................... . 
2 .4.1. Pure pictures .............................. . 
2.4.2. Fure attribute graphs and picture nodes .... . 
2.4.3. Combining attributes into a state .......... . 
2.5. Default attribute, matches and prefixes ...... . 
2 . 6. Subspace ..................................... . 
2.7. Miscellaneous topics ......................... . 
3. THE SYNTAX AND SEMANTICS OF ILP ................ . 
3.1. Overall Structure ............................ . 
3.2. Graph Structure .............................. . 
3. 2. I. Picture nodes .............................. . 
3.2.2. A.ttribute nodes ............................ . 
3. 2. 3. Traversing process ......................... . 
3.2.3.1. Basic rules .............................. . 
3.2.3.2. Pictures and picture elements ............ . 
3. 3. Dimension and subspace ....................... . 
3 . 3 . 1 . Di mens i on .................................. . 
3. 3. 2 . Subspaces .................................. . 
3.4. Attribute·s ................................... . 
3.4.I. Decomposition of the picture tree .......... . 
3.4.2. Attribute mixing ........................... . 
3.4.2.I. Simplification of attributes ............. . 
3.4.2.2. Attribute types and concatenation ........ . 
3.4.2.3. Semantics of attribute class lists ....... . 
3.4.3. State component and state .................. . 
3.4.4. Transformations ............................ . 
3.4.4.1. Rotation .................................. . 
3.4.4.2. Scale .................................... . 
3.4.4.3. Translate ................................ . 
3 . 4 . 4 . 4 . Ma tr ix ................................... . 
3.4.4.5. Projection ............................... . 
3 . 4 . 4 . 6 . ./\.f f i ne ................................... . 
3. 4 . 4 . 7. Homogeneous ma tr- ix ....................... . 
3. 4. 4. 8. 'vii ndow and vi ewpor t ...................... . 
3.4.4.9. Subspace and transformations ............. . 
3.4.5. Style functions ............................ . 
3.4.5. I. Introduction ............................. . 

1 

3 
3 
4 
7 
9 
9 
9 

1 I 
I 2 
14 
16 
19 
2 I 
23 
25 
28 
28 
31 
31 
32 
33 
33 
34 
35 
36 
38 
40 
42 
43 
43 
45 
48 
48 
50 
52 
53 
54 
54 
55 
56 
56 
57 
58 
60 
60 



2 

3.4.5.2. 
3.4.5.2. 

Linestyle ......... . 
1. Period definition 

3.4.5.2.2. Map definition 
3.4.5.2.3. Thickness ..... 
3.4.5.3. Typographic style 
3.4.5.4. Point style ..... . 
3.4.6. Pen functions .... . 
3.4.6.1. Contrast 
3.4.6.2. Intensity 
3.4.6.3. Colour 
3.4.7. Detection 
3.4.8. Coordinate mode ..... 
3.4.9. Control ..... . 
3.4.10. Visibility 
3.4.11. Attribute matches 
3.4.12. The default attribute .......... . 
3.5. Picture Elements 
3.5.1. Coordinate type ..... 
3.5.2. Text 
3.5.3. Generator 
3. 5. 3. I . Symbol 
3.5.3.2. Curve and template 
3.5.3.2.1. Curve 
3.5.3.2.2. Template 
4. Design goals and evaluation 
4.1. Design goals ..... 
4.2. Omissions 
4. 3. Evaluation ..................... . 
REFERENCES ..... 
Appendix I 
Appendix 2 
INDEX 

Syntax 
Lexical units 

61 
61 
62 
62 
63 
63 
64 
64 
65 
65 
67 
73 
73 
73 
75 
75 
77 
77 
81 
82 
84 
84 
85 
86 
87 
87 
89 
89 
91 
92 
99 

100 



3 

I. INTRODUCTION 

l- l• The kernel of an Interactive Graphics System 

The language defined in this report is a special pur
pose programming language. The restriction implied by the 
term special purpose is twofold. First of all, the language 
only serves the description of pictures*). Every construc
tion in the language is justified by the requirement that it 
should cover a part of this descriptive function. Useful 
constructs that might have been added because of its func
tion as a programming language have been omitted. The 
second restriction is derived from the fact that the 
language is an 'intermediate' language. This means that its 
second function is to fill in the gap that exists between a 
picture description in the form of instructions for a physi
cal drawing machine on one side and a picture description as 
part of a more sophisticated language or data structure for 
an application area on the other side. The intermediate 
language may be a low level language in the sense that for 
each feature required the most simple constructions can be 
chosen. All these aspects are emphasized in the name 
Intermediate Language for Pictures or ILP for short. 

The definition and implementation of the language con~ 
stitute the design and implementation of the kernel of an 
interactive graphics system. The design goal of this system 
has been published in (41. Since then two years have passed 
in which the designers have spent most of their time dis
cussing the syntax and the semantics of ILP. This could 
only be justified by the fact that ILP is a major step to
wards the ultimate design of this graphics system. ILP 
plays a key role in all graphics system facilities: 

A high level graphical language is obtained by 
embedding ILP in an existing high level general 
purpose pro0ramming language. 

•l A picture ls defined as a descrtptton of some object such that a visible Image of that 
object can be obtained from thts descrtptlon in a uniform vay. The description may in
clude both geometrical (shape, stzel and non-geometrical (colour, vetghtl properties of 
the object. 



4 

The control of every drawing machine in the graph
ics system is defined by a conversion between ILP 
code and device code. This is true for input as 
well as output. As an important consequence full 
symmetry between input and output is obtained. 

A picture file system is defined and organized as 
a lihr-ary for ILP programs in which the latter- can 
be stored, r-etrieved and classified. 

With the aid of these facilities, a graphics sa~ 
tellite system can be implemented containing a pictur-e 
editor that can produce and transform ILP programs. 

All these modules (and others that may be added) greatly 
profit from the conceptual uniformity provided by ILP. 

l• ~- The design of ILP 

A further function of ILP, which as such is only impli
citly present in the gr-aphics system, is that it provides a 
means of communicating about the graphics system during the 
design phase. In the past two years the designers have 
developed a discipline in which every aspect of the system 
is discussed in terms of ILP. To support this communica
tion, a symbolic notation for ILP programs has been intro
duced, which makes ILP look like an or-dinary programming 
language. The success of this symbolic code was so convinc
ing that it was decided to use the same code for the defini
tion of ILP in this rep0rt. Moreover, each module of the 
system will be implemented in such a way that it can work in 
a state in which it communicates through symbolic ILP code. 
This constitutes a very useful testing facility and also 
proves that conceptual uniformity has been preserved. 

In the period when the designers decided to work ac
cording to the scheme explained above, they assumed overly 
optimistic that a r-eview of existing graphics systems would 
either reveal an existing prototype language for ILP or pro
duce a list of features taken from various languages togeth
er which make up the prototype. Neither turned out to be 
the case. Most "prototype" languages suffered fr-om the fact 
that they had been forced into Lhe frame of a so-called FOR
TRAN interface. Since the only two means of expression here 
are subroutine identifier and simple parameters, designers 
of these packages always argue that the number of identif
iers and parameters should be kept small, and above all that 
the interrelation between function call's must be exceeding
ly simple, because each structuring function (like opening 
and closing brackets) requires subroutine calls scattered 
throughout the application program. 

The effect of this type of limitations is that every
body choses a subset of desired features. No two subsets 



5 

have the same representation in terms of identifiers and 
parameters and moreover- all subsets are mutually different 
and declared to be the best of all possible choices (in view 
of the unspecified circumstances). 

Given this state of affairs, the designers decided to 
adhere to the principle that if a feature would be included 
it would be included completely. One of the consequences is 
that a FORTRAN subroutine library is most unlikely to be a 
suitable representation of ILP. 

More interesting material was provided by graphic 
languages that support data structures. In these cases ef
ficiency of problem representation plays a major role. Com
plicated data structures for graphics are justified by the 
fact that the applications program can use the same data 
structure. In this way the problem of representing graphi
cal data stcuctur-es is generalized towards structuring asso
ciative data or towards hierarchies of cyclical data. This 
type of languages cancels itself out for the bulk of the 
moderate applications of computer- graphics. From this ob
servation the designers drew the conclusion that it made 
sense to try to characterize the complexity of purely 
graphical information. The best way to do this seemed to be 
defining a complete graphical language and find the simplest 
representation for it. 

The language ILP deals with four major facets of graph-
ical information: 

The elementary drawing actions. 

Modifications of such drawing actions unde[' con
t['ol of state information. 

St['uctur-ing (and combining) states and actions. 

Specification of entry points for external refe['
ences on which interaction and association of non 
graphical data can be based. 

As such ILP constitutes a so-called general purpose model
ling system. 

The elementary drawing actions must be understood as a 
means to visualize elementary geometrical objects. Typical 
actions are to draw a point, line, contour (closed polygon) 
and curve. Less typical but useful is text. In fact the 
exclusive (exceptional) function of text has caused a number 
of unsolved problems with respect to the O['thogonality of 
the design. Typical state information consists of transfor
mations, coordinate mode (absolute or incremental) and style 
functions Cline style, typographic style fo[' text etc.). 
All non-geometrical aspects have been isolated from the ac-



6 

tions and ar--e contr--olled by independent state infor--mation. 
For-- instance, invisible moves that ar--e used for-- positioning 
ar--e not cons i der--ed as dr--awing actions. This type of infor--
mat ion is entir--ely included in the state. In so far-- invisi
ble moves can be found among the dr--awing actions, they 
r--epr--esent par--t of a geometr--ical obJect (e.g. invisible line 
or-- invisible cur--ve). Her--e the pr--efix invisible is state in
for--mation .. 

A 
between 
an exact 
state on 

second impor--tant consequence of the distinction 
geometr--ical and non geometr--ical infor--mation is that 
specification of the effect of actions and the 
the pen position is possible. 

The state infor--mation follows two impor--tant pr--inciples. 
A complete state vector-- can be split in a number-- of subvec
tor--s which ar--e all manipulated independently, i.e. a change 
of one subvector-- never-- has consequences for-- the effect of 
the other-- subvector--s. The state manipulations ar--e chosen in 
such a way that a new state can be obtained fr--om an existing 
one by r--e:;pecifying or-- adJusting a minimal number-- of values. 
The second impor--tant pr--inciple is that all independent sub
vector--s in the state have the same basic str--uctur--e. Mor--eo
ver--, the same basic manipulations can be applied to all of 
them. In other-- wor--ds a unifor--m scheme has been found that 
allows a lar--ge var--iety of pr--oper--ties to be associated with 
geometr--ical infor--mation. The basic manipulations can pr--o
duce the r--ight values as well as the r--ight str--uctur--e. 

The modifying effect of state infor--mation on actions 
can be specified for-- each subvector-- separ--ately, pr--ovided 
that pr--ior--ity r--ules ar--e obeyed which define (as far-- as 
necessar--y) the or--der-- in which the state subvector--s must be 
applied. 

The r--igor--ous and simple scheme for-- such a var--iety of 
concepts has imposed sur--pr--isingly little r--estr--ictions on the 
expr--essive power-- of ILP. In or--der-- to make this clear-- we 
have, thr--oughout the r--epor--t, put a str--ong emphasis on such 
r--estr--ictions. Especially the cr--iter--ion that only complete 
featur--es :3hould be included was (almost) never-- violated. 

The str--uctur--ing of ILP data is obtained by gr--ouping and 
combining.. Gr--ouping means that a number-- of similar-- con
str--uction:3 is put together-- as a unit on a higher-- level in 
hier--ar--chy.. Combining means that two differ--ent constr--ucts 
ar--e put together-- in a unit. At the level of elementar--y ac
tions, the gr--ouping of sequences of similar-- actions is im
plicit. At the level of complete pictur--es, one or-- mor--e of 
them can be put together-- for-- the pur--pose of multiple r--e
fer--encing (subpictur--es) or-- as a conceptual unit (embr--acing). 
Both for--ms of gr--ouping can be found in the r--epr--esentation. 
Mor--eover--, gr--ouping itself can be specified without having 
elementar--y actions. In this way, the str--uctur--e skeleton of 



7 

a picture can be specified. Combining always involves state 
information on one hand and actions on the other. Combining 
is used for setting up the right state. 

The facilities for structuring are not allowed to pro
duce cyclic structures. This would introduce the need for 
conditions in ILP, that break the cycle. This is an example 
of excluding features that are convenient for programmin9 
but not fundamental for picture representation. 

All references in ILP have the same form 1nd are 
represented by a symbolic name. All entry points for exter
nal references are represented in the same way. 

1. 3. The description o.f ILP 

ILP is described in chapters 2 and 3. Chapter 2 gives 
an introduction to the basic concepts of ILP, by means of 
simple examples. The function of chapter 2 is to provide an 
overview of ILP before plunging into all syntactic and se
mantic details as presented in chapter 3. Obviously chapter 
3 is the most important one. Here, indeed everything is 
brought together that concerns the basic function of ILP: 
the representation of pictures. 

Two interesting subjects concerning ILP have been left 
out of chapter 3. First of all the justification of most 
constructions of ILP is omitted. In most cases the justifi
cation can be deduced from the fact that it contributes to 
the representation of a particular construct. Moreover, it 
was felt important to concentrate on a precise definition 
leaving aside all matters that make the definition more com~ 
plicated (like for instance, defining alternative construc
tions). Secondly the role of ILP in the various modules of 
the graphics system is not further explained in chapter 3. 
Apart from the argument just given, this is also because 
many of the modules (like the picture editor) at this moment 
only exist in the designers minds. 

The fact that this report contains a preliminary 
description means that it will be followed by one(!) final 
version. This version will not be published before suffi
cient experience has been gained with ILP and the design 
method based on it. 

The reader of chapter 3 will notice that some construc
tions of ILP have been specified in great detail and an at
tempt has been made to be very precise about them. Other 
constructions are presented rather sloppy. The detailed 
descriptions concern new or for ILP important constructions. 
The less precise definitions have been used some times to 
avoid lengthy descriptions of what is intuitively clear 
(e.g. the conversion of ILP primitives to, say, a plot 
file), sometimes because the details have yet to be filled 



8 

in (e.g. parameters for curves). - The reason for being less 
precise (or incomplete) is in most cases given in the form 
of remarks, which as such are not part of the definition. 
Any construction of ILP, precise or impt-ecise, may be sub-
jected to changes in the near- future as a result of criti
cisms from inside or outside. Especially the latter will be 
very much appreciated. 

ILP can be extended in two directions. New primitive 
actions and state information can be added to cover the 
representation of other- classes of pictures (e.g. grey 
scales). New constructions for structuring and building 
hierarchies of states (vectors of vectors) can be introduced 
to allow all kinds of manipulations (e.g. movies). For both 
type of extensions ILP must preferably constitute the ker
nel. Because in that case ILP can close the gap between 
"classical" and "modern" computer graphics. Chapter 4 gives 
an idea of developments of ILP planned in the nearest fu~ 
tur-e. 

To facilitate reading of the remainder we now give an 
overview of notational conventions throughout the report. 
Most basic concepts of ILP are at the same time non
terminals of the syntax. They are denoted in a special 
font, e.g.: non_terminal. Basic concepts that are not a 
syntactical category are underlined at first (and defining) 
occurrence. Syntactic terminals are denoted in capital 
letters, e.g. TERMINAL. There is an index (Appendix 3) that 
references the occurrences of most concepts. Footnotes and 
REMARKs are used to add comments to the text in places where 
it is important to separate the essential from the explana~ 
tory. 

On the primitive level of ILP the designers have hardly 
attempted to introduce new concepts in picture description. 
It is in the field of structuring graphical information that 
a new, more uniform frame is introduced. This frame, it is 
hoped, brings the large variety of elementary constructions 
needed for picture description more happily together. 



9 

2. AN OVERVIEW OF ILP ---

2. I. Introduction 

In this chapter, ILP will be presented in an informal 
way. The chapter has a tutorial character and will heavily 
rely on short examples. No attempt has been made to cover 
the subject exhaustively. Only aspects that are charac
teristic of ILP and distinguish it from other graphics 
languages get attention. In particular, standard concepts 
from computer graphics (linear transformations, styles etc.) 
will not be discussed in their own right. For these topics, 
we refer to the introductory texts [IJ and [2]. 

In all cases where the examples leave some 
what is precisely possible in ILP and what the 
tics of ILP constructions are, chapter 3, which 
formal definitions, should provide the answers. 

doubt about 
exact seman~ 
contains the 

2. 2. Picture elements 

Picture elements are language primitives, used to 
describe basic drawing actions. They represent lines, 
points and the like, drawn in some user-selectable Euclidean 
space of an arbitrary dimension, called user space. How 
this sp~ce can be selected, will be described in 2.6.. Un~ 
til then, in all examples a two-dimensional space, with 
orthogonal coordinate axes, is assumed. 

Example 1 

PICT C 2 ) ex! 
WITH {VISIBLE; FIXED} 
DRAW { 

LINE C [ 0. 5 , 
POINT C [ -0.5 
} . 

J , [ I , 0 J , [ 0, 0 J ); 
- 1 ] ) 

A two dimensional picture Ca picture that 
drawn in a plane) is defined, having name exl. 
sion is specified by the number "2" surrounded 
thesis, immediately following keyword PICT. 
any positive integer may be used in this place. 

must be 
The dimen
by paren

In general, 

The picture consists of three line segments and a 
point. All elements of this picture are explicitly declared 



10 

visible Cby VISIBLE). The use of FIXED causes all coordi
nate pairs [ a, b ] to be interpreted as absolute positions 
in user space. (The other possibility will be dealt with in 
2.3.). 

The essential elements in this example are the picture 
elements LINE and POINT. To describe their effect, we need 
the concept "untransformed pen position". In general, this 
is the most recently visited position in user space. At the 
beginning of the drawing actions specified by an ILP pro
gram, it is the or-igin of user space. 

The picture element LINE states, that lines have to be 
drawn, from the untransformed pen position, in this case 
[ 0 , 0 ] , to [ 0 . 5 , I ] , fr om [ 0 . 5 , I ] to [ I , 0 J and 
from [ I , 0 J to [ 0, 0 ]. 

The picture element POINT says, that a point must be 
drawn at [ -0.5, -1 ]. In general, POINT too, can have a 
number of coordinates as its arguments. 

The drawing defined by the program above looks like: 

I 
I 

--~----
1 + 1 

I 

Here, as well as in the following examples, the coordinate 
axes are only added for illustrative purposes. They are not 
nor-mally part of ILP output. 

Another ILP primitive is the picture element TEXT. Its 
use is shown in example 2. 

Example 2 

PICT C 2 ) ex2 
WITH VISIBLE 
DRAW 

TEXT C "A" , " triangle" ) . 



I 
I 
I 

--~--t_r_iangle __ 

11 

Her-e, the str- i ng "A " and "tr- i angle" ar-e dr-awn, star-t
ing again at the untr-ansfor-med pen position. 

2.3. Attr-ibute classes 

We have alr-eady encounter-ed pieces of ILP pr-ogr-ams, en
closed between the "br-ackets" WITH and DRAW. These pr-og!:"'am 
par-ts consisted of sequences of attr-ibute class elements, 
separ-ated by semicolons. Altr-ibutes ar-e instr-uments to in
fluence the way in which a pictur-e element is dr-awn, or- to 
associate non gr-aphical infor-mation with it. 

All attr-ibutes together-, that ar-e r-elevant for- a par-
ticular- pi.ctur-e element, deter-mine the so-called state of 
that element. This state deter-mines, what will actually 
happen, when that element is dr-awn. Attr-ibutes ar-e divided 
in attr-ibute classes, each cor-r-esponding to a par-ticular
type of oper-ation on pictur-e elements. In the following, 
some examples will be given on the attr-ibute classes coor-di
nate mode, tr-ansfor-mation and style. 

The class coor-dinate mode can have either- the value 
FIXED or- FREE. It oper-ates on the coor-dinates of pictur-e 
elements. In the case of FIXED, coor-dinates denote absolute 
positions in user- space, as illustr-ated in example 1. When 
FREE is used, the coor-dinates denote incr-ements relative to 
the untr-ansfor-med pen position. 

Example 3 

Replace in example I FIXED by FREE. 

The r-esulti.ng drawing is: I_+ 1 
I 
I 

- - - - T - - -, - - -, - - -• - -+, +2 



12 

Note in particular, that only two visible lines are shown in 
this drawing. This is so, because an increment [ 0, 0 J 
represents a line of zero length, which coincides with the 
end point of the second line. 

Example 4 

PICT ( 2) ex4 
WITH { 

DRAW 

FIXED; 
TRANSLATE [ 1, 0 J ; 
ROTATE 45 AROUND ( [ 1,0 
PERIOD ( 50, 25, 25) ; 
MAP ( 0.4, CONTINUE) 
} 

] ) . 
' 

LI NE ( [ 1 , 0 J , [ I , 1 J , [ 0, I J , [ 0, 0 J ) 

The corresponding drawing is: 
I r +2 

I 
I 
I 
I 
I 

A square is drawn, rotated clockwise through 45 de
grees, around its lower right-hand corner. This square is 
translated I unit in the x-direction and 0 units in the y
direction. TRANSLATE and ROTATE denote transformations. 
(Note that the rightmost transformation is applied first!). 
PERIOD and MAP denote elements of the attribute class style, 
they determine line style. In this case, the style pattern, 
defined by PERIOD consists of a dash, a gap and again a 
dash, with Lespective length of 50, 25 and 25 units. MAP 
specifies that the actual length of this pattern in user 
space is 2, and that the pattern continues from one line 
(element) to the next. 

2.4. Data structur-e 

ILP can be viewed as a language to describe data str-uc
tures, which in turn corr-espond to drawings. 

An ILP data structure has the form of a dir-ected acy
clic gr-aph. The pictures and attributes car-respond to nodes 



13 

of the graph, the references to pictures and attributes 
correspond to arcs. The acyclicity results from the seman
tic rule, that ILP programs may not be recursive. The graph 
can be converted into a tree, by making copies of all multi
ply referenced nodes, and creating appropriate references to 
these new nodes. 

Example 5 

Suppose, an ILP graph has the form: 

The corresponding tree looks like: 

In this tree, 2' is a copy of node 2, 3' of 3, and 4'' and 
4' of node 4. 

The drawing represented by the tree, can be produced by 
a process called elaboration. During this process, the tree 
is traversed in preorder::-- [3], which is recursively defined 
by: 

Visit the root of the tree. 

Tr:-averse its descendant sub-trees in preord
er. Descendants are traversed one by one, 
starting with the leftmost subtree, then 
pr:-oceeding to its rightmost neighbour and so 
on, until the rightmost subtree has been 
tr:-aversed. 



14 

Example 6 

The nodes of the tr-ee in example 5 ar-e visited in the fol
lowing or-der-: 1 2 3 4 2' 3' 4' 4' '. 

At ever-y node wher-e, according to the ILP program some 
action must take place (cir-awing, evaluating of attributes 
and updating the state, subspace selection), this action is 
initiated by the elaboration process when this node is en
counter-ed. Only at the picture leaves (representing picture 
elements), drawing actions are performed. 

In sections 2.4.1. till 2.4.3. these data str-ucture as
pects of ILP will be elucidated with the help of some exam
ples. 

2. 4. 1. Pur-e pictures 

Pur-e pictur-es correspond to subtrees (graphs) of the 
full ILP tr-ee (graph). They ar-e characterized by the pr-o
per-ty that they do not contain attributes. A pure pictur-e 
can constitute a corr-ect and complete ILP progr-am in which 
all attributes have default values. We will ignor-e attr-i
butes for the moment and introduce some ILP concepts using 
pure pictures as examples. · 

Example 7 

SUBPICT C 2 ) pyrl 
LINE ( [ 0.5 , 0.8 ] 

' 
[ l 

' 
0 0 

' 
0 ] ) . 

SUBPICT C 2 pyr-2 
LINE [ - I • 7 , 1. 2 ] 

' 
[ -2.4 

' 
0 

' 
[ - 1 

' 
0 ] ) . 

PICT 2 ) egypt 
{ pyr-1 ; LINE C [ - I , 0 J ) ; pyr-2 } . 

PICT 2 ) ex7 
WITH FIXED DRAW egypt . 

The tree, defined by ex7 contains a pur-e picture tree, 
corresponding to egypt. 

0 



15 

The drawing looks like: 

-2 _, 
+1 

This last example illustrates that there are two kinds 
of named pictures (pictures having a name); root pictures 
(designated by PICT) and sub pictures (SUBPICT). Root pic
tures are the only ones that may be referred to from outside 
the ILP program in which they are defined. The root of an 
ILP graph must correspond to a root picture or in other 
words, elaboration can only start in a root picture. 

Another example of a named picture, defining a pure 
picture graph, is the following: 

Example 8 

SUBPICT ( 2 ) toothl 
LINE C [ 0.5, 2 1 , [ 0.5, -2 l . 

SUBPICT ( 2 l tooth2 
LINE C [ -0.5, -2 J , [ -0.5, 2 J l . 

SUBPICT ( 2 l teeth! 
{ toothl ; toothl ; toothl } 

SUBPICT ( 2 ) teeth2 
{ tooth2; tooth2 tooth2}. 

P I CT ( 2 ) j aws 
{ teeth I ; LINE ( [ 0 , 5 l l ; 

teeth2 ; LINE ( [ 0, -5 1 l } 



16 

The pictur-e gr-aph defined by jaws is 

The ILP statement: 

PICT C 2 ) ex8 WITH FREE DRAW jaws . 

defines the dr-awing: 

+6 I 
1 
I 

+1 +2 +3 

All elements of a pur-e pictur-e ar-e elabor-ated in the 
same state. The str-uctur-e of example 8 can ther-efor-e be r-e
duced (but not compactified) to a linear- list of LINE's. 
Howeve~ in that case the logical distinction between tooth 
and teeth is lost. 



17 

~-1·~· Pure attribute graphs and picture nodes 

As with named pictures, attributes can be grouped in 
named units too, called attribute packs. 

Example 9 

ATTR ( 2 ) transformpack { 
ROTATE 90 AROUND ( [ , 1 J ) ; 
SCALE [ 2 , 3 J ; 
TRANSLATE [ -1 , 0.5 J 
} . 

ATTR DIMLESS stylepack { 
MAP ( 10 CONTINUE 
PERIOD C 10, 3, 
} . 

ATTR ( 2 ) ex9 { 

) . 
' 1 1 ) 

{ transformpack; stylepack}; THICK ( 10) } . 

Attribute pack ex9 defines a pure attribute graph of the 
form: 

Just as named pictures, attribute packs have a dimen~ 
sion, which is specified in the same way. This dimension is 
obviously meaningful when the pack contains for instance 
transformations. In other cases (for instance for a style 
pack), the pack could be used in combination with pictures 
of arbitrary dimension. Arbitrary dimension is specified by 
DIMLESS 

This example illustrates another property of ILP pro
grams: by means of brackets, structure can be enforced, 
without using explicit references to (using names of) ob
jects. In example 9 the attribute node labelled "A'' is ad
ded because of the construction: 



18 

{ tr-ansfor-mpack ; stylepa'ck } 

In the same way, pictur-e nodes can be cr-eated. 

As can be seen fr-om the examples alr-eady given, the 
WITH ... DRAW constr-uction links attr-ibutes to pictur-es. In 
the data str-uctur-e, a WITH ... DRAW node is itself a pictur-e 
node, i.e. at any place in the data str-uctur-e wher-e a r-efer-
ence to a pur-e pictur-e gr-aph is per-missible, a r-efer-ence to 
a WITH ... DRAW node is allowed as well. A pictur-e gr-aph has 
a str-uctur-e similar- to that of a pur-e pictur-e gr-aph, but 
with the extr-a pr-oper-ty, that cer-tain pictur-e nodes 
CWITH ... DRAW nodes) have pur-e attr-ibute gr-aphs also as des
cendants. In other- wor-ds, a WITH ... DRAW node of a pictur-e 
gr-aph, has a number of pur-e attr-ibute gr-aphs, as well as a 
number- of pictur-e gr-aphs as its descendants. 

The data str-uctur-e defined by an ILP pr-ogr-am, is a 
pictur-e gr-aph. 

Example 10 

PICT C 2 ) exl0 
WITH FREE DRAW { 

teeth! ; 

} . 

LINE C [ 0 , 5 J ) ; 
WITH ROTATE 180 AROUND C [ 3, 5 J ) 
DRAW teeth! ; 
LINE C [ 0 , -5 J ) 

The data str-uctur-e has the for-m: 



19 

This data structure contains two WITH ... DRAW nodes, la
belled "WDI" respectively "WD2 ··• When for teeth I tne sub~ 
picture defined in example 8 is taken, the drawing Jaws" 
results again. The lower jaw is only subjected to the at
tribute from \,/1)1, the upper jaw comes in its !=lnatomicaly 
correct position, because it is subjected to the rotation 
attribute from WD2 as well. 

~-1·~· Combining attributes into 9 state 

As shown in the previous examples, a variety of attri
butes (possibly specified in different WITH ... DRAW construc
tions), can influence a picture element. Clearly ,it is 
necessary, · to combine these various ~nti ties in uni ts that 
can be meaningfully applied to picture elements. Only ele
ments from one and the same attribute class will be mutually 
combined (mixed), in a way that may be specific for the 
class to which they belong. Next, these combinations are 
packed into the state. The combinations are applied topic
ture elements in some fixed order, defined by priority 
rules. 

Example 11 

P I CT C 2 ) ex l l 
WITH { SCALE [ 1 , 2 J ; SCALE [ 2 , 1 J } 
DRAW P . 

A scaling is an attribute of the class transformation. 
Transformations are simply applied one after the other, 
starting with the rightmost one (the one, textually closest 
to the picture element). Hence, this program is semantical
ly equivalent to: 

P I CT C 2 ) ex 1 1 
WITH SCALE [ 2 , 2 J 
DRAW P • 

Example 12 

PICT C 2) exl2 
WITH SCALE [ 1 , 2 J 
DRAW 

WITH SCALE [ 2 , 1 J 
DRAW P • 

Again this program is semantically equivalent with the pre
vious two. 



20 

Example 13 

PICT C 3) exl3 
WITH MAP C 3 CONTINUE 
DRAW { 

p I • 
' WITH :MAP C 5 RESETLINE) 

DRAW P2 
} . 

Pl is dLawn undeL influence of the fiLst map specifica
tion, P2 undeL influence of both the fiLst and the second. 
CleaLly it is meaningless, to apply two map specifications 
in succession, so they have to be combined into one single 
map. In geneLal, this mixing is done by concatenation 
Lules, which look like: 

A<> B -> C 

wheLe A, Band C aLe elements fLom the same attLibute class. 
The meaning is, that A concatenated with B, gives C. In 
case of map, this Lule Leads: 

A <> B -> B 

showing simply, that the second map definition Leplaces the 
f iLSt. 

TheLe exist still a thiLd way of combining, used foL a 
type of attLibutes which aLe much moLe complex and poweLful 
then the pLevious two. In the pLesent veLsion of ILP, it is 
only used foL detection (see 3.4.7.) and will be amply il
lustLated theLe, 

Example 14 

P I CT C I ) ex I 4 
WITH { SCALE [ 3 J 
DRAW P . 

MAP C 2 CONTINUE) } 

HeLe, the pLiOLity Lules LequiLe, that fiLst the 
tLansfoLmation, (SCALE) and then the style element (MAP) is 
applied. This has consequences, because a tLansfoLmed pic
tuLe element dLawn with a ceLtain style, can look quite 
diffeLent fLom a pictuLe element with a ceLtain style ap
plied to it which is theLeafteL tLansfoLmed. (The latteL is 
impossible in ILP.) 



21 

Example 15 

PICT C 2 ) exl5 
WITH A; 
DRAW { 

WITH A2 DRAW P1 ; 
WITH A3 DRAW P2 
} . 

When the corresponding data structure is traversed, 
first the collection of attributes contained in A1 is en
countered, then those in A2 and finally those in A3. P2 is 
affected both by attributes A1 and A3, Pi by A1 and A2. At
tribute combination is defined in such a way, that the fol~ 
lowing efficient combination scheme can be employed: 

Combine all attributes from A: in a (partial) 
state SP1. SP 1 is identical to state S 1 • 

Combine the attributes from A2 in a (partial) 
state SP2, Combine S1 and SP2, this gives state 
S2, S2 is applied to Pi. 

Combine the attributes from A3 in a (partial) 
state SP3. Combine S1 and SP3, this gives state 
S3. S3 is applied to P2, 

Hence, attributes within one WITH ... DRAW construction 
have to be combined only once during elaboration. Attributes 
from nested WITH ... DRAW constructions can be combined and 
retrieved, using a stack. 

2.5. Default attribute, matches and prefixes 

Every attribute class has a default element. If, dur
ing elaboration, a picture element is reached and the state 
does not contain a fully specified element for a certain at
tribute class, the default element is used. For instance, 
the default transformation is a unit matrix, the default for 
visibility is VISIBLE. Defaults release the user of the 
burden to specify values for all attribute classes. 

With most attribute classes, an attribute match is as
sociated. Its function is, to switch at the picture element 
level, between the default value of the associated class and 
the value specified in the program. 



22 

Example 16 

PICT C 2) exl6 
WITH {FIXED; ROTATE 45 AROUND C [ I , 0 J ) } 
DRAW 
LINE C [ I , 0 J , "'TF [ 1 , I J , [ 0, l J , [ -0, 0 J ) • 

The drawing is: 

I 
I 
I 
I 
r+l 

TF is the match for transformatior.s. "'TF here signifies, 
that the second line element must not be rotated, but sub
jected to the default transformation (unit matrix) instead. 

Matches not only can be applied to "arguments" (for in
stance coordinates) of a picture element, but also to the 
element as a whole. This leads to the possibility of two 
levels of matches. The one, directly preceding an "argu
ment", locally replaces the match of a whole element. 

Example 17 

PICT C 2) exl? 
WITH { INVISIBLE; FREE} 
DRAW 
LINE "' VS C [ I , 0 J , [ 0, l J , [ 1 , 0 J , 
VS [ 0 , l J , [ 1 , 0 J , [ 0 , 1 J , [ 2 , 0 J , 
[ 0 , - l J , [ 1 , 0 J , VS [ 0 , - l J , [ 0 , 1 J , 
[ 0,--1 J , [ 0,1 J ) • 

The drawing is: 

___IL 

_J _ _cr--r--~--,--7_ __ , 
I +1 +2 +3 +4 +5 +6 +7 +8 +9 
I 



23 

Visibility gets value INVISIBLE. The match ~vs direct
ly following "LINE", replaces this class value by the de
fault value VISIBLE, so the line as a whole is made visible. 
Locally, the explicit class value INVISIBLE is reinstalled 
by the match VS, causing some line segments to become in
visible. 

Every attribute can be prefixed either by ABS or by 
REL. If no prefix is present (as in all our examples until 
here), prefix REL is assumed. If an attribute has prefix 
REL, it will be combined with the appropriate class value, 
contained in the current state. If it has prefix ABS, the 
combination starts all over again, beginning with this at
tribute, thereby disregarding the class. value already accu-
mulated. 

Example 18 

SUBPICT C 2 ) square 

PICT ( 

LINE ( [ I , 0 J 
' 

[ I , I ] 
' 

[ 0, I ] 
' 

0,0 ) . 
2) exl8 
WITH {FIXED; ROTATE 45 AROUND ( [ ' 0 ] } 

DRAW { 

} . 

square; 
WITH REL TRANSLATE [ 2 , 0 J DRAW square; 
WITH ABS TRANSLATE [ 4.5, 0 J DRAW square; 
WITH REL TRANSLATE [ 6, 0 1 DRAW square; 
WITH REL TRANSLATE [ 8, 0 J DRAW square 

For the first, second, fourth and fifth square, trans
lation is combined with rotation, for the third square, ro
tation is switched off. When ABS would not have been used, 
the same drawing could only have been made in a much more 
clumsy way: either the third square should have been sub
jected to an inverse rotation, or it should have been de
fined outside the scope of the outermost WITH ... DRAW con
struction. 



24 

2. 6. Subspace 

The subspace :::onstc-uction is the mechanism to c-edefine 
the cooc-dinate system of usec- space. It can be used to 
change axes, without changing the dimension of usec- space 
and to specify pc-opec- subspaces (i.e. with lower dimension) 
of an envelopping space. Hence dimension can change in an 
ILP program. The dimension of subpictuc-es, root pictuc-es 
and attribute packs is explicitly specified and detec-mines 
the numbec- of components of cooc-dinates, matc-ices etc. 
Hence it can be statically checked, whethec- ILP statements 
within the scope of a subspace selection, use elements of 
the proper dimension. 

Example 19 

PICT C 3 J exl9 
WITH FIXED 
DRAW { 
LINE C [ 1,0,0 J, [ 1,1,0 J , [ 0,1,0 J, 
[ 0,0,0 J , [ 0,0, 1 J , 
[ 0,1,l J, [ 0,1,0 J ) ; 
SUBSPACE C 2 l 

} . 

The dc-awin9 is: 

OR I GIN C [ 0. 5, 0, 0 l , 1 , 0, 0 J , [ 0, 1 , 0 J J 
WITH FREE 
DRAW LINE C [ 0.25,0.5 , [ 0.25,-0.5 J ) 

/ 
/ 

Fic-st, squac-es ac-e dc-awn in the Cx,y) plane, c-esp Cy,z) 
plane. Then the Cx,y) plane is selected as a two dimension
al subspace. The subspace oc-igin coincides with the point 
[ 0.5, 0, 0 ]. Its x and y axes ac-e identical to those of 
the envelopping space. 

In genec-al, the fic-st "ac-gument" of ORIGIN specifies 
the new or-igin, the fuc-thec- "ac-guments" specify the new axes 
as vectoc-s in the old cooc-dinate system. In this subspace a 
tc-iangle is dc-awn. The cooc-dinates of this tc-iangle must 
be specified by two numbec-s instead of thc-ee. 



25 

The dimension of the root 'picture where elaboration 
starts, is defined by that picture itself. The coordinate 
axes of the user space at the root (the untransformed user 
space) form by default a right handed, orthogonal coordinate 
system. After all transformations have been _applied to 
coordinates in a picture element a position in untransformeq 
user space results. This position must lie in the user unit 
cube, i.e. all its coordinate components must have absolute 
values less than or equal to one. As a consequence, there 
seems to be a choice between using picture elements with 
only small coordinate values, which is quite impractical, or 
applying a scale transformation at the root. The second 
possibility is also unpleasant, because it prohibits the 
use of "ABS" with lower level transformations, which would 
switch off the scale. The subspace mechanism provides a 
practical third alternative however. 

Example 20 

Suppose, elaboration starts in the following root picture: 

PICT C 2 ) ex20 
SUBSPACE C 2 ) 

ORIGIN C [ 0,0 J , [ 0.0001,0 J , [ 0,0.001 J ) 
"rest of root picture'' . 

Immediately, a new coordinate system is introduced, 
with its origin and axes coincident with those of the two 
dimensional untransformed user space. The length unit in 
this new space is 0.001 of that of the untransformed space 
however. As a consequence, the coordinate values produced 
by "rest of root pict" may have absolute values<= 1000. 
Furthermore, the subspace transformation, which is not an 
attribute cannot be switched of by "ABS''. 

Example 21 

SUBSPACE C 2 ) 
OR I GIN C [ 0 , 0 J , [ 0 . 00 l , 0 J , [ 0 . 001 , 0 . 00 l J ) 

Now, not only coordinate values are expressed in dif
ferent units, but an additional affine transformation is in
troduced, because the y~axes of the new space coincide with 
the line y=x in the envelopping space. 

~.7. Miscellaneous topics 

In the preceding paragraphs, we have focussed attention 
on the highlights of ILP and have consequently omitted other 
features. To make the picture given in this overview more 
complete, we will very briefly discuss them now. 



26 

The set of picture elements' provided in ILP contains, 
apart from points, lines and text, also contours (closed po
lygons) and generators Can elaborate library facility). On
ly generators will be discussed here. 

Whenever the elaboration process (the process that 
traverses the ILP data structure, see 3.2.3.) encounters a 
generator, a new data structure is obtained (in some way) 
and inserted in the place where the generator occurs. 
Several types of generators exist, which differ in the way 
they produce a new data structure: 

symbols: correspond with a previously defined 
root picture, and can hence completely be 
specified as ILP program. 

curves: correspond with a recipe to produce 
picture elements according to a certain 
specification (e.g., a sinus curve). The way 
in which the picture elements are produced 
can not necessarily be described as ILP pro
gram. Curves can only produce data struc
tures from a limited class. 

templates: correspond with a recipe to pro
duce any legal ILP data structure, which may 
be produced in any way. 

Templates form the most general library facility. How~ 
ever, this generality must be paid for, since the data 
structures produced by templates have to be checked dynami
cally for correctness, while the correctness of the data 
structures produced by curves and symbols can be determined 
statically. 

The set of attribute classes contains, apart from 
transformations and coordinate mode, also style, pen, detec
tion and control. 

Coordinate mode deals with absolute and incremental 
drawing. Examples were given in section 2.3 .. 

Transformations have, apart from a few exceptions the 
meaning as normally used in computer graphics systems 
([IJ,[2]). An exhaustive list of transformations is: 

rotate, scale, matrix transformation, affine 
transformation, homogeneous matrix transfor
mation all with standard meaning. 

projection, a central or parallel projection 
which does not reduce the dimension of a pic
ture. 



window, vie\./J)ort which 1 resemble the usual 
concepts of window and vie\./J)ort, apart from 
some additions. It is worth mentioning that 
windows may be arbitrarily nested and that 
the nested windows may be rotated relat~ve to 
each other. 

27 

Style determines what kind of picture elements must be 
produced by a drawing ffiachine. In the preceding paragraphs 
line style (i.e., a style associated with lines) was already 
mentioned. A style can also be associated with points 
(point style: determines the symbol to be used for the 
representation of points) and text .. (typographic style: 
determines boldness, italicity, alphabet and the like for 
text values) . 

Pen determines the reproduction method to be used for 
the visualization of picture elements. Examples are colour 
and intensity. 

Detection determines which parts of the ILP data struc
ture can be pointed at by devices such as lightpen and cur
sor. The result of such an operation is not ~imply the pic
ture element pointed at, but may be a part of the data 
structure in which the picture element is contained. In 
this manner ambiguities can be resolved: when pointing at a 
door-in-a-house, is the door or the house intended? 

Detection illustrates the power of the attribute 
mechanism. It is also possible (but not described in this 
report) to associate non-graphical information with an ILP 
data structure. The overall scheme is that during the ela
boration process the non-graphical attributes can accumulate 
information for later use. This method imposes the restric
tion that drawing order is the order in which non-graphical 
information must be accumulated. 



28 

3. THE SYNTAX AND SEMANTICS OF ILP ---

3. I. Overall Structure 

The complete syntax of ILP is given in Appendices 
and 2. In this chapter we will use extracts from it as a 
guide to the discussion. No attempt has been made to ex
clude all possible syntactical forms that have no semantic 
meaning. This would make the syntax extremely difficult to 
read. Instead we tried to keep it as simple as possible. 

The syntax rules are grouped in such a way that the 
basic structure of the language is reflected as much as pos
sible. The syntax is split in two parts: the set of units 
that will be produced by lexical scanning and the so-called 
main syntax. Only the main syntax will be described in this 
chapter, the other part is given in Appendix 2. 

The semantic meaning that corresponds with each syntac
tical construction will be described by means of an in
terpretation process referred to as elaboration. In the 
sequel no distinction will be made between the semantic 
meaning associated with a certain syntactical construction 
and the result of the elaboration of that construction. 
\Jhen the elaboration of a particular language construction 
is carried out, the overall interpretation process is in 
some intermediate stage. This intermediate stage can be 
considered as the context in which that particular language 
construction is elaborated and will be referred to as 
environment. The elaboration process is only used as a 
description method and is not intended as an implementation 
proposal. 

An ILP program (pictureprogram) consists of three dis
tinct sets: a set of rootpictures, a set of subpictures and 
a set of attributepacks: 

pictureprogram: pictstruct I 
pictureprogram pictstruct $ 

pi ctstruct: namedpi cture I 
at tr ibutepack $ 

namedpicture: rootpicture I 
subpicture $ 



29 

A root picture has tv10 proper-ties 1 that distinguish it from a 
subpi cture: 

1he only pictures of an ILP program; say I 1 , 

that can be referenced from another ILP pro
gram, say I2, are the rootpictures of I1. 

The elaboration of an ILP program starts in a 
rootpicture and not in a subpicture. 
subpictures can only be· activated via a 
namedpi cture in the same ILP program. 

REMARK 

It might be considered tn relate these properties to 
distinct "pictstruct" types, like: 

INPICT: a pictstruct in v1hich the elaboration 
of an ILP program can start 

EXPICT: a pictstruct to v1hich can be referred 
from another ILP program 

INEXPICT: analogous 
root picture 

to the 

PICT: analogous to the present subpict 

The elements of the three distinct sets are: 

root picture: PICT· dimension pname 
picture.$ 

subpicture: SUBPICT dimension pname 
picture.$ 

attributepack: ATTR dimension aname 
attribute . $ 

present 

The only connection betv1een a picture and an attributepack 
is by means of the "WITH ... DRAW" construction, e.g. 

WITH A DRAW P . 



30 

The resulting construction is aga1n of type picture. The 
rules for picture and attribute are: 

picture: pname I 
picture _element 
{ pictures } I 
subspace picture 
\/ITH attribute 

DRA\v picture $ 
attribute: ABS basic attribute I 

REL basic -attribute I 
basic attribute $ 

basic attribute: attribute class 
- aname I -

{ attributes } I 
NIL$ 

Note that a list of pictures between brackets is again a 
picture and that a list of attributes between brackets is 
again an attribute. 

The result of the elaboration of a picture depends on 
the specification of attributes. Section 3.2. describes the 
global organization of ILP programs and the relationship 
between pictures and attributes. 

The environment contains two groups of values: 

One group the so called state, changes 
result of elaborating attributes. 

as a 

The remainder changes as a result of two 
kinds of actions namely, elaboration of 
picture_elements or external actions. 

The initial environment contains unique values for the 
members of both groups. 

For every rootpicture, subpicture and attributepack a 
dimension is specified. It determines the number of com~ 
ponents of which coordinates and matrices consist, that oc
cur in these constructions. In an environment with acer
tain dimension, only constructions of the same dimension 
may be referenced. The dimension can be changed by a 
subspace selection. Dimension and subspace are described in 
detail in section 3.3 .. 

attributes are divided into classes. It 
matters in which order attributes from the same 
specified. attributes from different classes are 
unrelated. A complete treatment of attributes is 
section 3.4 .. 

sometimes 
class are 
mutually 
given in 

The language primitives for which some visual represen-



31 

tation exists on drawing · machines ar-e called 
picture_elements. Examples are points, lines and charac
ters. They are described in section 3.5 .. 

~- ~- Gr-aph Str-ucture 

An ILP progr-am has no block structure. All 
namedpictuces and attributepacks ar-e on the same level. 
However-, each ILP progr-am can be considered as the repr-esen
tation of some directed graph structur-e. The ter-minology 
used for gr-aphs is taken from KNUTH [3]. Such a gr-aph is 
formed by the statical nesting of pictures and attributes. 
These objects ar-e nested either as a result of refer-ring to 
one object fr-om inside another- or- nested textually by means 
of br-ackets. Recur-sive calls ar-e explicitly for-bidden, 
hence the gr-aph is an or-iented gr-aph without cycles. The 
gr-aph can be expanded into a tree by r-eplacing all multiple 
refer-enced subgr-aphs (namedpictures, attributepacks) by 
separ-ate copies. Inside an attribute only other- attributes 
may be r-efer-enced; this gives r-ise to attr-ibute nests. At
tr-ibute nests only contain attributes. Thr-ough the WITH ... 
DRAW construction (see section 3.1.), pictures may contain 
r-efer-ences to both attributes Cattr-ibute nests) and other
pictures, r-esulting in pictur-e nests. 

In cor-r-espondence with the syntax, the gr-aph has two 
types of nodes namely pictur-e nodes and attr-ibute nodes. 
Ther-e ar-e car-responding types of ar-cs namely ar-cs pointing 
to a pictur-e node Cpictur-e ar-cs) and arcs pointing to an at
tribute node (attr-ibute arcs). Every rootpicture consti
tutes a connected (directed) subgr-aph. All pictur-e nodes 
not connected to this subgr-aph have no meaning with respect 
to an elaboration of this particular rootpicture. In the 
following we will restr-ict our-selves to such connected sub
gr-aphs, which will be called pictur-e gr-aphs. If we r-emove 
the pictur-e nodes and picture ar-cs from the complete gr-aph, 
then for ever-y "WITH ... DRAW" node we obtain an isolated at
tr-ibute gr-aph, which contains only attr-ibute ar-cs and attri
bute nodes. 

3.2.1. Picture nodes 

The alternatives in the following syntax rule ar-e the 
constructions that can r-epr-esent a picture node: 

picture: pname I 
picture _element 
{ pictures } I 
subspace picture 
WITH at tribute 

DRAW picture $ 

A picture_e_lement Cc.f. 3.5.) is an end node Cleave). The 
other- alter-natives of the rule ar-e nodes (but not leaves). 



32 

Note that,, 

{ pi cture_element } 

is a special case of 

{ pictures } 

which is not a leave. Because a picture_element may have 
value NIL, arbitrary graph-structures can be specified, even 
without writing down any other action than NIL e.g.: 

SUBPICT DIM(3) pnl { 
NIL; 

}. 

WITH { al ; a2} 
DRAW NIL 

PICT DIMC3) pn2 { 
NIL ; { NIL } ; pn I ; 
WITH { a3; a4} DRAW pnl ; NIL 

}. 

The graph for this ILP program is: 

3. 2. 2. At tr- ibute nodes 

Attribute nodes are represented by basic attributes as 
can be seen in the syntax rules: 



attribute: ABS basic' attribute 
REL basic-attribute 
basic attribute $ 

basic attribute: attribute class 
- aname I -

{ at tributes } I 
NIL$ 

33 

The terminal nodes are attribute class and NIL. The other 
t\vo, aname and { attributes },-are the non-terminal nodes. 
An aname represents a reference to an attribute_pack. The 
prefixes ABS and REL have no influence on the graph struc
ture, but specify ho\./ the attribute has to be mixed \vith 
members of the same attribute class (see 3.4.). 

~- ~- ~- Traversing process 

3. 2. 3. 1. Basic rules 

The structure explained above plays a vital role in 
the semantics of ILP programs. The description of ILP se
mantics proceeds in stages. In each stage an algorithm is 
used that simplifies the graph to\vards a canonical form. 
The basic semantic rules associated \vith the graph 2re the 
follo\ving: 

Each (maximal) subgraph containing only 
attributes is converted into one list of 
attributes (algorithm ETA, see 3. 4. 1 . 1 • In 
this list all references to attributes 
Canames) are replaced by the attributes them
selves (algorithm RAP, see 3.4.2.1 .). Hence 
references to attributes are semantically 
equivalent \vith textual insertion of the 
attributes referred to. After further sim
plification (algorithm LIN, see 3.4.2.1.), 
the resulting list of attributes (called 
state component, see 3.4.3.) is applied to 
the picture node from \vhich the attribute 
graph is a direct descendant. 

A state (a combination of state components, 
see 3.4.3.) can only be applied to picture 
nodes, in the \.lay described by the follo\ving 
application rule: 

Application of a state to a picture node 
means one of t\vo things: 

If the picture node is a picture_element 
then all attributes in the state are ap
plied as described in 3.2.3.2 .. 



34 

If the pictuc-e node is not a 
picture_element, the state is applied to 
all its dic-ect descendants as follows: 
Whenevec- a descendant is not a 
picture_element, the state is combined 
with the state component (if pc-esent) of 
that descendant into a new state, othec-
wise no action takes place. Next this 
application c-ule is used c-ecuc-sively. 

As a c-esult of this we have to define thc-ee semantic opec-a
tions on attributes: 

To combine the attributes in an attc-ibute
sJc-aph into one state component. 

To combine states and state components. 

To apply an attribute to a picture_element. 

The combination c-ules foe- attr.ibutes will be given in 
section 3.4 .. The thic-d opec-ation is a special case of ap
plying a state to a picture. This will be discussed in gen
ec-al in the next section and foL each type of 
picture_element in pac-ticu.iac- in sections 3.4.4. till 
3.4. 10 .. 

3. 2.3. 2. Pictur-es and pictur-e elements 

When the elabor-ation begins, an initial state is set up 
as par-t of the initial envir-onment. Then the tC'aVeC'sing pr-o
cess staLts in the initial rootpicture. 

When dur-ing the tC'aver-sing pc-ocess a picture, which is 
not a picture_element, is encounter-ed, the following c-ules 
apply: 

Set up a state foe- that node, by 
the state component (if p["'esent) of 
and the pc-evious (either- par-ent OL 
~;tate. 

combining 
that node 
initial) 

Visit all descendants of the node in left
to-c- i ght oc-dec- (which coc-r-esponds to textual 
or-der- in the ILP pr-ogc-am). 

Retuc-n to the parent node and c-estoc-e the 
oc-iginal state of that node. 

In tee-ms of the semantically equivalent tc-ee (the expanded 
gr-aph), nodes ac-e visited in pc-eoc-dec-. 

Nodes that ac-e picture_elements, c-epr-esent de-awing 



35 

operations. If these operations 'are executed by a drawing 
machine the following happens: 

The mode of the drawing machine is updated 
according to the state. 

Whenever necessary, 
changed into 
picture_elements by 
*) 

the picture_element is 
zero or more new 
applying the state to it. 

Each resulting picture_element obtained is 
used to drive the drawing machine. 

Thus in addition to the combination rules for state and 
state component, the semantic operations needed in order to 
elaborate a picture are: 

Restore, save and combine state( component)s. 

Return from and call a picture. 

Elaborate picture_elements. 

So the general scheme is that while traversing the subgraph 
containing all pictures the current state is either updated 
or applied to a picture_element. 

3.3. Dimension and subspace 

Pictures considered as geometrical objects are defined 
in an Euclidean space with coordinate axes and a certain di
mension. The description of a picture can be simplified by 
choosing a space of minimal dimension. In many cases, for 
the user, the position of the picture with respect to the 
axes is another means to simplify the description. The ILP 
subspace mechanism makes it possible to temporarily change 
the dimension of the space in which a picture is being con
structed. It can reduce the dimension in order to reflect 
the inherent dimension of that picture. It can also redefine 
the position and orientation of the axes. If a picture 
lies, for example, in a given plane then two coordinates are 
sufficient to specify a point of that picture. In this case 
the given plane can be selected by subspace and as a conse
quence all redundant coordinates in the picture specifica
tion must be omitted. 

The subspace mechanism is an instrument for the posi-

•l The result of the application of the state can partly be described by means of !LP 
primitives. When this method is used in the sequel, this does not imply, that in an ac
tual implementation the modified picture_elements must be aval lab le as !LP objects. 



36 

tioning of individual pictures in' the common space, because 
it defines a mapping between its own coordinate system and 
that of the surrounding space. 

3. 3. 1. Dimension 

Before we go into the details of subspace selection, 
some attention must be paid to coordinate systems. The 
coordinate~; in an ILP program are expressed in user coordi -
nates. 

By means of a subspace selection, the coordinate system 
is changed. Coordinates that occur in a picture which starts 
with a subspace, ace expressed in so-called transformed user 
coordinate~;, otherwise in so-called unit user coordinates. 
Hence, between the start of the elaboration of the initial 
rootpicture and the occurrence of the first subspace, all 
coordinates are unit user coordinates. 

The unit user coordinates are a right-handed Cartesian 
coordinate system. 

During elaboration, coordinates are transformed by 
subspace transformations, matrix transformations, and port 
transformations (see 3.4.4.). In general, coordinates can 
have arbitrary real values, but there is one important res
triction: coordinates, subjected to all relevant transforma
tions, can be divided into two groups: those that pass 
through all windows involved (see 3.4.4.8.) and those that 
lie outside at least one window. The unit user coordinates 
of the first group all must lie in the user unit cube, i.e. 
have values in the real interval[-! .0,+1.0]. 

Final.Ly, there exists for each draw'ing machine a fixed, 
device-dependent mapping from the user unit cube onto points 
in the addcessing ar-ea of that device. This mapping is es
tablished at the moment of device-selection and is 
parameter-ized outside ILP. Because the position and orien
tation oi this addr-essing ar-ea relative to the user unit 
cube can be chosen fr-eely, devices with non-square (oc non
cubic) addressing areas can be handled. In this w'ay the 
mapping on the physical addr-essing area of an actual draw'ing 
device has to be specified for the unit cube only. 

A dimensional_value is the ILP equivalent of w'hat is 
elsewhere known as a "coordinate paic" or "coordinates", As 
can be seen in the syntax rules: 

dimensional value: [ values ] $ 
values: - value I 

values , value$ 

In ILP, coordinates contain dimensional_values as a special 
case. Foe instance, a coordinate also specifies w'hether the 



37 

values of the dimensional values 1 are absolute or incremen~ 
tal. 'When in the sequel the term dimensional_values is used 
some meaning must be assigned to the special properties that 
come with dimensional_values only. In all other cases the 
term coordinates is maintained. 

The dimension of a dimensional value (i.e. the number 
of values of which the dimensional value consists) is not 
dictated by the syntax. On the other- hand, subspace (see 
3.3.2.) fixes, among other things, the dimension of the en
vironment. Therefore the following semantic rule ( general 
dimension rule ) is required to enforce the right dimension 
of dimensional values in various contexts: 

In an environment of a certain dimension, the 
following constructions may only occur with 
the same dimension as that of the subspace: 

dimensi onal_value; 

reference to a subpicture and 
a root picture; 

reference to an 
at tr ibutepack; 

subspace selection. 

To enforce this rule, a dimension specification is re
quired for each root picture, subpicture, 
attributepack or subspace. This implies, for example, 
that in a subpicture with dimension two, only 
dimensional_values consisting of two values may occur. 
Dimension is syntactically cfescribed by: 

dimension: 

dim: 

DIMLESS 
dim $ 
(value) 
empty $ 

Because some attributes (like colour and intensi
ty) and picture_elements (e.g. NIL) are dimension in~ 
dependent the dimension specification DIMLESS exists. 
A DIMLESS at tr ibutepack, root picture or subpi cture 
may be referenced in any environment, regardless of its 
dimension. 

The mechanism just described is extended further 
to cater for matrices of dimensional values: 



38 

matrix value: [ di mens tonal values ] $ 
dimensional values: dimensional value I 

- dimensional_values, 

A matrix value consists 
dimensional values equal to 
current environment. 

di mens i onal value $ 

of 
the 

a number 
dimension of 

of 
the 

dimension, 
The res-

3.3.2., 

The other constructions which must fit 
are subspace, rotate and homogeneous_matrix. 
trictions on their values are discussed in 
3.4.4.1. and 3.4.4.7 .. 

~- ~- ~- Subspaces 

With the aid of this conceptual framework, the 
subspace selection mechanism can now be explained. 
Syntactically a subspace is specified as follows: 

subspace: 
new axes: 
shift: 
position: 

axes: 

SUBSPACE dim new axes $ 
position ( shift-axes ) $ 
dimensional value$ 
CURRENT I -
ORIGIN$ 
empty I 
, dimensional values $ 

The elaboration of a subspace results in a new 
transformed user space. The subspace construction de
fines new coordinate axes with respect to the ones, 
still valid during its elaboration. The new coordinate 
system is valid during elaboration of the picture that 
begins with the subspace. 

The origin of the subspace follows from position 
and shift. In the CURRENT case, it is the un
transformed picture position CPP, see 3.5.) shifted by 
the vector corresponding to shift, otherwise it is the 
origin defined by the previous subspace selection, 
shifted by the same amount. 

In a subspace selection, two dimensions are in
volved, the dimension of the environment in which the 
selection occurs, and the dimension of the subspace be
ing selected, specified by dim. This latter dimension 
becomes the new dimension of the environment, during 
the elaboration of the picture which starts with the 
subspace. axes must contain a number of 
dimensi onal_values, equal to the value of dim. These 
dimensional_values specify the direction of the coordi
nate axes and the units in which coordinates are meas
ured, in the subspace. The directions are those of 



the vectors defined by dimensional_values, the metric 
follows from the rule, that those vectors have unit 
length in the subspace. It should be noted that we do 
not r-equir•e that these axes are orthogonal, only that 
they are defined by independent vectors. 

The general dimension rule excludes the selection 
of a sub~Jace with higher- dimension than the environ
ment in which the selection occurs. The 
dimensiona.l_values required to specify such a selection 
would have been of a higher- dimension than the dimen
sion of the environment and are thus illegal. 

Let the dimensional values (considered as column 
vectors) defining the subspace be extended with a zero 
at the bottom, and the result be denoted by the columns 
D1 , ••• ,Dn. Let the column vector- from the previous ori
gin to the new origin be extended with a one at the 
bottom, and be denoted by D. Then the transformation 
from subspace to environment is given by the matrix: 

39 



40 

3.4. Attributes 

The syntax rules describing the various attributes are: 

attribute: ABS basic attribute 
REL basic-attribute 
basic attribute $ 

basic attribute: attribute class 
- aname I -

{ attributes } I 
NIL$ 

attributes: attribute I 
attributes; attribute$ 

attribute class: transformation 
- detection I -

style I 
control I 
pen I 
coordinate mode 
visibility-$ 

With every attribute_class (except control), 
corresponds an attribute_match, defined by the syntax rules: 

at tribute _matches: e..:.1np t y I 
at tribute matches 

attributematch: TF 
- DT I 

deny: empty I 

ST I 
PN I 
CM f 
vs$ 
"-' I 
NOT$ 

deny attribute_match $ 

Attribute matches are part of pi cture_elements. 

An attribute class is a terminal attribute node. The 
attribute_class values can range from simple constructs to 
complex structures. For each class, however, the format of 
the value is fixed. Here we must differentiate between a 
complete class value (which as such is not a syntactical ca
tegory) and a contribution to such values by an individual 
attribute_class element (which is a terminal production of 
attribute class). 



41 

For some attribute_classes (e.g. style and pen) the 
class value is described as an ordered n tuple of so called 
atoms. An atom has the following properties: It can have a 
unit value with respect to combining: 

a* unit= unit·• a= a 

Each element of such an attribute_class specifies precisely 
one atom. Hence, for a complete class value at least n 
attribute_class elements are required. A unit class value 
consists of the n unit atom values. A set of k < n dif~ 
ferent atom values can be expanded to a class value by ad
ding a unit value to each missing atom. In this sense each 
individual atom can also be considered as a class value 
(k = I) . 

Unit values cannot (and need not) be specified. 
serve to simplify the semantic description. 

They only 

Apart from a unit value for attribute_classes there ex~ 
i sts a default value for each attribute class and also for 
each atom. This value is taken when an attribute class must 
be applied to a picture_element and the unit value (for a 
class or atom) is specified. The default value can also be 
selected explicitly as attribute_class element or tru~ough 
the attribute matches. 

In the following, we will elucidate, how attributes act 
upon picture_elements. From a semantic point of view, two 
major steps are needed in the process of applying attributes 
to a picture_element. 

In the first step, the attribute structure is simpli
fied by applying combination rules for attributes, to the 
effect that attribute nests and nested "\./ITH ... DRA\.J'' con~ 
structions are removed. By this process an ILP program can 
be converted into a so called basic ILP ~rogr~ that con
sists of a linear list of "\./ITH A DA\./ P" constructions, 
where A denotes a linear list of attribute class values and 
P a picture_element. The linear list - A contains all 
attributes that have been specified for P. The order of the 
picture_elements in the basic ILP program must be the same 
as in the picture tree when traversed in preorder. The im
portant reason for this is that each picture_element partly 
sets the enviconment for its successors. subspaces and 
picture_elements can only be elaborated when the environment 
is known. For a given picture_element the major steps must 
be fully completed befor-e the same steps can be taken for 
its successor. The first algorithm of the first step takes 
care of a.11 environment specifications for the subspaces. 
From there all steps can be carried out independent of any 
environment. "When finally the picture_element itself is 
elaborated, the environment is first used to complete the 
picture_element, next the attributes are applied, then the 



42 

element is drawn and finally the'environment is updated. As 
already stated, there is a correspondence between ILP pro
grams and directed acyclic graph structures. For conveni
ence, we will split the description of the first step in two 
parts. The first part is described as a conversion of graphs 
(section 3.4.1.), the second as a conversion of programs 
(3.4.2.). 

In the second major step, the attribute_class elements 
from each "\./ITH ... DRAW'' construction of the basic program, 
are concatenated or combined, and then applied one after the 
other. The general features of this step are described in 
sections 3.4.2.2. and 3.4.2.3., while the aspects that are 
characteristic for individual attribute_classes, ar-e 
described class wise in sections 3.4.4. till 3.4.10 .. 

~-1·1· Decomposition of the pictur-e tr-ee 

There exists a unique path in the pictur-e tree (see 
3.2.) from the root to each picture_element, called element 
path. For ever-y element path, we will construct a new tr-ee, 
called element tree, as follows: 

Algorithm ET: constr-uct an element tree 

ETl Start with a node of the form "\./ITH U DRAW 
NIL", where "U'' contains the attribute_class 
unit value for each class. Tr-averse the ele
ment path. 

ET2 Every time a subspace node is encountered, 
generate the corresponding subspace tr-ansfor
mation S (see 3.3.), using the subspace 
specification and the value of the pen posi
tion (see 3.3.2.), which is given in the en
vironment. Replace in the original program 
the subspace by "WITH S DRAW ( so the subspace 
is evaluated only once and in the right en
vironment). Continue with the same node. 

ET3 Every time a "\./ITH ... DRAW'' node is 
tered, replace the last "NIL" of the 
tree by "WITH A DRAW NIL. Here "A" 
attribute of the node at hand. 

encoun
element 
is the 

ET4 When the pictuce_element is reached it re
places the last NIL of the element tree. 

A picture tr-ee with picture_elements is converted by ET 
into a semantically equivalent picture forest T., ... , Tn of 
element trees. Tr-ee T1 contains picture_element P 1 , which 
is the i-th picture_element encountered, when the picture 



43 

tree is traversed in preorder. 

With every element tree Ti, corresponds an attribute 
Ai . A description in the farm of a string of every Ai is 
produced by algorithm ETA, and modified by algorithms RAP 
and LIN. In this and the following sections manipulations 
on descriptions of picture and attribute graphs are used. 
The algorithms as presented, ignore the layout characters in 
such descriptions. 

Algorithm ETA: compute element tree attributes 

ETAI Initialize A1 with "REL{". Traverse T1 from 
r--oo t to leave. 

ETA2 Every time a "WITH X DRAW Y" node occurs, ex
pand all attribute_class elements contained 
in X (see 3.4.) which results in X'. Next 
append "X';" to the right of Ai. 

ETA3 Finally, rep.lace the last (rightmost) 
A1 by "}". 

II • II 

' 
of 

The application of algorithm ETA results in an ILP pro
gram with body: 

3.4. 2. AttL~ibute mixing 

WITH A1 DRAW Pt; 
WITH A1. DRAW P2; 

WITH An DRAW Pn; 

The pir-ocess of combining and simplifying attributes 
that will be described in 3.4.2.1. and 3.4.2.2. is called 
attribute mixing. It can be applied to any sequence of 
attributes, whether this sequence is derived from an element 
tree or not. The result of mixing is again a construction 
of type attribute. 

~-'.!·~•l• Simplification of attributes 

Every Ai in the program produced by algorithm ETA, is 
simplified in the following steps: 

Algorithm RAP: remove anames, add prefix 



44 

RAPI Replace all LefeLences·to attributes in Ai 
by theiL body, e.g. foL eveLy aname substi
tute the attribute fLom the attributepack 
with that aname. Repeatedly peLfoLm this 
step, as long as LefeLences to attributes 
aLe pLesent (note that LecuLsion is not al
lowed) . 

RAP2 PLefix eveLy not pLefixed II { II OL 
attribute class with "REL". 

Finally, Ai is conveLted into one list without sub
lists of attribute classes . 

AlgoLithm LIN: lineaLize attribute 

LINl Find a constLuction B of foLm 
ABS {attributes} OL REL {attributes} 
which contains only pLefixed attribute_class 
elements. \.Jl-1en no such constLuction can be 
found, the algoLithm teLminates heLe, 

LIN2 SoLt the elements of B class 
distuLbing the sub-oLdeL 
(Lesult: constLuction B' ). 

wise, without 
in each class 

LIN3 Apply the following substitutions to adjacent 
elements x and y of B', belonging to the same 
attribute class until no fuLtheL substitu
tions aLe-possible: 

"REL x· ABS ' y -> "ABS y 
"ABS x; ABS y -> "ABS y 

wheneveL xis not c subspace tLansfoLmation, 
and: 

"REL x; [ REL SJ r.; ABS y" - > " [ REL SJ n ; ABS y 
"ABS x; [ REL SJ n; ABS y" - > " [ REL SJ n; ABS y" 

wheLe Sis a subspace tLansfoLmation. 

The last two substitution Lules guaLantee, 
that subspace tLansfoLmations aLe pLeSeLved, 
when otheL tLansfoLmations aLe invalidated by 
a pLefix "ABS", The Lesult of this step is 
constLuction B' '. As a consequence, in B'' 
only the leftmost element belonging to a ceL
tain attribute class (called leftmost class 
element), can have pLefix "ABS". 



LIN4 Replace the prefix of· every leftmost class 
element by the prefix preceding the left 
bracket. Next remove (the only and outer
most) "ABS {" or "REL {" and "}". The result 
is labelled B' ''. 

LIN5 Finally, replace the original construction B 
in A1 by B''' and continue at LINI. 

45 

As a result of algorithms RAP and LIN, the attributes 
A1 in the program produced by ETA are transformed into a 
simple list of prefixed attribute_class elements. It should 
be noted that, occurrencies of prefix "ABS" have been re
moved. 

~-1· ~- ~- Attribute types and concatenation 

According to semantic properties, attribute_classes are 
divided in type I, type 2 and type 3 classes, and 
correspondingly, attribute_class elements in type I, type 2 
and type 3 elements. Different methods are used for the 
description of the -semantics of these three types of 
attribute_classes. In fact, attribute_classs of type 3 are 
the most general and allow the most powerful attributes to 
be formulated. As a consequence all type 1 and type 2 
attribute_classes can also be described with the description 
method used for type 3. However, type 1 and type 2 
attributes have some special properties, that make possible 
a considerably easier semantic description. 

The formal classification, based on the semantic 
description method, coincides with a less strict division 
of attributes, according to their usage: Type attributes 
generally describe purely geometric information. Type 2 
attributes associate information with picture_elements, 
which logically speaking, can be meaningful for an isolated 
picture_element, irrespective of the structure of the pic-
ture graph it belongs to. Type 3 attribute elements associ
ate external properties with picture_elements that are not 
necessarily meaningful for an isolated picture_element, but 
preserve information about the structure of the element 
path leading to it. These attributes will probably be used 
mainly for the association of non-graphic information with 
pictures. 

The description of the semantics of attributes always 
consists of at least two steps: 

describe the semantics of individual elements 
from the class. 



46 

describe the semantics of combining a se~ 
quence of class elements into an entity with 
already defined semantics. 

The differences in description method used in these steps, 
determine the classification of the attribute. 

The following discussion of attribute_class types will 
be based on sequences of attributes, occurring in a list as 
produced by algorithm LIN, called a LIN list. 

Type 1: The semantics of the attribute_class 
element are described by defining for every 
picture_element, a set of picture_elements, 
called the result set. The drawing (in user 
space), corresponding to the result set is by 
definition identical to the drawing 
corresponding to the picture_element with the 
type 1 attribute applied to it. The 
picture_element "NIL" is unaffected by type 1 
attribute class elements. The semantic 
description is extended to all attributes 
from a certain type 1 class in the LIN list, 
by the following rule: The attributes are ap~ 
plied one at the time, in the order in which 
they are encountered when the LIN list is 
scanned from right to left. In other words 
each attribute_class element is applied to 
all picture_elements of the result sets pro
duced by the previous class element. 

Type 2: The semantics of these 
attribute class elements cannot be described 
in terms of other ILP primitives, but must be 
defined in an ad hoc manner. For type 2 
classes there exists a concatenation rule of 
the form: 

REL A<> REL B -> REL C, 

where A, Band Care elements from the same 
class, and "<>" denotes concatenation. On a 
sequence of attributes from the class, this 
rule can be applied repeatedly, to combine 
them into one attribute class value. 

Hence, the semantics for all the type 2 
attributes from a certain class, contained in 
a LIN list, follows from the semantics of a 
single class value and the concatenation 
rules. 



The type 2 attribdte and its concatena~ 
tion rules are formulated in such a 'way, that 
associativity from the left is obtained. As 
'will become clear- in 3.4.3., this 'will lead 
to the possibility of an implementation. that 
uses a stack. 

Type 3: The definition method for- class ele~ 
ments depends on the class involved, and 'will 
be often quite ad hoc. However-, combining a 
sequence of elements proceeds in a methodical 
manner-, 'which is the same for- all type 3 
attributes. 

With every type 3 attribute_class, a 
so-called application universe is associated. 
With (any sequence) of type 3 class elements, 
corresponds one element from the application 
universe. An application universe element is 
applied to picture_elements during elabora~ 
tion, instead of the sequence of attributes 
in a LIN list, to 'which it corresponds. So 
the semantics of collections of type 3 
attributes in a LIN list is defined by: 

The correspondence bet'ween sequences of 
type 3 elements and an application 
universe element. 

The semantics of 
universe element. 

every application 

The definition method for the semantics of appli
cation universe elements depends on the 
attribute_class involved. The correspondence is 
defined 'with the help of combination rules, that 
'work according to the follo'wing general scheme: 

With every element from a given 
attribute_class, corresponds an element from 
the application universe. 

These application universe elements are com
bined into one, using combination rules of 
the form: 

'where<> denotes combination, and Ci, C2 and 
C3 are application universe elements. 

The combining operator is left associative. 

47 



48 

At pr-esen t, de tee ti on is the only type 3 
attribute class. 

3.4. 2.3. Semantics of attr-ibute class lists 

To continue elabor-ation all concatenations and combi
nations in the list of pr-efixed attribute_class elements A1 
in the pr-ogr-am pr-oduced by algor- i thm LIN ar-e pecfor-med. 
Ther-eafter-, for- ever-y type 2 class, ther-e is at most one 
single element left in A1 , and for- ever-y type 3 class, one 
application univer-se element is found, that is included in 
Ai . 

The semantics of Ai now follow fr-om the pr-ior-ity ['Ules: 

fi['st all type I elements a['e applied, next 
the type 2 elements and type 3 (application 
unive['se) elements. 

the pr-ior-ity, when not fixed by the above 
r-ule, is explicitly defined whenever- neces
sa['y. (At pr-esent, all type 2 and type 3 
classes may have the same pr-io['ity). 

REMARK 

When, in extensions of ILP, new type 3 
attribute_!:lasses a['e int['oduced, pLiO['ity Lules become 
ext['emely impo['tant. It can be consider-ed, for- in
stance, to give ce['tain type 3 classes p['iO['ity oveL 
ce['tain type 2 classes. This would allow, the modifica
tion of type 2 elements by type 3 elements. 

As an illust['ation of the semantics of 
attributes consideL the ILP statement: 

WITH {A; B} DRAW P . 

type 

The meaning is, that fi['st P is subjected to attribute B, 
and then the ['esult to attLibute A. Especially when the 
attributes a['e t['ansfor-mations, this application O['der is 
different f['om the one mostly used in compute[' g['aphics sys
tems. 

~-1· ~- State component and state 

Before we desc['ibe the semantics of individual 
attributes, we give definitions fo[' the concepts of state 
component and state. 

If the mixing p['ocess is applied lo the attribute of 



49 

one single "'JITH .•. DRA'J" node, the result is called a state 
component. 

Let A be a "',/ITH .. . DRA'J" node in a picture tree. The 
result of mixing all attributes encountered on the path from 
the root up to and including A, is called a state S.By de
finition S is the state for all pictures corresponding to 
nodes that are: 

descendants of A, and 

not reached from A via "'JITH ... DRA'J'' nodes. 

It should be noted, that state components and states 
both consist of attribute class values and application 
universe elements. 

Let, during elaboration, 1w1 and 'J2 be two successively 
encountered 'JITR ... DRA'J nodes. The state calculated from 'J 1 
and its predecessors, is called the current state of the 
elaboration process, from the moment the attribute of Wi has 
been elaborated, until the start of the elaboration of 1w2. 

Finally, we signal an important property. Let S1 be 
the current state prior to elaboration of a picture P1. Let 
P 1 contain a "'JITH ... DRA'J" node 1w and let S2 be the state 
component of 1w. Let P2 be a picture contained in 1w. The 
current state, during elaboration of P2 is obtained by mix
ing S1 and S2. Clearly an efficient implementation of !LP 
progr·ams requires an efficient stack mechanism for states. 



50 

3. 4. 4. Trans£ or-mat ions 

Transformations are type I attributes (see 3.4.2.2.). 
From a ~.emantic point of view, they are applied one after 
the other, although in an actual implementation, matrix 
transformations (see below), will probably be concatenated. 
The result of applying a transformation T to a 
picture_element P can be described as an ILP program P' that 
consists of a linear list of transformed picture_elements. 
All transformations except port are matrix transformations. 

The ~.emantics of matrix transformations have some gen
eral aspects that will be discussed first. 

When a matrix transformation is applied to a 
coordlnate_type picture_element (see 3.5. I.) the resulting 
ILP program P' consists of one picture_element of the same 
category as the original picture_element. 

picture_elements (text excluded), either contain a row 
of coordinates (e.g. line) or generate a sequence of 
coordinates (generator). A coordinate contains a 
dimensional_value which, if the dimension of the environment 
is n, con~dsts of the row of values [v 1 , v2, ... , Vn]. With 
such a dimensional_value, the corresponds a column vector v 
with n+l components, defined as: 

IV I I 
lv2I 
I • I 

V = I • I 
I • I 
lv0 I 
I I I 

In the sequel this extended form (i.e. homogeneous coordi
nates) will be used). 

with every matrix transformation either a n,n-matrix, 
or a Cn+l l,Cn+l)-matrix can be associated, where n is again 
the dimen~;ion of t.he environment. n,n-matrices will be ex
tended to (n+l),Cn+l)-matrices by first extending every row 
with a ri9htmost element with value zero, and then adding an 
extra (bottom) row of n+l elements which are all zero, ex
cept for the rightmost one, which has value one. 

Hence every matrix transformation is represented by a 
(n+l),Cn+l)-matrix A. To vector v corresponds a transformed 



51 

vector w, defined by: 

where "*" denotes ordinary matrix multiplication. Because 
column vectors are used, the order- of multiplication must be 
matrix times vector. 

To vector w corresponds a di mens i anal value 

' ... ' 
Wn-+I Wn+t 

which is called the transformed of dimensional_value [v 1 , 

... , v~]. The result of applying a matrix transformation to 
a picture_element is now obtained by replacing all (generat
ed) dimensi onal_values by their transformed 
dimensional values. 

REMARK 

The detailed definition of the various transformations 
that will be given below, does not strictly apply to 
picture elements of type text. Although it seems intui
tively clear what is meant by, for instance, an arbi
trary clipped or rotated char, we cannot formally tell, 
which char is the result of the transformation. 
Furthermore, it is likely that permitting arbitrary 
transformations on text objects, precludes the use of 
character hardware and a reasonably efficient implemen
tation. Hence a "subset" of transformations must be 
defined from which an element will be automatically 
selected when a general transformation is applied to 
text. A further problem with text is the interaction 
between elements from different attribute classes. 
Whether, for instance, a character whose center lies 
near a window boundary (see 3.4.4.8.) has to be 
clipped, depends on the value of the typographic 
attribute (which influences its shape and size). A 
solution might seem the choice of priorities, but this 
leads to conflicts: If line_style must not be 
transformed, transformations must have priority over 
typographic. If characters must be properly clipped at 
window boundaries, their size must be evaluated before 
the port transformation is applied, e.g. typographic 
must have priority over transformations. 

The attribute_match corresponding to transformations is 
TF. "-TF switches off all transformations or, one might say, 
replaces the overall transformation by the default transfor
mation (see below). TF reinstalls the overall transforma-



52 

tion. 

The transformations are listed in the following syntax 
rules: 

transformation: rotate 

rol:ate: 

scale: 
translate: 
mal:r ix: 
afEine: 

projection : 

scale I 
translate I 
matrix I 
project i on I 
affine I 
homogeneous _matrix 
port$ 
ROTATE value 

AROUND invariant$ 
SCALE dimensional value $ 
TRANSLATE dimensional value$ 
MATRIX matrix value $ -
AFFINE matrix -value 

dimensional value$ 
PROJECT eye pos i ti on 

ON projection_space $ 
homogeneous _matrix: 

HOMMATRIX homogeneous_matr ix_value $ 
port: window I 

window, viewport $ 

3. 4. 4. I. Rotation 

An elementary rotation inn-dimensional Euclidean space 
can be specified by: 

Selection of a plane Vin the n-dimensional 
space. 

Selection of a point P in this plane. 

Definition of a rotation angle phi. 

The matrix R: 

cos phi 
--sin phi 

0 

0 

sin phi 
cos ohi 

0 0 



53 

describes this elementary rotation under the condition that 
a new set of coordinate axis x 1 , •••. , Xn is chosen with: 

The origin coincident with P. 

x1 and x2 contained in V. 

\./hen the matrix that transforms the original coordinate 
axis into the set x1, ... , Xn is given by T, the rotation in 
the untransformed coordinate system is given by 

- I 
T * R * T 

A rotation inn-dimensional Euclidean space can be 
considered as the product of a number of elementary rota
tions. 

In ILP, an elementary rotation is syntactically speci
fied by: 

rotate: 

invariant: 

ROTATE value 
AROUND invariant$ 

( dimensional_values) $ 

The rotation angle is determined by value, while the rota
tion plane and point are specified by invariant. The 
invariant contains a number of dimensional values which is 
one less then the dimension of the environment. The first 
dimensional_value specifies the rotation point P, the fol
lowing define (n-2) independent vectors orthogonal to the 
rotation plane. Rotation takes place clockwise (defined 
with respect to the normal from the origin to the plane), 
through a number of degrees, specified by value. 

In the two dimensional case, the set of n-2 vectors is 
empty, in the three dimensional case it is the familiar axis 
of rotation. As a consequence, in the two or three dimen
sional case a general rotation can be specified by one sin
gle rotate. 

REMARK 

It should be clear that we are confronted with a tra
deoff here: if the dimension of the environment is less 
then four, it is economical to specify a plane by its 
normals, if the dimension is more then four, specifying 
the plane with two vectors contained in it is cheapest. 
We have chosen the first alternative. 



54 

3. 4. 4. 2. Scale 

By sealing, the values of the dimensional value of a 
coordinate aLe changed independent of each otheL. Scaling 
can be Lepr~esented by a diagonal matLiX. The syntax Lule 
is: 

scale: SCALE di mens i anal value $ 

Each value in the dimensional_value specifies a diagonal 
element of the unextended tLansfoLmation matLiX. 

3.4.4.3. TLanslate 

A tLanslation maps all points in useL space on points 
displaced by a fixed amount. TLanslation is syntactically 
descL ibed by: 

translate: TRANSLATE dimensional value$ 

Each value in the dimensional_value specifies the displace
ment along the COLLesponding cooLdinate axis. 

In an n-dimensional enviLonment a tLanslation, chaLac
teLized by dimensional_value [v 1 , ••• , vr.J, is LepLesented 
by a Cn+l),Cn+l)-matLiX with diagonal elements of unit 
value, the Lightmost element of the k-th LOW Ck= 1, ... , n) 
with value vk, and all otheL elements zeLO. 

3. 4. 4. 4. Mat L i x 

A matrix tLansfoLmation specifies a lineaL tLansfoLma
tion of the useL space. A matLiX tLansfoLmation is syntac
tically descLibed by 

matrix: MATRIX matrix value$ 

Each dimensional value in the matrix value (see 3.3.1.) 
specifies a column in the tLansfoLmation matLiX. As a 
consequence of the geneLal dimension Lule (see 3.3.1.), a 
matLiX contains a numbeL of LOWS and columns equal to the 
dimension of the enviLonment. 



55 

~-1· 1· g· Projection 

Projection is syntactically described by: 

projection : PROJECT eye pos i ti on 
ON projection_space $ 

projection_space: dimensional_value I 
ORIGIN di mens i anal value $ 

eye pos i ti on : di mens i anal _value ,-
PARALLEL dimensional value$ 

The space on 'w'hich frojection takes place, is specified 
by projection_space. t is a space of dimension one less 
than the environment, perpendicular to the the vector speci
fied by dimensional_value in projection_space. Neverthe
less, the projected image has the dimension of the environ
ment, but there exists a linear relation bet'w'een its coordi
nates, for instance, Xn = 0. If only a dimensional_value 
is present in the specification of the projection_space, the 
space contains the end point of the vector defined by 
dimensional_value. If the key'w'ord ORIGIN is used it con
tains the origin of the current coordinate system. 

The type of projection is determined by the specifica
tion of eyeposi tion. If a dimensional_value is used, a 
central projection is applied, 'w'ith the point 'w'ith coordi
nates corresponding to dimensional value as centre. In the 
other case, projection is parallel, to a direction defined 
by dimensional_value. 

Let the coordinate axis of an n-dimensional 
space be x,, ... , Xn• A projection 'w'ith 
Cx1 = x2 = ... = Xn-1 = 0, x 0 =c) as centre, on 
Xr:=0 is given by the (n+l),Cn+l)-matrix P. 

0 
0 

0 
0 

I 
0 0 0 
0 -1/c I 

Euclidean 
the point 
the space 

In this matrix, constant c equals the distance from the eye 
position to the projection space. Parallel projection is 
obtained by replacing -lie by zero. Let T; be the cransfor
mation that translates a projection space to the origin, T2 
the transformation that rotates the normal on this space to 
the direction of coordinate axis Xn• The projection is then 
given by the matrix: 



56 

In the following example a three dimensional environ
ment is assumed, with coordinate axes denoted by x, y and z. 

PROJECT { I , I , I } ON { 0, 0, I } 
defines a central projection on the plane z=l. 
With the point x=l, y=I, z=l as projection centre. 

PROJECT PARALLEL { 0, 0, !} ON ORIGIN { 0, 0, !} 
defines a projection parallel to the z-axis on the 
plane z=0. 

3. 4. 4. 6. Affine 

a1~fine: AFFINE matrix value 
di mens i anal value $ 

An affine transformation is represented by a square matrix 
with: 

A number of rows (columns), one more than the 
dimension of the environment. 

A bottom row with all elements zero, except 
for the rightmost, which has value one. 

If the dimension of the environment is n, matrix value 
specifies a n,n-matrix A, dimensional_value a column of n 
elements. The resulting affine matrix is: 

<------------ n + 1 -----------> 

matrix value 

0 

~· 1· 1· z. Homogeneous matrix 

0 

I I 
ldiml 
I I 
lvall 
I I 

In an n-dimensional environment a homogeneous_matrix 
transformation is represented by a (n+l),(n+ll-matrix. 
Every element of this matrix is explicitly specified with 
the help of the following syntactical construction : 



homogeneous _matrix: 
HOMMATRIX homogeneous_matr ix_value $ 

homogeneous_matr ix_value: 
[ homogeneous _di mens i onal_values ] $ 

homogeneous_dimensi onal_values: _ 

57 

homogeneous_dimensi onal_value I 
homogeneous_dimensi onal_values , 

homogeneous_dimensi onal_value $ 
homogeneous _di mens i onal_value: 

[ values J $ 

The homogeneous_matrix_value consists of Cn+I) 
homogeneous_dimensional_values, which each specify a column 
of the matr·ix. Every homogeneous_value consists of Cn+I) 
values, which each specify an element of the column. 

~•1·1·~· Window and viewport 

The port transformation is the only mapping from user 
coordinates into user coordinates, that cannot be described 
by a matrix. 

The transformation is syntactically described by: 

port: 

window: 

vi ewport: 

window 
window, viewport $ 
WINDOW ( di mens i onal_value , 

di mens i anal value ) $ 
VI EWPORT ( di mens i anal _value , 

dimensi onal_value ) $ 

window and viewport select rectangular areas tn user space. 

The dimensional_value pairs in both the window and 
viewport definition, determine the end points of a principal 
diagonal of the window and viewport areas. As a consequence 
of the general dimension rule (see 3.3.1 .), the dimension of 
a window or viewport is equal to the dimension of the en
vironment in which the window and viewport are specified. 

The selected areas are fully determined by the require
ments that they are block shaped, and that they have their 
edges parallel to the coordinate axis. 

When coordinate_mode (see 3.4.8.) has value FREE, the 
relative position of the ports and the free coordinates may 
not be known from context. The dimensional_values in port 
denote absolute positions in the current coordinate system. 
Selection of a new origin at the untransformed pen position 
with the help of the SUBSPACE mechanism, solves this prob
lem. 

If the port transformation does not contain a viewport, 
only a clipping boundary is defined. Only parts of the pie-



58 

tuLe, that lie inside the window, aLe pLeseLved. Without 
going into detail, we summar:ize in the table below, foL 
ever-y type of picture_element the possible elements of the 
r-esult set (see 3.4.2.2.), if this set is not empty. 

pi cture_element 

POINT 
LINE 
CONTOUR 

r-esult set elements 

zer-o or- one POINT 
zer-o or- mor-e LINE's 
zer-o or- mor-e LINEs or- CONTOUR 

The picture_element generator ultimately gener-ates ele
ments contained in this table, which deter-mines its 
behaviouL under- the port tr-ansfor-mation. The effect on TEXT 
has not yet been decided upon. 

If the port contains a viewport (which must be pr-eceded 
by a window) , fir-st the window is applied, wher-eaf ter- the 
mate-ix tr-ansfor-mation, that maps the window aLea onto the 
viewport ar-ea is applied. 

The following obser-vations can be made: 

The effect of the application of a nuvnbeL of 
windows CsepaLated by matLiX tr.-ansfor-mations) 
is identical to the effect of clipping to the 
inteLsection of the leftmost window and the 
(tr-ansfor-med) fur-thee- windows. 

When two window, viewport paiLS aLe applied, 
the visible paLt of the viewport aLea of the 
second pair-, is always contained in the 
viewport ar-ea of the fir-st paiL, 

REMARK 

Is it useful to incor-poLate negative windows, i.e. win
dows that r-emove all picture_elements inside the window 
aLea7 

The nesting of windows allows the constr-uction of win
dow aLeas of ver-y complicated shapes. How inefficient 
becomes the clipping algoLithm7 

The majoL similar-ity between subspaces and 
transformations is that the effect of any matLiX 
transformation (except homogeneous_matrix or- projection), 
can also be achieved by a subspace tr-ansfor-mation. 



59 

The basic differences between subspace and matrix 
transformations are the following: 

subspace transformations transform coordinate 
systems and hence influence all 
dimensional_values in a picture that begins 
with a subspace. Note that the 
dimensional_values used to specify matrix 
transformations are affected too. 

Matrix transformations transform actual 
coordinates of "objects" defined in a given 
coordinate system. Hence they are only ap~ 
plied to the dimensional_values of 
coordinate_values. For instance, 
dimensional_values used to specify other 
transformations are not affected. 

A subspace can reduce the dimension. 

A subspace transformation is not affected 
(svitched off) by a prefix "ABS'', which oc
curs in a transformation attribute. 

A subspace transformation is not affected by 
the attribute match for transformations. 



60 

~-1• ~- Style functions 

3.4.5.1. Introduction 

Style functions describe what kind of lines, points and 
characters (and in the future shades and greyscales) are to 
be produced by a drawing machine. The description is as 
machine independent as possible. In view of the enormous 
variety of drawing machines, the style-function package has 
to be extendible and is inevitably incomplete. 

The sJiven functions are all specified in such a way 
that the ~;ame style functions produce similar results on all 
drawing machines, that is, if they are expressible in terms 
of the existing hardware. However no functions exist in 
ILP to express the quality required of the result of appli
cation of a style attribute. *) when necessary an extr-a 
software layer has to be provided to produce or approximate 
styles foe which no direct hardware functions are available. 
Since style has more to do with taste and clearness of ex
pression than with accuracy, it will cause no trouble when 
style is not defined with mathematical precision (as would 
be the case with, say, transformations). 

The three classes of style functions that exist so far, 
e.g. line_style, point_style and typographic are mutually 
unrelated. The syntax for style is: 

st:y1.e: line_style I 
point_style I 
typographic $ 

style is a type 2 attributeslass Its class value is a 
12-tuple v.ri th atoms represented by PERIOD, MAP, THICK, FONT, 
SIZE, ITALIC, BOLDNESS, POINTSTYLE FONT, POINTSTYLE SIZE, 
POINTSTYLE ITALIC, POINTSTYLE BOLD, POINTSTYLE token. Let 
C 1 , ••• , C 1 2 and C, ' , ... , C 1 2 ' denote sty le class values. 
Then the concatenation rules for style are: 

•J It can be considered to parameterize quality outside ILP by providing a quick-and
dirty, and a high-quality mode for the representation of the same style. 



61 

where<> denotes concatenation and% is defined by: 

C 1 % C 1 ' - > C 1 , when C 1 ' i s a un i t at om, 
C1%C1 '->C1 ', otherwise. 

Hence in the "ABS" case, style is completeli redefined, 
partly by unit atoms. In the "REL" case, on y explicitly 
specified atoms are changed. 

~.1. g. ~- Linestyle 

Line_style conforms to the syntax: 

line_style: PERIOD ( per i od_descr ipt ion ) I 
MAP ( value reset ) I 
THICK C value ) $ 

line_styles are applied to picture_elements of type LINE. 
They are also applied when the LINE is produced indirectly, 
through a contour, or a generator . 

The line_style determines what will be drawn along the 
straight lines that connect the successive positions of the 
picture _elements. 

The line_style can produce a large variety of dotted 
and dashed lines. The definition of such a pattern goes in 
two steps. 

3.4.5.2.1. Period definition 

PERIOD describes a basic pattern which is repeatedly 
produced going along the line. 

period_description: dash I 
dash , gap 
dash , gap , dash $ 

dash: DOT I 
value$ 

gap: value$ 

The period is defined on a straight line piece of 100 units 
in length, which is filled out by: 

dash1 

Hence dash1 + gap1 + dash2 + gap2 ~ 100. Gapi through gap2 
may be omitted, implying that the first missing one adds up 
to 100. Gap2 always is omitted. If dash has value DOT, a 
point is produced on the spot with has a length of 0 units 
with respect to the period. This concept DOT is the same, 



62 

as the one used in point_style, see 3.4.5.4 .. 

Examples: 

PER I OD C I 0 10) 
PERIOD CDOT) 
PER I OD C 0 , 1 00 ) 
PERIOD (50) 
PER I OD ( 2 5 , 50 ) 

Solid line. 
One point at the beginning of each period. 

Blank (invisible) line. 
Dashed line with gaps equal to dashes. 

Dashed line with gaps equal to dashes. 
It starts however, with a half dash. 

~-1• Q• 2- 2- ~@12 definition 

The value of MAP specifies the actual length of the 
patteLn descLibed by period_description. This length is de
fined in useL unit cooLdinates, valid at the root. A pat
tern of the given actual length is rolled along the line, to 
pLoduce the style. 

reset: RESETCOORDINATE I 
CONTINUE I 
RESETLINE $ 

The thLee diffeLent values foL reset tell, whether the 
periodic patteLn has to be continued from one LINE to the 
next (value: CONTINUE), to be Leset at the start of eveLy 
new LINE (value: RESETLINE) or to be reset wheneveL a new 
coordinate within a LINE is encounteLed (value: 
RESETCOORDINATE). 

REMARK 

It might be consideLed to link the length unit, used in 
the style attribute to the metLic of the subspace in 
which this attribute is used. This will lead to com
plications foL non-oLthogonal subspaces, howeveL. 

3. 4. 5. 2. 3. Thickness 

The value of THICK determines the linewidth, when draw
ing LINEs. It is expressed in the same unit as used in the 
map definition foL linestyles (see above). Thick lines are 
cylindLical. They aLe dLawn with constant diameter. Thick 
lines are not modified by projection transformations, i.e. 
they do not become conic. 

REMARK 

Is it a good decision to use the same unit for period 
descLiption and thickness? 

The connection method foL thick lines and the visual 



63 

representation of their end points is not yet defined, 
but several problems may be exspected in this area. 

~-1· g. ~- 1YJ2ographi c style 

The typographic style is in fact nothing else than a 
means to specify a given character set out of the available 
sets. 

typographic: TYPFAULT 
font I 
size I 
italic 
bold$ 

Characters are grouped in sets of at most 256 tokens, called 
a basic set. 

A basic set can contain tokens of any kind, up to com
plete pictures. In ILP they will, however, be considered as 
characters .. Their internal structure is inaccessible and 
can therefore not be manipulated. 

A font consists of a basic set plus a description how 
the character data are to be interpreted, and what the ef
fect of size, italic and bold is, on the individual tokens. 
In view of the use of typographic for pointstyles also a de
fault token for DOT must be given. A font is selected by 
the font attribute. The tokens can be modified, by expli
citly specifying size, italic and bold. 

It is clear, that the typographic attribute, allows the 
specification of an unlimited collection of characters. 
TYPFAULT is shorthand for selection of font, size, italic 
and bold. Its effect is device dependent. It denotes a 
character ~,et, whose elements can be drawn as efficient as 
possible on the device at hand, if necessary disregarding 
high quality demands (see 3.4.5. 1.). 

~-1· g. 1· Point sty le 

The syntax rules for point style are: 

point _sty le: DOT I 
POINTSTYLE typographic 
POINTSTYLE marker$ 

marker selects a token from the font specified by 
POINTSTYLE font. This token 1s modified by POINTSTYLE size 
etc. At point positions, this token is displayed, drawn in 
a centered fashion. It will be drawn in the x 1 , x2 plane of 



64 

the current coordinate system, with its "bottom line" paral
lel to the x 1 axis. When the alternative OOT is used, a 
device dependent "point'' will be displayed. OOT is shorthand 
for a device dependent character set (typographic) and for a 
specific token (the point) out of this set. When only 
POINTSTYLE typographic or POINTSTYLE marker is specified, 
the other atom of point_style has its default value (see 
3.4.12.). 

3. 4. 6. Pen functions 

Pen functions determine the reproduction method to be 
used when a picture _element is drawn. As a consequence, pen 
functions influence only the final appearance of a drawing 
but do not affect the structural information contained in 
it. The effect of pen functions can not be described in 
terms of ILP primitives. pen is a 3-atomic type 2 
attribute, its concatenation rules are analogous to those of 
style. 

The syntax for pen is: 

pen: PENFAULT 
contrast 
intens I 
colour$ 

Just as in the case of TYPFAULT, PENFAULT selects dev
ice dependent values for contrast, in tens and colour. 

3. 4. 6. i. Contrast 

The syntax of contrast is: 

contrast: CONTRAST (value, value)$ 

It is assumed, that any physical drawing device can 
draw with a minimal and a maximal intensity, which are the 
end point.s of its physical intensity range. (The maximal 
intensity always represents "light", the minimal "dark", 
i.e. on a plotter, these two intensities are determined by 
the reflectivity of the paper, respectively the blackness of 
the ink. ) 

For every device a mapping must be defined from the in
terval [0, 100] (the contrast range) to the physical intensi
ty range. contrast specifies a subrange of the contrast 
range, i.e. fixes indirectly the lowest and highest physical 
intensity, that can be used. 



Examples: 

CONTRAST ( 0, 100 ): highest possible contrast. 
CONTRAST ( 50, 50 ): no contrast, one intensity. 

~-1•2· ~- Intensity 

Intensity is syntactically described by: 

intens: INTENS (value)$ 

65 

and determines the brightness of the registration method. 
value may have as value a real number from the interval 
(0,100). The corresponding physical intensity used by the 
drawing device is determined as follows. There is a linear 
mapping from the intensity range (0,100], to the contrast 
range (a,bJ (0 <= a<= b <= 100), specified by contrast. 
So, a value in the intensity range determines a value in the 
contrast range, which determines the physical intensity, via 
the mapping from the contrast range to the physical intensi
ty range. 

Examples: 

INTENS ( 100) 
INTENS(0) 

= maximal intensity 
= minimal intensity 

There is an important distinction between invisible 
lines (i.e. lines drawn with value INVISIBLE for 
visibility) and lines with zero intensity. In the former 
case the order in which the invisible lines are drawn is not 
defined and consecutive invisible lines may even be replaced 
by one invisible line. In the latter case the drawing order 
is completely defined and the kind of optimizations just 
mentioned are not allowed. 

3. 4. 6. 3. Colour 

On a mono colour (black/white) drawing device, 
contrast and intensity are sufficient for the specification 
of the different shades of "grey" in the drawing. 

Examples: 

INTENS ( 100 ) 
INTENS ( 50) 
INTENS ( 0) 

white. 
grey. 
black. 

(These examples assume a contrast range with length not 
equal to zero. ) 

On a multi-colour device, the contributions of the 



66 

three primary colours (red, yellov, blue) to the total in
tensity, specified by contrast and intensity are defined by 
colour. colour is syntactically described by: 

colour: COLOUR (value, value, value)$ 

The ratio between the three values is the ratio between 
the primary colour intensities; values may denote arbitrary 
real numbers. 

Examples: 

COLOUR C l 00 , 0 , 0 ) : 
red, with an intensity equal to the total intensity. 

COLOUR C 0 , l 0 , l 0 ) : 
green; Yellow and blue each have half of the total in
tensity. 

COLOUR ( l 000 , l 000 , 1000 ) : 
white; Red, yellow and blue each have one third of the 
total intensity. 



67 

3. 4. 7. De tee ti on 

In this section it will be shown how attributes can be 
used to model the char-acter-istics of a detection mechanism. 
detection pr-ovides exter-nal r-efer-ences to par-ts of the 
picture. It divides the picture in units that may be sub
jected to fur-ther- manipulations. 

REMARK 

The detection attribute pr-ovides the br-idge between the 
i-nter-active and not inter-active par-ts of ILP. It is 
clear- that this br-idge should be designed car-efully and 
that it affects both par-ts of the language. At this 
moment, only the not inter-active par-t of ILP is de
fined. Major- pr-oblems ar-e involved in the design of 
this br-idge if the inter-active function of ILP in a 
computer- gr-aphics system is taken into account: 

A labelling or- addr-essing scheme must be 
designed to alloY selection of any par-t 
of the ILP gr-aph str-uctur-e. 

Modification oper-ations on the ILP gr-aph 
str-uctur-e must be defined, which r-esult 
in a compact r-epr-esentation of the 
modifications (design goal). 

A descr-iption method for- moving pictur-es 
must be designed. 

The above r-equir-ements must be r-econ
ciled with the concept of i/o symmetr-y 
(design goal). 

The impor-tant facility of pictur-e manipulation must be 
designed ,.,,,1th the help of ILP pr-imitives. 'we Yant to apply 
ILP to str-uctur-e this par-t of the gr-aphics system just as it 
str-uctur-es the basic gr-aphics oper-ations. In accor-dance 
with the over-all functions of ILP, it is ther-efor-e r-equir-ed 
to solve these pr-oblems in such a way, that an ILP gr-aph 
str-uctur-e can be manipulated inside ILP itself. At pr-esent 
this is not the case. Some manipulation on these gr-aphs 
can, however-, be descr-ibed in this r-epor-t thr-ough the 
descr-iption method for- the semantics of ILP, for- which an 
(infor-mal) metalanguage is used. Mor-e gener-al manipula
tions, like for- example edit oper-ations, can be descr-ibed 



68 

neither inside ILP, nor in the metalanguage. One 
vent another metalanguage for that purpose. 
better however, to extend ILP with appropriate 
tions to achieve i/o symmetry. The detection 
only solves the first of the four problems: An 
scheme for picture nodes is given. 

could in~ 
It is far 
construc

mechanism, 
addressing 

Three entities are required to describe detection. A 
detector is an external process (which for example can in~ 
volve lightpen, tracking cross or even some combination of 
these), that is used to select nodes in the ILP data struc
ture. A detector has a name which is part of the environ
ment when this detector is active. Nodes in the data struc
ture must define by which named detectors they can be 
selected and for each of these, which identification string 
must be returned to the user if selection occurs. Thus 
detectors with different names can be used to search the 
data structure. The remaining entities are the detectant 
set and possibly a detectant. 

Only picture_elements can be pointed at. Nevertheless, 
all nodes on the path from root_picture to this particular 
picture_element must be potential candidates for selection. 
The detectant set is a subset of these nodes, and the detec
tant (if defined) is a preferred element of this subset. 
They are formed by applying combination rules to the 
detection attributes (see below). Whenever a node is 
detected, the string associated with it (for the currently 
active detector) can be returned to the user. This provides 
him with a facility for identification of the various detec
tion points. During elaboration the detectant set and 
detectant are constructed, and preserved in the state. 
Their value can be returned to the user or to the applica~ 
tion program, when, during elaboration of a picture_element, 
this element is subjected to a selection action. Initially 
detector and detectant are undefined and the detectant set 
is empty. 

The detection attribute has the following syntax: 

detection: DETECT de tee tor proper _string I 
SETDEL detector proper _string 
UNDETECT detector$ 

detector: empty I 
dname $ 

The proper _string is the label returned to the user when the 
node is detected. Each detector is identified by a name 
(dname). There is a common detector which has no name. 
Switching from one detector to another is possible by exter
nal action which consists of selecting a new name or the 
common detector. 



69 

In a short-hand notation, and disregarding dnames and 
proper_strings, the value of the detection attribute at each 
node can be any of the following six: 

AD absolute detectable 
RD relative detectable 
AS absolute detectant set element 
RS relative detectant set element 
AU absolute undetectable 
RU relative undetectable 

We will call these values the principle values of the 
detection attribute. The absolute/relative value originates 
from the prefix that can be attached to all attributes. As 
will be seen from the following, prefixing a detection 
attribute at a node with ABS, acts as putting up a fence at 
that node: when pointing at some picture_element, all nodes 
beyond the fence on the path from picture_element to 
rootpicture are undetectable for all detectors. 

Detection is a type 3 attribute. The application 
universe elements are collections of pairs CDS,DT), where DS 
is an arbitrary detectant set and DT is either empty or an 
element from DS, in which case DT is the detectant. The de~ 
fault application universe element is the pair: 

(empty detectant set, empty). 

The unit application universe element is identical to the 
default element. The application universe element 
corresponding to a single detection attribute_class element 
consists of a detectant set containing only a reference to 
the node where the attribute occurred, and a detectant which 
is either empty or has that same reference as value. 

The combination rules work as follows. The LIN list is 
scanned from left to right. Whenever a neY detection 
attribute is encountered, the corresponding application 
universe element is combined with the application universe 
element, obtained from its predecessor in the list. The 
combination rule actually taken depends on the principal 
value of the new attribute as listed below. This process 
starts, using the unit application universe element. 

AD the node is detectable and becomes the detec
tant and only element of the detectant set, 
for the detector specified in the attribute. 
The detectant sets of all other detectors are 
made empty, and the detectants are made unde
fined. 



70 

AS 

AU 

RD 

RS 

RU 

the node is detectable and becomes the only 
element of the detectant set of the detector 
specified. The node is however not the 
detectant of that set. The detectant sets of 
all other detectors are made empty and the 
detectants are made undefined. 

the node is undetectable. The detectant sets 
of all detectors are made empty and the 
detectants are made undefined. 

the node is detectable and is made the detec
tant of the current state for the detector 
specified. It supercedes as detectant any 
ancestor which was specified as such before. 
All other information remains unchanged. 

the 
the 
the 

The node is detectable and is added to 
detectant set of the current state for 
detector specified, without becoming 
detectant. Everything else remains as it 
was. 

The node is undetectable for 
specified and so are all 
Detectant sets and detectants 
detectors remain as they were. 

the 
its 
of 

detector 
ancestors. 
all other 

It should be noted that, in accordance with the general 
semantics of prefixes, the use of "ABS" leads to the reini
tialization of the detectant set and the detectant, whereby 
all previous values (even of other detectant sets) are to
tally disregarded. The effect of principle value "RU'' may 
seem Relatively Unexpected, because it can modify the effect 
of previously encountered detection attribute_class el~ments 
anywhere on an element path. detection is the only 
attribute_class discussed so far, where "REL" can have this 
property. This is caused by the fact, that it is the only 
type 3 class, encountered in this report. 

Example: 

Consider the following ILP graph, in which nodes l through 4 
are WITH ... DRAW nodes and nodes 5 through 7 are 
picture_element nodes. 



AD dname 1 , 

RD dname2 
/1\ 

I I \ 
I I \ 

I I \ 
I I \ 

/ I \ 
I I \ 

/ I \ 
/ I \ 

/ I \ 
2 3 4 

AU RU dname I RU dname 2 
I I I 
I I I 
5 6 7 

71 

Node I can be detected by the detectors named dnamel and 
dname2. It is impossible to detect this node by selecting 
picture_element 5, selection of picture_element 6, respec
tively 7, only leads to detection of node 1, when the detec-
tor dname2, respectively dnamel is active. 

The nodes of this graph are visited during elaboration 
in the order: l, 2, 5, 3, 6, 4, 7. 'When detector "dnamel" is 
active, the application universe elements contained in the 
state of these nodes are shown in the following application 
universe element table: 

--------------------------------------------------------1 
I application universe element of state I 

node 1---------------------------------------1 
I detectant set I detectant I 

----------------1---------------------1-----------------I 
I I empty I none I 
2 I l I I I 
5 I empty I none I 
3 I I I I I 
6 I empty I none I 
4 I 1 I l I 
7 I I I 1 I 

---------------------------------------------------------1 

If detector dname2 is active instead of dnamel this table is 
valid after the rows for node 7 and node 6 have been inter
changed. 



72 

Example: 

AD dname1, 
RD dname2 

I 
I 
2 

RD dname 1, 
RS dname2 

I 
I 
3 

RS dname 1 
I 
I 
4 

AS dname1 
I 
I 
5 

The application univeLse element table would be: 

1---------------------------------------------------------I 
I I application univeLse element of state I 
I node 1-----------------------------------------------I 
I I dname I I dname2 I 
I l-----------------------1-----------------------I 
I I det set I detectant I det set I detectantl 
1--------!-----------1-----------1------------1----------I 
I 1 I empty I none I empty I none I 
I 2 I I I I I 1 I 1 I 
I 3 I 12 I 2 I 12 I 1 I 
I 4 I 123 I 2 I 12 I I I 
I 5 I 4 I none I empty I none I 
1--------1-----------1-----------I------------I----------I 

REMARK 

So faL we have not Lelated the pointing action to visi
bility aspects. ApaLt fLom detectable, each pLimitive 
can also be visible OL invisible. Many haLdwaLe point
ing devices (e.g. lightpen) identify detectability and 
visibility. We have delibeLately chosen foL the 
sepaLate concepts, because we can give a meaningful in
teLpLetation foL each combination of (in)visibility and 
(un)detectability. FoL instance, in oLdeL to change an 
invisible move, one must fiLst identify it. 



73 

3. 4. 8. Coordinate mode 

The coordinate mode attribute class is specified by the 
syntax rule: 

coordinate mode: FIXED ! 
- FREE$ 

vlhen the coordinate_mode has value FIXED, positioning infor
mation represented by a dimensional_value is taken to mean 
an absolute position. vlhen it has value FREE, the absolute 
position is found, by adding the dimensional_value to the 
untransformed pen position (see 3.5. l.). coordinate_mode is 
a type 2 attribute, which is concatenated according to: 

REL CM1 <> REL CM2 -> REL CM2, 

where CM2 is not the unit element. (Remember, that at the 
time of concatenation, all remaining attributes have prefix 
"REL"). In other words, at any time during elaboration, the 
part of the state, representing coordinate_mode, has simply 
the value that has last been encountered. 

3. 4. 9. Control 

The syntax for control is: 

control: MACHINEDEPENDENTCONTROL proper _string $ 

control is an instrument for the specification of drawing 
machine dependent control information, like paper feed, 
clear screen and so on. In general nothing can be said 
about the oddities of machine typical control information. 
Hence only a, further unspecified, proper _string, is 
transmitted to the drawing machine. 

The concatenation rule for control amounts to string 
concatenation. 

~- 1· ~- Vi s i b i l i t y 

The attribute visibility has the syntax: 

visibility: VISIBLE I 
INVISIBLE$ 

vlhen the state of a picture contains value INVISIBLE for the 
visibility attribute_class, this picture will not be drawn 
during elaboration. Nevertheless it will be elaborated, to 
update the environment properly. The current pen position 
(see 3.5.1.) must be updated, and the detection 
attribute class elements must be evaluated, since invisible 



74 

pictures may be detected. 

The concatenation rule is: 

REL V, <> REL V2 -> REL V2 

where V1 and v2 are visibility attribute class elements, and 
V2 is not the unit element. 



75 

3. 4. I I. Attribute matches 

How attribute matches contribute to a state has formal~ 
ly been described in 3.4 .. 

Conceptually, attribute_matches are a primitive form of 
the WITH ... DRAW construction, operating on the 
picture_element level. They inhibit or permit the effect 
of all elements of their class that lie on the element path 
of the picture element. If an inhibiting match is used, 
these elements are replaced by the default element of the 
attribute_class (see 3.4.12.). picture_elements may contain 
two levels of attribute matches. The matches of the first 
level are written directly following the picture_element tag 
(e.g. LINE). The matches of the second level are written 
directly preceding picture_element values like 
dimensional_values, curve_values etc. The first level of 
matches apply to all picture_element values unless a second 
level match of the same class is specified. In that case 
only, the picture_element value directly following has the 
second level match for that class. All attribute matches 
not specified on any of the two levels are taken to -be non 
inhibitive, i.e. those that leave the current state un~ 
changed. In this way, the concept of a global state with 
local exceptions is also realized at the picture_element 
level. 

The correspondence 
attribute_classes is given 

match 

TF 
DT 
ST 
PN 
CM 
vs 

between attribute matches 
in the following table: 

class 

transformation 
detection 
style 
pen 
coordinate mode 
visibility 

3. 4. 12. The default attribute 

and 

With every attribute_!.:lass corresponds a default ele
ment, according to the following table: 



76 

class 

transformation 
detection 
control 

pen 
coordinate mode 
style line_style 

typographic 
point_style 

visibility 

default value 

unit matrix transformation 
UNDETECT, i.e. undetectable 
MACHINEDEPENDENTCONTROL "", 
i.e. the empty string 
PENFAULT 
FIXED, i.e. abs. positioning 
PERIOD (100),i.e. solid line 
MAP ( 1, RESETJ 
THICKCTHICKFAULT) 
TYPFAULT 

DOT 
VISIBLE 

Apart from style values, the defaults are self explana
tory. The defaults for style are as follows. Default 
linestyle is a solid line, when however the period is speci
fied explicitly, default map is such, that the pattern is 
reset for every new LINE. The default for THICK is denoted 
by THICKFAULT, which stands for the most convenient thick
ness, available on the device, on which the drawing defined 
by the ILP program is to be drawn. Hence, THICKFAULT is 
device dependent. The default value for typographic is 
TYPFAULT which is discussed in 3.4.5.3.. However, 
typographic has the atoms font, size, italic and bold. When 
certain atoms are specified, but others not, the latter 
again take device dependent values. The default for 
point_style is DOT, which denotes a device dependent spot. 
The default value for POINTSTYLE typographic is the same as 
for ordinary typographic. The default POINTSTYLE token 
depends on the selected font, but will be a 'point' when the 
font contains one. The default for pen is PENFAULT (see 
3.4.6.). If only one atom of pen is specified, the other 
again assumes a device dependent value. 



77 

3. 5. Picture Elements 

A picl:ure_element is a language primitive of ILP. Each 
!LP-program eventually specifies a list of picture_elements 
(end nodes of the graph represented by the ILP program). A 
picture_element is syntactically described by: 

pi cture_element: coordinate_type 
text I 
generator 
NIL$ 

We will now discuss the various picture_elements. 

~. ~-1• Coordinate ~ 

The syntax rules for coordinate_type picture_elements 
are: 

coordinate_type: type attribute_matches 
( coordinates ) $ 

Such a pict:ure_element consists of a type, attribute_matches 
and coordinates, in conformity with the syntax rules: 

type: POINT I 
LINE I 
CONTOUR$ 

coordinates: coordinate 
coordinates 

, coordinate $ 
coordinate: attribute matches 

coordinate value 
attribute matches -

(-coordinate values ) $ 
coordinate values: coordinate value -, 

- coordinate _values , 
coordinate value $ 

coordinate value: dimensional value I 
- pp I -

EP $ 

The attribute matches in the syntax rule for 
coordinate __ type are the first level matches. Those in the 
rule for coordinate are the second level matches. 



78 

PP ancj EP ar-e special coordinate_values, defined as 
follows. 

At any moment dur-ing elabor-ation, the most r-ecently 
visited point in the unit user- space (see 3.3.1 .) is called 
the tr-ansfor-med pen position. •J The tr-ansfor-med pen posi
tion is stor-ed in the envir-onment as a dimensional value. 
The untr-ansfor-med pen position, which is also par-t of the 
envir-onment, is defined as the r-esult of applying to the 
tr-ansfor-med pen position, the inver-se of ever-y matr-ix 
tr-ansfor-mation and subspace tr-ansformation contained in the 
cur-r-ent state. Hence, whenever- dur-ing elaboration of a 
picture, the untr-ansfor-med pen position is used (implicitly 
or- explicitly), it has the coordinate_value compatible with 
the coordinates occurr-ing in the picture. 

With t::,he help of the untr-ansformed pen position, two 
special coordinates are defined: EP and PP. EP is mnemonic 
for- element position PP for- picture position. During ela~ 
boration of a picture_element, EP denotes the value of the 
untr-ansformed pen position just prior to the elaboration of 
this element. PP denotes the value of the untr-ansformed pen 
position just befor-e the star-t of the elaboration of the 
smallest picture enclosing the picture_element in which PP 
is referenced. 

Before the elaboration of a rootpicture starts, 
transformed pen position, untransformed pen position, PP and 
EP all have as value the unit cube origin coordinates. Each 
time a subspace selection occurs, transformed pen position 
is set to the value of the subspace origin in user unit 
space coordinates. Untransformed pen position, PP and EP 
then have the subspace origin in subspace coordinates as 
value. This effect is similar to the effect of coordinate 
transformations. For this reason subspaces can be converted 
to coordinate transformations (which can not be inhibi. ted, 
see 3.4.2.l.). PP allows among other things the specifica
tion of subp i. c tures that leave the pen position where it was 
at the start, by adding a picture like 

WITH INVISIBLE DRAW POINT PP 

as the last element to the subpicture. 

Upon ceturn from subspace picture, the transformed pen 
position cemains where it is left by the picture. The un
transformed pen position is expressed in terms of the re
slored coordinate system and PP is restored fcom the en
vironment. EP needs not to be restor-ed at all. It can only 

•J The untransformed pen position (as vell as the other pen positions) are abstract enti
ties, corresponding vi th a point in user space, and not vi th a physical object like a 
plotter pen. This difference is particularly important vhen port transformations are 
used, or the visibility attribute_class has value INVISIBLE. 



79 

be used inside picture_elements. Hence, it will be copied 
from the most recent untransformed pen position at the be
ginning of that picture_element. 

The primitive action embodied by a coordinate_type 
picture_element can be described as follows. First of all 
the row of coordinates specifies a series of positions. The 
positions are found in either of two ways, depending on the 
value of the coordinate mode ( see 3. 4. 8. ) : 

In the FIXED-state, the coordinate_values are 
absolute values with respect to the current 
origin. 

In the FREE-state, the coordinate _values are 
offsets from the untransformed pen position 
(incremental mode). 

This series of positions is the same for all types. The type 
is used to specify a "polygon", that contains these posi
tions as vertices. The first and last vertex of the polygon 
however are different for different types. Let the un
transformed pen position before the elaboration of some 
picture_element be x. Let the series of positions be 
represented by c1, c2, ... , c 0 • Then the polygon to be drawn 
is: 

In case of type LINE: x-c1- ... -c 0 

In case of type CONTOUR: c,-ci

The possibility x-c,- ... -cn~x, can be obtained by adding 
the special coordinate denoted as EP to the head of the row 
of coordinates of type CONTOUR. This produces a closed po
lygon witn the original pen position as the first (and last) 
value, e.g.: 

WITH FREE DRAW 
CONTOUR CM ( EP ; [ 0, I 1 ; [ I , 0 1 ; [ 0, - I 1 ) 

specifies a square that begins and ends in the untransformed 
pen position, valid at the start of the elaboration of this 
picture. If we negate CM in this example, we also get a 
closed polygon which starts and ends in the pen position. 
However, we cannot say what the shape will be until we know 
the pen position. 

Next all transformations of the current state are ap
plied to the dimensional_values of the coordinates. This 
establishes which positions the pen will visit while a 
POINT, LINE or CONTOUR is elaborated. What is actually 
drawn, and what route is actually taken, going from one po-



80 

sition to the next, depends on the type and the attributes. 
The attribute_class visibility, and its match VS specify, 
whether anything will be drawn at all. In the state 
INVISIBLE, the route is followed as a sequence of invisible 
moves. In the state VISIBLE, it depends on the yalue of the 
attr ibute_classes style and pen, and their matches ST and 
PN, how the moves will actually be drawn. 

There is, apart from the initial vertex, a second fun~ 
damental difference between POINTs and LINEs. For LINEs the 
route between successive positions defined by the 
coordinates is always a straight line, which will be drawn 
according to the current style functions. The route between 
POINT positions is undefined. For this reason it is impos
sible to apply any line_style function to the route between 
these points. It is not defined in which order the posi
tions have to be visited, with the exception of the last 
one. Hence the only style functions for POINTs are those 
which specify by which symbol (centered around the "point" 
position), the POINT will be represented. On the other 
hand, it is possible to specify a line_style for LINEs which 
shows the positions as points. In that case the initial un~ 
transformed pen position is always included. With respect 
to style functions the CONTOUR behaves in a LINE~like 
manner. 

In the next example the same row of coordinates is 
drawn as POINT, LINE, CONTOUR and EP-contour respectively. 
In each case the initial pen position, marked as O is the 
same. 

LINE CONTOUR POINT 

REMARK 

A contour has the property that its beginning and end 
coincide. The coordinates of a contour are not neces
sarily coplanar. Is it useful to add contours which 
consist of coplanar points? 



81 

It might be advantageous to add a prec1s1on specifica
tion to coordinates. The denotation of values remains 
the same for all precisions but their implementation 
may be different (floating point, long and small in
teger etc.). In this manner values which lie in a 
given range can be stored more efficiently. Precision 
is at present not a part of ILP. 

3. 5. 2. Text 

Objects with type TEXT enable the production of 
as part of a picture. The syntax rules are: 

text: TEXT attribute matches 
(strings)$ 

strings: string I 
strings, string$ 

string: attribute_matches proper _string 
attribute matches 

(-proper _strings ) $ 
proper _strings: proper _string I 

proper _strings , proper _string $ 

texts 

The value of text is a row of strings, which are build 
up from tokens. Tokens are selected from fonts. Each font 
contains at most 256 tokens. If the size of the character 
set of some device is smaller than 256, a device dependent 
escape mechanism is required to provide token values in the 
range [0-255]. Change of font is possible by means of the 
typographic style attribute. In principle an unlimited set 
of fonts can be used in an ILP program. 

REMARK 

At present the font selection mechanism and the escape 
mechanism contain some questionable choices. Some un
solved problems are: 

Should the escape mechanism be incor
porated in ILP or is it better to leave 
its specification to an implementor of 
ILP, or even to the implementor of the 
conversion routine from ILP to a specif
ic device? In the latter case the as
sumption is made that token values from 
0 to 256 can be represented symbolically 
by characters in an ILP program. This 
can be solved fo~ binary ILP-files, but 
how is portability of symbolic ILP-files 
achieved? 



82 

Should ILP be extended with a facility 
to compose tokens and fonts? 

An important aspect of text values is the way they are 
positioned, since nowhere in a text value, a coordinate can 
be specified, the position must be deduced from the current 
environment. No explicit page or layout attribute exists. 
text values are always positioned parallel with the x~axis 
and relative to the pen position. No limit is set to the 
maximal size of text values. Layout characters have a mean~ 
ing, relative to the pen position (EP) of the current text 
value or relative to the current line of text. If text and 
other picture_elements are mixed, layout characters can not 
have a meaning, relative to previous text values. 

The above characterization of text is still primitive. 
Extensions of the text mechanism can be expected. 

3.5.3. Generator 

So far we have encountered primitives with explicit 
values. The remaining three types are generators of values. 

A generator is syntactically described by: 

generator: symbol I 
curve I 
template$ 

The semantics of a picture_element of type generator 
are defined as follows. 

Each generator contains a number of gnames. When a 
generator is encountered by the elaboration process, this 
process activates some external mechanism for every gname of 
the generator. Each mechanism generates an ILP graph, 
corresponding to a picture, whereafter these graphs are com
bined in a new graph of the same type·. This graph replaces 
the picture node corresponding to the generator, after which 
the elaboration process continues with the subgraph just in
serted. The picture generated, however, is considered as 
one indivisible action. This means that manipulations can 
only be defined for that picture as a whole. In particular 
detection of parts of the elaborated picture is impossible. 

If one removes 
the genera tor 
but a new type 
duce a more 

REMARK 

the requirement of indivisible action, 
no longer. constitutes a picture_element, 
of picture. The possibility to intro
general picture construct, together with 



83 

the (or-thogonal) concept of declaring any picture as 
indivisible is still under investigation. 

To guar-antee, that the r-esult of the r-eplacement is 
again a cor-r-ect gr-aph, t'w'o demands must be met: 

The gener-ated ILP gr-aph must be complete, 
i.e. it may not contain r-efer-ences to unde
fined nodes. To facilitate statical checking 
of this pr-oper-ty, the follo'w'ing r-ule must be 
obeyed. The picture cor-r-esponding to the 
gr-aph may not contain pnames or- anames of ob~ 
jects, defined in the picture program that 
contains the generator, unless these r-efer-
ences Cpnames or- anames) ar-e passed as 
template parameters (see 3.5.3. 2. 2.). 

In the picture descr-ibing the gener-ated 
graph, all gener-ated di mens i onal_values, 
matrix values etc. must have dimensions in 
accor-dance 'w'ith that of the envir-onment and 
eventually gener-ated subspaces. 

generators pr-ovide a libr-ar-y facility. Because the na
tur-e of the libr-ar-y elements is not defined inside ILP, they 
ar-e implementation, and application dependent. Never-the
less, the inter-face bet'w'een the libr-ar-y and ILP (the 
generator) is defined inside ILP, and hence does not depend 
on a specific implementation. 

REMARK 

Apar-t fr-om the libr-ar-y aspect, generators for-m, togeth
er- with the detection mechanism, the connection between 
the inter-active par-t of futur-e ILP ver-sions and the 
cur-r-ent ILP. Because the detection mechanism (to be 
used, among other- things for- pictur-e identification), 
cannot r-each below' picture_element level, a generator 
is an instr-ument for- er-eating par-ts of pictur-es 'w'ith 
highly contr-olled detection and hence modification pos
sibilities. For- instance, a libr-ar-y element that 
does not contain a detection attribute, can be con
sicier-ed as a "fr-ozen" pictur-e par-t. 



84 

3. 5. 3. I. Symbol 

The syntax for symbol is: 

symbol: 
gnames: 

SYMBOL gnames $ 
gname I 
gnames , gname $ 

Every gname of a symbol corresponds with a root_picture 
in a previously defined ILP program. In this case, the 
picture graph is generated as follows. 

Every gname represents a picture graph, as defined in 
3.2.. If the symbol contains more then one gname, all pic
ture graphs are combined into one, by creating a picture 
node, having all these graphs as direct descendants. The 
(left-right) order of the descendants corresponds to the 
textual order of the gnames. In this case it is necessary, 
that all gnames correspond to root_pictures of the same di
mension. 

~- ~- ~- ~- Curve 9nd template 

The generation mechanism activated by a curve or 
template can be of arbitrary nature, as long as it produces 
picture graphs of the correct kind. The only demand is, that 
the mechanism is a program that can be invoked by the ela
boration process and generates an ILP picture graph accessi
ble to it. The distinction between curves and templates lies 
in the structure of the picture graphs they produce. 

REMARK 

To facilitate programming of curves and especially of 
templates, a set of basic tools must be designed, that 
generate ILP constructions in a standardized manner. 



3. 5. 3. 2. I. Curve 

The syntax for curve is: 

curve: CURVE type attribute_matches 
( curve_generators ·) $ 

curve_generators: curve_generator I 
curve_generators , curve_generator $ 

curve_generator: attr ibute_matches 
curve determinator I 
attribute matches 

(-curve determinators) $ 
curve determinators: curve determinator I 

- curve determinators 
- , curve_determinator $ 

curve_determinator: gname I 
gname ( interval , 

curve parameters ) I 
gname ( curve parameters ) $ 

interval: UNIT I 
(value, value)$ 

curve parameters: curve parameter I 
curve parameters 

, curve parameter $ 
curve parameter: value I 

dimensi onal_value $ 

85 

The semantics of curves will be described in terms of 
elements from ILP programs rather then in terms of the 
corresponding graphs. This will lead to a clearer descrip
tion. In case of a curve , an object of type 
dimensional_values corresponds to every gname. In other 
words, every gname represents a mechanism for the generation 
of dimensional_values. These dimensional_values, together 
with the attribute matches of the curve determinator con
taining the gname can be combined into an- object of type 
coordinate. Then, using the attribute_matches ( if present) 
of the curve a picture_eiement of type type can be formed 
out of these coordinates. The order of the coordinates in 
the picture_element corresponds to the .textual order of the 
gnames. The picture_element thus constructed, is equivalent 
with the generated picture graph, that will replace the 
generator node. 

The parameters of a curve can be (at most) one 
interval, and a number of values or dimensional values. If 
there is an interval, we have a parameter -curve. The 
interval is the domain of a parameter t. The 
dimensional values of the generated picture_element, 
correspond -to different values oft, when t steps through 
the interval. The stepsize can be calculated by the curve 
itself, can depend on a given device, or can be a parameter 



86 

to the cur-ve Ca value). The other- par-ameter-s 
(curveparameters) ar-e either- values or- dimensional values. 
Their- number- and meaning is specific for- each particular
gname dimensional_values could for- instance be used, to 
define some fixed points on-, or- tangents to the .cur-ve. 

3. 5. 3. 2. 2. Template 

The syntax for- template is: 

tenplate: TEMPLATE ( template_generators ) $ 
template _genera tors: template _genera tor I 

template _genera tors 
, template _genera tor $ 

template _genera tor: gname I 
gname ( template parameters ) $ 

template parameters: template parameter I 
template parameters 

, templateparameter $ 
template parameter: value I 

dimensional value 
pname I -
aname I 
dname $ 

A template generator may pr-oduce an ILP pictur-e gr-aph 
of ar-bitr-ar-y str-uctur-e. Because of the fact, that this pic
tur-e gr-aph not necessar-ily r-epr-esents a picture_element, the 
syntax r-ules for- template do not contain attribute_matches. 

Each 9name identifying a gener-ation mechanism has its 
own specific set of par-ameter-s, descr-ibed by 
template _genera tor. pnames or- anames used as par-ameter-s 
must cor-r-espond to root pictures, sub pictures or
attributeJ)acks defined in the ILP pr-ogr-am containing the 
template. These par-ameter-s specify the r-efer-ences 
cor-r-esponding to pnames and anarnes, allowed in the gener-ated 
gr-aph. Name conflicts must be avoided by using unique 
names. 

The pictur-e gr-aphs gener-ated, Cone for- ever-y 9name) ar-e 
combined in one single pictur-e gr-aph, in the same way as is 
done for- symbols. 



87 

1· Design goals and evaluation 

In this chapter, the design criteria of ILP are con~ 
sidered and an analysis is given, to show whether and if so, 
how the stated goals are achieved. 

4. I. Design goals 

Five major design goals can be distinguished: 

Compactness of picture representations, to 
reduce the enormous amounts of data which are 
normally required for the representation of 
pictures. 

Mutual independence of attributes, to isolate 
the effects of individual attributes and for
bid side effects caused by attributes from 
one class on attributes from another class. 

Symmetry of input and output, which obviates 
the need for separate languages for input and 
output descriptions. 

Embedding, which allows the incorporation of 
ILP in other (high level) programming 
languages. 

Self modification of ILP programs, which al
lows the description of changes in a picture 
in ILP itself. 

Compactness of picture representations can be achieved 
in several ways: 

Multiple occurrences of the same subpicture 
are included only once in the data structure. 

Only necessary coordinate values need to be 
specified, i.e. in a two dimensional space 
two numbers are sufficient to determine a 
coordinate value. 

Coordinate values are packed, i.e. a priori 
knowledge of the range in which coordinate 
values lie is used to determine the most com
pact representation of coordinate values. 



88 

In ILP only the first two methods are used explicitly. The 
first is realized via the subpicture, root picture and at
tribute pack mechanisms. The second is realized with the 
subspace mechanism. Note that the dimension of each coordi
nate value can be determined statically. The th_ird method 
can be applied by an optimizing compiler. 

Apart from the influence of these explicit methods, the 
ILP attribute mechanism has the beneficial effect of factor
ing out common subpictures, since the same subpicture can be 
drawn in contexts with completely different attribute 
values. 

Independence of attributes restricts the ways in which 
attributes can influence each other. This restriction has 
several advantages: 

The semantics of individual attributes can be 
studied in isolation, thus obviating the need 
to consider complex interactions between at
tributes. 

The attributes are easily extensible, since 
new attribute can (by definition) not influ
ence the already existing attributes. 

The restriction of attribute independence seems to be justi
fied, if the already considerable complexity of the seman
tics of independent attributes is taken into account. On 
the other hand certain useful applications of attribute in
teraction are forbidden by this restriction. Line style 
that adapts itself to transformations is an example. 

Symmetry of input and output, means that the same in
termediate representation is used both for drawing and read
ing pictures. The advantage of this method is obvious: only 
one intermediate representation is required. As simple as 
this criterion can be formulated, so difficulty can it be 
achieved. Es~ecially on the input side, a completely new 
set up is necessary, if input can only be provided in the 
form of ILP primitives like picture e+ements, primitive at
tributes or references to pictures. 

Embedding means incorporation of ILP in existing pro
gramming languages. In other words, ILP can be used as a 
model for a graphics system, which can be incorporated in an 
existing programming language. Though the embedding methods 
may be different, the various user interfaces and the under
lying model graphics system remain the same. Algol68G is an 
example of such an embedding, in which Algol68 serves as a 
host language. A major consequence of this embedding stra
tegy is that many features (variables, loop constructions) 
need not be included in ILP since the host language provides 
such facilities. 



89 

Self modification means that, with the help of a local 
editor for building and changing ILP constructions, very 
elaborate edit operations can be described in ILP itself. 
Not only the resulting picture, but also the way it was con-
s true ted can be remembered, if necessary. . 

ence 
bute 
The 
step 

4. 2. 

For both editing and modifying, a sophisticated refer
mechanism is indispensable. It is felt that the attri
mechanism can be used to model such a reference scheme. 
detection mechanism is the first (and sofar the only) 
in this direction. 

Omi ss i ems 

Several features and concepts are not incorporated in 
ILP. Some are not yet understood well enough (time, modifi
cations), others are not included in accordance with the 
embedding ~,trategy. Some of the omitted features are: 

variables, recursion, loop constructions. 
The host language constructions are used. 

Subpictures with parameters, which could be 
used to further compress the picture data. 

Modifications of pictures. It is not yet 
clear how modification operations on the ILP 
data structure must be described in ILP it
self and how selective modifications (chang
ing one line in a subpicture) must be real
ized. 

Time and moving pictures. 
comparable to those for 
tions. 

The problems are 
picture modifica-

Surfaces. The present contours can be used 
to delimit a surface, but better tools are 
needed. 

Surface style, the equivalent of line style 
and point style. Greyscale forms an example. 

Association of non graphical information with 
a picture. 

4. 3. Evaluation 

Some 1essons can be lear--ned from the design of ILP. 

The level of intermediate representation as provided by 
ILP seems adequate. Attention is focussed on a restricted 
problem ar--ea and many problems related with high level 



90 

gLaphics languages and machine dependent issues can be 
CpaLtly) ignoLed. 

A caLeful descLiption of the semantics of dLawing 
opeLations and attLibutes Leveals pLoblems which weLe not 
Lecognized befoLe. Such an analysis LequiLed a consideLably 
gLeateL effoLt, than was anitcipated. 

ILP pLovides an unifoLm inteLface, duLing the design 
phase of a gLaphics system. This implies that eveLy change 
in modification of ILP must be Leflected in all inteLfaces 
between system modules. Note that only the inteLface is 
fully specified and that implementation techniques may 
diffeL fLom module to module. 



REFERENCES 

[lJ W.M.Newman, R.F.Sproull, 
Principles of Interactive Computer Graphics, 
Mc-Graw-Hill, 1973. 

[2] Jose L.Encarna~ao, 
Computer-Graphics, 
Proqrammierung und Anwendung von Graphischen 
Systemen, R.Oldenburg Ver-lag, 1975. 

[3] Donald E.Knuth, 
The art of computer programming, 
Vol !/Fundamental algorithms, 
Addison-Wesley, 1968, pg 305-357. 

[4] P.J.W. ten Hagen, P.Klint, 
H.Noot & T.Hagen, 
Design of an inter-active graphics system, 
Repor- t IW 36/75, 
Mathematical Centr-e, Amsterdam, 1975. 

91 



92 

Appendix l Syntax 

The syntax Lules aLe given in BNF. Non teLminals aLe 
denoted in the foLm non_terminal. The syntax is context 
£Lee. The non teLminal that is defined in a Lule is 
sepaLated by a colon(:). AlteLnatives aLe sepaLated by a 
baL (I). The end of a Lule is maLked with the symbol $. 
TeLminal symbols aLe eitheL special single chaLacteLs fLom 
the following list: 

(){},.; 

OL they aLe delimeteLs denoted in bold 
TERMINAL. The non teLminals not defined in 
all defined in Appendix 2. They constitute 
lexical units. 

capitals e.g. 
this syntax aLe 
the so called 

The syntax as pLesented is diLectly fed into the paLser 
geneLatoL foL ILP. For this reason usual notational conven
tions to make the syntax look moLe compact, have been omit
ted. 

picture_program: pictstruct I 
pictuceprogram pictstruct $ 

pictstruct: namedpicture 
attribute_pack $ 

namedpicture: rootpicture 
subpicture $ 

r o o t _p i c t ur e : PICT dimension pname 
picture.$ 

dimension: DIMLESS 
dim $ 

dim: ( value ) I 
empty $ 

subpicture: SUBPICT dimension pname 
picture . $ 

attributepack: ATTR dimension aname 
attribute . $ 



picture: pname I 
picture_element 1· 
{ pictures } I 
subspace picture I 
WITH attribute 

DRAW picture $ 

pictures: picture I 
pictures; picture$ 

picture_element: coordinate_type 
text I 
generator I 
NIL$ 

coordinate _type: type attribute matches 
( coordinates ) $ 

coordinates: coordinate I 
coordinates 

, coordinate $ 

coordinate: attribute matches 
coordinate value I 

attribute matches 
( coordinate values ) $ 

coordinate values: coordinate value 
coordinate_values , -

coordinate_value $ 

coordinate value: dimensional value 
pp I 
EP $ 

dimensional value: [ values ] $ 

di mens i anal values: di mens i anal value 
dimensi onal_values , -

dimensi onal_value $ 

matrix value: [ dimensi anal values ] $ 

values: value 
values, value$ 

type: POINT 
LINE I 
CONTOUR$ 

subspace: SUBSPACE dim new axes $ 

93 



94 

new axes : pos i ti on ( shift axes ) $ 

shift: dimensional value$ 

position: CURRENT I 
ORIGIN$ 

axes: empty 
, dimensional values$ 

generator: symbol 

symbol: 

gnames: 

curve: 

curve I 
template$ 

SYMBOL gnames $ 

gname I 
gnames , gname $ 

CURVE type attribute_matches 
( curve_generators ) $ 

curve_generators: curve_generator I 
curve _genera tors , curve _genera tor $ 

curve _genera tor: at tribute _matches 
curve determinator I 
attribute matches 

C curve determinators ) $ 

curve determinators: curve determinator 
- curve determinators 

, curve_determinator $ 

curve_determinator: gname I 
gname ( interval , 

curve_parameters ) I 
gname ( curve _parameters ) $ 

interval: UNIT I 
(value, value)$ 

curve _parameters: curve _parameter 
curve _parameters 

, curve _parameter $ 

curve _parameter: value I 
di mens i anal value $ 

template: TEMPLATE ( template_generators ) $ 

template _genera tors: template _genera tor 
template _genera tors 

, template_generator $ 



template _genera tor: gname i 
gname ( templateparameters ) $ 

template parameters: template parameter 
template parameters 

, templateparameter $ 

template parameter: value I 
dimensional value 

str .tngs: 

str.tng: 

pname I -
aname I 
dname $ 

TEXT at tribute matches 
( strings ) $ -

string I 
strings , string$ 

attribute_matches proper _string 
attribute matches 

( proper _strings ) $ 

proper _strings: proper _string I 
proper _strings , proper _string $ 

at tc i but e _ma t ches : emp t y I 

deny: 

attribute matches 

empty 
"' I 
NOT$ 

deny attribute_match $ 

attcibute match: TF 
-OT I 

ST I 
PN I 
CM I 
vs$ 

attcibute: ABS basic attribute 
REL basic attribute I 
basic_attc:ibute $ 

bas.tc attribute: attribute class 
- aname I -

{ attributes } 
NIL$ 

attcibutes: attribute I 
attributes ; attribute$ 

95 



96 

attribute class: transformation 
- detection I 
style I 
control I 
pen I 
coordinate mode 
visibility-$ 

transformation: rotate 
scale I 
translate 
matrix I 
projection I 
affine I 
homogeneous _matrix 
port $ 

rotate: ROTATE value 
AROUND invariant$ 

invariant: ( dimensional values ) $ 

scale: SCALE dimensional_value $ 

translate: TRANSLATE dimensional value$ 

matrix: MATRIX matr ix_value $ 

affine: AFFINE matrix value 

pro J ec ti on : 

dimensional value$ 

PROJECT eye pos i ti on 
ON proJection_space $ 

projection_space: dimensional_value I 
ORIGIN dimensional_value $ 

eye pos i ti on: dimensional _value I 
PARALLEL dimensional value$ 

homogeneous _matrix: 
HOMMATRIX homogeneous_matrix_value $ 

homogeneous _matrix _value: 
[ homogeneous_dimensional_values ] $ 

homogeneous_dimensi onal_values: 
homogeneous _di mens i onal_value I 
homogeneous_dimensional_values , 

homogeneous_dimensi onal_value $ 

homogeneous _di mens i onal_value: 
[ values ] $ 



port: 

window: 

window I' 
window, viewport $ 

WINDOW ( dimensional_value, 
dimensional_value) $ 

viewport: VIEWPORT ( dimensional_value , 
dimensi onal_value ) $ 

style: line_style I 
point_style I 
typographic $ 

line_style: PERIOD ( period_description ) I 
MAP ( value reset ) I 
THICK (value)$ 

pen: PENFAULT 
contrast 
intens I 
colour$ 

per i od_descr ipt ion: dash I 
dash , gap I 
dash , gap , dash $ 

dash: 

gap: 

reset: 

DOT 
value$ 

value$ 

RESETCOORDINATE 
CONTINUE I 
RESETLINE $ 

contrast: CONTRAST ( value 
' 

value 

intens: INTENS ( value ) $ 

colour: COLOUR ( value 
' 

value 
' 

typographic: TYPFAULT 
font I 
size I 
italic 
bold$ 

font: FONT ( value ) $ 

size: SIZE ( value ) $ 

italic: ITALIC ( value ) $ 

) $ 

value ) $ 

97 



98 

bold: BOLD ( value ) $ · 

point_style: DOT I 
POINTSTYLE typographic 
POINTSTYLE marker$ 

control: MACHINEDEPENDENTCONTROL proper _string $ 

coordinate mode: FIXED 
FREE$ 

visibility: VISIBLE I 
INVISIBLE$ 

de tee ti on: DETECT de tee tor proper _string I 
SETDEL detector proper _string I 
UNDETECT detector$ 

detector: empty I 
dname $ 

empty: $ 



Appendix~ Lexical uni ts 

value: unsigned_value 
+ unsigned_value I 
- unsigned_value $ 

uns i gned_value: uns i gned_i n teger 
dee imal fraction I 
unsigned_integer exponentpart I 
decimal_fraction exponentpart $ 

99 

decimal_fraction: unsigned_integer . unsigned_integer $ 

exponent part: e + unsigned_integer 
e - unsigned_integer $ 

unsigned_integer: digit I 
unsigned_integer digit $ 

aname: name $ 

pname: name $ 

gname: name $ 

dname: name $ 

name: letter I 
name letter I 
name digit $ 

proper _string: " any _sequence_of _symbols_not_containing_" " $ 

letter: 

digit: 

marker: 

a I b I C I d e I f 
h I i I j I k l I m 
0 I p I q I [' s I t 
V I w I X I y z I 
A I B I C I D E I F 
H I I I J I K L I M 
0 I p I Q I R s I T 
V I w I X I y z $ 

2 3 4 5 I 6 

" any _symbol, _except_" 

g I 
n I 
u I 

G 
N 
u 

7 I 8 I 9 I 0 $ 

" $ 



100 

INDEX 

ABS, 23 
affine, 56 
AFFINE, 56 
Algol68G, 88 
algorithm ET, 42 
algorithm ETA, 43 
algorithm LIN, 44 
algorithm RAP, 43 
aname, 33 
application universe, 47,69 
AROUND, 53 
atom, 41 
attribute, 40 
attribute arc, 31 
attribute independence, 87 
attribute mixing, 43 
attribute node, 31,32 
attribute_class value, 40 
attribute_match, 21,40 
at tr ibute_matches, 75 
attribute_pack, 17,28 
axes, 38 
basic ILP program, 41 
bold, 63 
CM, 75 
COLOUR, 65 
combination rules, 47 
compactness, 87 
concatenation rules, 20 
CONTINUE, 62 
contrast, 64 
control, 73 
coordinate, 36,77 
coordinate pair, 36 
coordinate, 36 
coordinate_mode, 26, 73 
coordinate_type, 77 
c0ordinate_value, 77 
cs, 75 
CURRENT, 38 
current state, 49 
curve, 26, 84 
CURVE, 84 
curve_determinator, 85 
curve_generator, 85 

curve parameter, 85 
dash, 61 
default element, 21,75 
default value, 41 
DETECT, 68 
detectant set, 68 
detectant, 68 
detection, 27,67 
detector, 68 
dimension, 30 
dimension, 17,30,35 
dimensional_value, 36 
DIMLESS, 17,37 
dname, 70 
DOT, 6 I, 64 
DT, 75 
elaboration, 13: 28 
element path, 42 
element position, 78 
element tree, 42 
embedding, 87 
environment, 28 
EP, 78 
eye pas i ti on , 55 
FIXED, I l, 73 
FREE, l I, 73 
gap, 61 
general dimension rule, 37 
generator, 26,82 
gname, 84 
graph structure, 31 
ROMMATRIX, 56 
homogeneous_matr ix, 56 
intens, 65 
interval, 85 
invariant, 53 
INVISIBLE, 23,73 
italic, 63 
library, 26 
LINE, 10,79 
line_style, 61 
MAP, 12,62 
matrix, 54 
MATRIX, 54 
named_picture, 15,29 



new_ axes, 38 
NIL, 32 
contour, 79 
ORIGIN, 24,38,55 
PARALLEL, 55 
pen, 27 
pen, 64 
PENFAULT, 64 
PER I OD, 1 2 , 6 1 
PICT, 15 
picture arc, 31 
picture element, 9 
picture graph, 31 
picture node, 31 
picture position, 78 
picture_element, 31, 77 
pictureprogram, 28 
PN, 75 
POINT, 10,79 
point_style, 63 
port, 57 
pos.i tion, 38 
PP, 78 
preorder, 13 
priority rules, 48 
PROJECT, 55 
projection, 55 
projection_space, 55 
proper _string, 68, 81 
references, 91 
REL, 23 
reset, 62 
RESETCOORDINATE, 62 
RESETLINE, 62 
rootpicture, 28 
rotate, 53 
ROTATE, 12,53 
rotation, 52 
scale, 54 
SCALE, 19,54 
self modification, 87 
SETEL, 68 
shift, 38 
size, 63 
ST, 75 
state component, 33,49 
state, 11,33,49 
style, 27 
style, 60 
SUBPICT, 15 
subpi cture, 28 
subspace, 35,38,58 
SUBSPACE, 38 
symbol, 26, 84 

1 SYMBOL, 84 
symmetric i/o, 87 
syntax denotation, 8 
syntax, 92 
template, 26,84,86 
TEMPLATE, 86 -
template_generator, 86 
template parameter, 86 
text, 81 
TEXT, 10,8 l 
TF, 51, 75 
THICK, 62 

101 

transf. user coordinate, 36 
transformation, 26 
transformation, 50 
translate, 54 
TRANSLATE, 12,54 
traversing process, 33 
type, 77 
type l attribute, 46 
type 2 attribute, 46 
type 3 attribute, 47 
TYPFAULT, 63 
typographic, 63 
UNDETECT, 68 
UNIT, 85 
unit cube, 25 
unit user coordinate, 36 
unit value, 41 
universe element, 69 
untransf. pen position, 10 
user space, 9,25 
user unit cube, 25,36 
vi ewport, 57 
vi s i bi 1 i t y, 73 
VISIBLE, 23,73 
window, 57 
WI TH ... DRAW, 1 8 




