
Proceedings of the 3rd Workshop on Domain-Specific
Language Design and Implementation

DSLDI’15

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)

storm@cwi.nl

Sebastian Erdweg
TU Darmstadt

erdweg@informatik.tu-darmstadt.de

July 7th, 2015

ar
X

iv
:1

50
8.

03
53

6v
1

 [
cs

.P
L

]
 1

4
A

ug
 2

01
5

mailto:storm@cwi.nl
mailto:erdweg@informatik.tu-darmstadt.de

2

3

DSLDI’15

Introduction

DSLDI’15 is the 3rd workshop on Domain-Specific Language Design and Implementation, which
was held at ECOOP 2015, on Tuesday, July 7th, 2015.
DSLDI’15 was organized by:

• Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)
storm@cwi.nl

• Sebastian Erdweg
TU Darmstadt
erdweg@informatik.tu-darmstadt.de

The submitted talk proposal were reviewed by the following program committee:

• Emilie Balland

• Martin Bravenboer (LogicBlox)

• Hassan Chafi (Oracle Labs)

• William Cook (UT Austin)

• Shriram Krishnamurthi (Brown University)

• Heather Miller (EPFL)

• Bruno Oliveira (University of Hong Kong)

• Cyrus Omar (CMU)

• Richard Paige (University of York)

• Tony Sloane (Macquarie University)

• Emma Söderberg (Google)

• Emma Tosch (University of Massachusetts, Amherst)

• Jurgen Vinju (CWI)

The website of DSLDI’15 is: http://2015.ecoop.org/track/dsldi-2015-papers.

Informal Post-Proceedings DSLDI’15

This document contains informal post-proceedings of DSLDI’15. It contains:

• A snapshot of the home page of DSLDI’15

• The detailed program of the workshop

• The accepted talk proposals.

• A summary of the panel discussion on Language Composition.

storm@cwi.nl
erdweg@informatik.tu-darmstadt.de
http://2015.ecoop.org/track/dsldi-2015-papers

4

5

Program

6

SCROLL - A Scala-based library for Roles at Runtime

Max Leuthäuser

Technische Universität Dresden
Software Technology Group

max.leuthaeuser@tu-dresden.de

Today’s software systems always need to anticipate chang-
ing context. New business rules and functions should be
implemented and adapted. The concept of role modeling
and programming is frequently discussed for decades across
many scientific areas. It allows the modeling and imple-
mentation of context dependent information w.r.t. dynam-
ically changing context. Hence future software infrastruc-
tures have the intrinsic need to introduce such a role con-
cept. Until now the implementation with existing object
oriented languages always requires the generation of a spe-
cific runtime environment and management code. The ex-
pressiveness of these languages is not able to cope with
essential role-specific features, such as true delegation or
binding roles dynamically. In this work we present how a
relatively simple implementation with Scala based on its
Dynamic trait allows to augment an object’s type at run-
time implementing dynamic (compound-) role types. It en-
ables role-based implementations that lead to more reuse
and better separation of concerns.

Currently, only a handful, mostly unusable (e.g. because
they are not providing a running compiler or have been
abandoned by the developer) role-based programming lan-
guages exists. The field of research is highly fragmented,
due to the fact that every research area relies on a dif-
ferent set of role-related features [9]. Therefore it is nec-
essary to establish a basic role concept at runtime and
build an appropriate tooling around it to make it more
useful for developers. A prototypic Scala implementation
for roles (SCROLL - SCala ROLes Language1) was devel-
oped as library approach, enabling the user to specify roles
and context dependent behavior. A basic example of smart
(autonomous) cars driving around demonstrates part of its
capabilities (see page 2). Two persons (class Person) and
two cars (Car) are bound to the roles Driver, Passenger
and NormalCar, SmartCar respectively. Each role modifies
the default behavior implemented in the players classes, as
demonstrated at runtime in the console output listing. Dy-
namic role selection (like selecting an object playing the
Source location role) supports filtering for attributes and
evaluating function call results (e.g. line 17 and 26, right
listing).

Internally the following two technical aspects are the
most considerable ones. First, making use of the Dynamic
Trait. All calls to role functions (i.e. functions that are not
natively available on the player object) are translated by
the compiler using certain rules2. These are adjustable re-
sulting in customizable, dynamic role dispatch. Second, ap-
plying implicit conversions. Scala’s implicit classes al-
low for packing in player and role objects to compound dy-
namic types. All important role features are exposed this

1 See: github.com/max-leuthaeuser/SCROLL
2 See: scala-lang.org/api/current/#scala.Dynamic

way, e.g. adding, removing and transferring roles or ac-
cessing role functions and attributes with the +-Operator
(e.g. in line 14, right listing).

The following limitation (apart from some role features
not implemented yet, see table 1) is the major subject of
the future work on SCROLL. The underlying technique
(compiler rewrite rules) hides important typing informa-
tion to the tooling typically used by most developers, i.e.
IDEs with debugger and link tracers. Writing plugins for
those (e.g. Eclipse, Intellij) overcoming this issue would be
one solution and is currently under development.

Finally, it is necessary to investigate how well this im-
plementation blends into coeval approaches. We use a clas-
sification scheme established in two successive surveys on
role-based modeling and programming languages, namely
[9,11]. This revolves 26 classifying features of roles incor-
porating both the relational and the context-dependent
nature of roles (see table 1). The most sophisticated, com-
peting approach so far is ObjectTeams/Java [6]. It allows
to override methods of their player by aspect weaving. Be-
sides that, it introduces Teams to represent compartments
whose inner classes automatically become roles. Support-
ing both the inheritance of roles and teams leads to family
polymorphism [7]. On the downside, it does not support
multiple unrelated player types for a role type. In sum
SCROLL provides a simple and clean testing playground
in an unmodified Scala for using roles at runtime.

F
e
a
tu

re
[9
]

C
h
a
m

e
le
o
n

2
0
0
3
[4
]

O
T
/
J

2
0
0
5
[6
]

R
a
v
a

2
0
0
6
[5
]

p
o
w
e
r
J
a
v
a

2
0
0
6
[1
]

R
u
m

e
r

2
0
0
7
[2
]

S
c
a
la
R
o
le
s

2
0
0
8
[1
0
]

N
e
x
t
E
J

2
0
0
9
[8
]

J
a
v
a
S
t
a
g
e

2
0
1
2
[3
]

S
C
R
O
L
L

2
0
1
5

1. � � � � � � � � �
2. � � � � � � � � �
3. � � � � � � � � �
4. � � � � � � � � �
5. � � � � � � � � �
6. � � � � � � � � �
7. � � � � � � � � �
8. � � � � � � � � �
9. � � � � � � � � �
10. � � � � � � � � �
11. � � � � � � � � �
12. � � � � � � � � �
13. � � � � � � � � �
14. � � � � � � � � �
15. � � � � � � � � �
16. � � � � � � � � �
17. � � � � � � � � �
18. � � � � � � � � �
19. � � � � � � � � �
20. � � � � � � � � �
21. � � � � � � � � �
22. � � � � � � � � �
23. � � � � � � � � �
24. � � � � � � � � �
25. � � � � � � � � �
26. � � � � � � � � �

Table 1: Comparison of coeval approaches for etablishing roles
at runtime based on 26 classifying features extracted from the
literature [9,11]. It differentiates between fully (�), partly (�)
and not supported (�) features.

1 class Person(val name: String)
2 class Car(val licenseID: String)
3 class Location(val name: String)
4

5 class Transportation() extends Compartment {
6 object AutonomousTransport extends Compartment {
7 class SmartCar() {
8 def drive() {
9 info("I am driving autonomously!")

10 }
11 }
12 class Passenger() {
13 def brake() {
14 info(s"I can’t reach the brake. I am ${+this name}

↪→ and just a passenger!")
15 }
16 }
17 }
18

19 object ManualTransport extends Compartment {
20 class NormalCar() {
21 def drive() {
22 info(s"I am driving with a driver called

↪→ ${+one[Driver]() name}.")
23 }
24 }
25 class Driver() {
26 def brake() {
27 info(s"I am ${+this name} and I am hitting the

↪→ brakes now!")
28 }
29 }
30 }
31

32 class TransportationRole(source: Source, target: Target) {
33 def travel() {
34 val kindOfTransport = this player match {
35 case ManualTransport => "manual"
36 case AutonomousTransport => "autonomous"
37 }
38 info(s"Doing a $kindOfTransport transportation with

↪→ the car ${one[Car]().licenseID} from
↪→ ${+source name} to ${+target name}.")

39 }
40 }
41

42 class Target()
43 class Source()
44 }

1 val transportation = new Transportation {
2 val peter = new Person("Peter")
3 val harry = new Person("Harry")
4 val googleCar = new Car("A-B-C-001")
5 val toyota = new Car("A-B-C-002")
6

7 new Location("Munich") play new Source()
8 new Location("Berlin") play new Source()
9 new Location("Dresden") play new Target()

10

11 harry play new ManualTransport.Driver()
12 toyota play new ManualTransport.NormalCar()
13

14 +toyota drive()
15 ManualTransport play
16 new TransportationRole(
17 one[Source]("name" ==# "Berlin"),
18 one[Target]()) travel()
19

20 peter play new AutonomousTransport.Passenger()
21 googleCar play new AutonomousTransport.SmartCar()
22

23 +googleCar drive()
24 AutonomousTransport play
25 new TransportationRole(
26 one[Source]("name" ==# "Munich"),
27 one[Target]()) travel()
28

29 +peter brake(); +harry brake()
30 }

Fig. 1: The SmartCar example (instance code, top) and
the corresponding model code (left).

1 I am driving with a driver called Harry.
2 Doing a manual transportation with the car A-B-C-002 from

↪→ Berlin to Dresden.
3 I am driving autonomously!
4 Doing a autonomous transportation with the car A-B-C-001

↪→ from Munich to Dresden.
5 I can’t reach the brake. I am Peter and just a passenger!
6 I am Harry and I am hitting the brakes now!

Fig. 2: Running the SmartCar example generates the
console output shown above.

Acknowledgements

This work is funded by the German Research Foundation (DFG) within the Research Training Group “Role-based Software
Infrastructures for continuous-context-sensitive Systems” (GRK 1907).

References

1. Baldoni, M., Boella, G., van der Torre, L.: Roles as a coordination construct: Introducing powerjava. Electr. Notes Theor.
Comput. Sci 150(1), 9–29 (2006)

2. Balzer, S., Gross, T., Eugster, P.: A relational model of object collaborations and its use in reasoning about relationships.
In: Ernst, E. (ed.) ECOOP. Lecture Notes in Computer Science, vol. 4609, pp. 323–346. Springer (2007)

3. Barbosa, F.S., Aguiar, A.: Modeling and programming with roles: introducing javastage. Tech. rep., Instituto Politécnico
de Castelo Branco (2012)

4. Graversen, K.B., Østerbye, K.: Implementation of a role language for object-specific dynamic separation of concerns. In:
AOSD03 Workshop on Software-engineering Properties of Languages for Aspect Technologies (2003)

5. He, C., Nie, Z., Li, B., Cao, L., He, K.: Rava: Designing a java extension with dynamic object roles. In: Engineering of
Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE International Symposium and Workshop on. pp. 7–pp.
IEEE (2006)

6. Herrmann, S.: Programming with roles in ObjectTeams/Java. Tech. rep., AAAI Fall Symposium (2005)
7. Herrmann, S., Hundt, C., Mehner, K.: Translation polymorphism in object teams. Tech. rep., TU Berlin (2004)
8. Kamina, T., Tamai, T.: Towards safe and flexible object adaptation. In: International Workshop on Context-Oriented

Programming. p. 4. ACM (2009)
9. Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U.: A metamodel family for role-based modeling and program-

ming languages. In: Combemale, B., Pearce, D., Barais, O., Vinju, J. (eds.) Software Language Engineering, Lecture
Notes in Computer Science, vol. 8706, pp. 141–160. Springer International Publishing (2014), http://dx.doi.org/10.

1007/978-3-319-11245-9_8
10. Pradel, M., Odersky, M.: Scala Roles - A lightweight approach towards reusable collaborations. In: International Conference

on Software and Data Technologies (ICSOFT ’08) (2008)
11. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling. Data & Knowledge Engineering

35(1), 83–106 (2000)

A case for Rebel
A DSL for Product Specifications

Jouke Stoel
CWI, Amsterdam, The Netherlands

jouke.stoel@cwi.nl

1. Introduction
Large service organisations like banks have a hard time
keeping grips on their software landscape. This is not only
visible while performing maintenance on existing applica-
tions but also when developing new applications.

One of the problems these organisations face is that they
often do not have a clear and uniform descriptions of their
products like savings- and current account, loans and mort-
gages. This makes it hard to reason about changes to exist-
ing products and hampers the introduction of new ones. The
specifications that are written down often contain ambigui-
ties or are out-of-date. Next to this, specification are almost
always written down using natural language which is known
to lead to numerous deficiencies [1].

To counter these problems we introduce Rebel, a DSL for
product specifications. Rebel lets users specify their product
in a high-level, unambiguous manner. These specification
can then be simulated which enables users to explore their
products before they are build.

We have created Rebel for a large Dutch bank and are
currently in the process of specifying existing banking prod-
ucts.

Since Rebel is in the early stages of development we
would like to use DSLDI to gather feedback on its current
design and proposed future directions.

2. Rebel
Rebel is a domain specific language for product specifica-
tions. It is inspired on formal methods like Z [2], B [3] and
Alloy [4]. It is aimed at helping a large Dutch bank in bridg-
ing the gap between informal specifications written down in
natural language or passed on mouth-to-mouth towards un-
ambiguous, machine interpretable specifications. The main
idea behind Rebel is to present the user with a easy to under-
stand syntax and interface while it exploits powerful tooling
like verification to check whether the specifications hold un-
der the hood.

Rebel is implemented in RASCAL [5] as a stand-alone
DSL.

2.1 Requirements
The language needed to fit the following requirements:

• Flexibility - it should be possible to tune it to the problem
of the bank we were working with.

• Integration - it should be possible to integrate existing
tools like model checkers and connect to existing systems
in the banks application landscape.

• Adaptation - it should be easy to learn and the tooling like
an IDE should be similar to the tooling currently used.

Considering these requirements we decided to create a new
language. This new language needed to be a linguistic hybrid
to be able to support both the definition of single products as
well as the overlying process.

2.2 Design
Rebel is a declarative language and centres around specifi-
cations. Figure 1 shows an example of such a specification.

A specification describes one product. Specifications con-
tain fields, events, invariants and life cycle. Fields declare
the data used in the specification. Events describe the possi-
ble mutations on the data under certain conditions. Invariants
describe global rules which should always hold and life cy-
cle constrains the order of events.

The definition of events and invariants is separated from
usage in specifications. This is to promote reuse and to
separate the responsibility of implementing an event from
using an event in a specification.

Defined fields can only be of built-in types. Events can
only reference fields declared in the specification, not fields
of other specifications. We made this choice so that the
potential state space is smaller when applying verification
techniques like model checking.

Events are described using pre- and postconditions. An
example event is shown in Figure 2. The semantics are
straightforward; if the precondition holds then the postcon-
dition will hold after the event is raised. Events contain run-
time instance variables as well as configuration variables.
Configuration variables are keyword parameters that can
have a default value and can be set when the event is ref-
erenced by a particular specification. For instance, the us-

specification SavingsAccount {

fields {

balance: Time -> Integer

}

events {

openAccount[minimumDeposit=50]

withdraw[]

deposit[]

close[]

}

invariants {

positiveBalance

}

lifeCycle {

initial new -> opened: openAccount

opened -> opened: withdraw, deposit

-> closed: close

final closed

}

}

Figure 1. Example Rebel specification

initial event openAccount

[minimumDeposit : Integer = 0]

(accountNumber: String, initialDeposit : Integer) {

preconditions {

initialDeposit >= minimumDeposit;

}

postconditions {

new this.balance(now) == initialDeposit;

}

}

Figure 2. Example of an event definition

age declaration of openAccount (Figure 1) sets the event
configuration parameter minimumDeposit meaning that the
SavingsAccount uses 50 as a minimumDeposit when an ac-
count is opened.

Invariants are global rules. They use quantifiers over data
to express certain constrains that should always hold. Fig-
ure 3 shows an example that states that at all time, saving
accounts should have a balance equal to or above zero.

invariant positiveBalance {

all sa:SavingsAccount | all t:Time {

sa.balance(t) >= 0

}

}

Figure 3. Example of an invariant

2.3 Simulating specifications
The simulation is aimed at helping product owners and de-
velopers gain insight into their specified product. It can be
used to check if the specification meets the expectations of
the user. Figure 4 shows a screenshot of the simulation of

Figure 4. Screenshot of simulating the SavingsAccount
specification

a SavingsAccount. The simulation is implemented with the
use of the Z3 SMT solver [6].

3. Future work
The current version of Rebel supports the definition of sin-
gle products. Next to this it is also needed to define compo-
sition of these products. In other words, the process. Since
the specifications only contain fields of built-in types and
can only reference themselves it is not possible to compose
specifications. To overcome this we propose the use of pro-
cess algebra [7] for specifying how the individual specifica-
tion events should be composed. This will give us the ability
to specify choices, sequencing, concurrency and communi-
cations between specifications. The question will be if we
will still be able to reason about (certain parts of) the speci-
fications since composing the specifications will have a large
impact on the state space.

An orthogonal aspect is the tooling for Rebel specifica-
tions. Next to the simulation we will explore the possibility
of model checking. The model checker could be used to find
event traces that lead to violations of the invariants. Earlier
work has shown that it is possible to translate Rebel spec-
ification to Alloy. Alloys analyser was used to find traces
which would break the specification. The problem with this
approach was scalability. An alternative would be to exploit
an SMT solver for the same purpose [8]. One of the chal-
lenges here will be how we can bound the data in a smart
way to limit the state space.

Ultimately, running systems should be generated from
Rebel specifications. Since Rebel is a declarative language
it will not always be straightforward to generate a correct
system from this. Again SMT solvers might hold the key as
shown in other work like [9].

References
[1] B. Meyer. On Formalism in Specifications. IEEE Software,

2(1):6–26, 1985.

[2] J.M. Spivey and J.R. Abrial. The Z notation: A Reference
Manual. Prentice Hall Hemel Hempstead, second edition,
1992.

[3] J.R. Abrail. The B-Book: Assinging programs to meaning.
Cambridge University Press, 1996.

[4] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodology,
11(2):256–290, 2002.

[5] P. Klint, T. van der Storm, and J. Vinju. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipula-
tion. In 2009 Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 168–177.
IEEE, 2009.

[6] L. De Moura and N. Bjorner. Z3: An efficient SMT solver.
Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340, 2008.

[7] J. Baeten, T. Basten, and M.A. Reniers. Process algebra:
equational theories of communicating processes. Cambridge
university press, 2010.

[8] A. Milicevic and H. Kugler. Model checking using SMT and
theory of lists. In NASA Formal Methods, pages 282–297.
Springer, 2011.

[9] R. Alur, R. Bodik, G. Juniwal, M.M.K. Martin,
M. Raghothaman, S. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa. Syntax-guided synthesis. 2013
Formal Methods in Computer-Aided Design, pages 1–17,
October 2013.

Flick: A DSL for middleboxes

Network-as-a-Service (NaaS) project∗

We argue the need for specialised languages to program application-level
middleboxes, and describe our design for such a language, through which we
seek to make available suitable abstractions for middlebox programming, and
constrain what kinds of programs can be expressed.

A middlebox is a non-standard router; it carries out a computation on net-
work traffic (beyond decrementing a TTL and recomputing a checksum) and
the routing decision on that traffic may be influenced by the computation’s
result. Examples of middleboxes include firewalls, protocol accelerators, VPN
gateways, transcoders, load-balancers and proxies. Middleboxes perform a vital
function in today’s Internet, in datacentres, and even in home and corporate
networks.

An application-level middlebox is one that does not deal solely in network-
level primitives or protocols, but also (and perhaps exclusively) in application-
level protocols and data. Examples include a memcached caching reverse-proxy,
and a load-balancer that unsheaths an HTTP/SSL connection before passing
the cleartext HTTP data to a backend server.

Middleboxes are usually written in general-purpose languages—usually C.
Such languages are sufficiently expressive, enjoy a broad developer population,
and a compiler is likely to exist for the intended architecture. It has been ob-
served that even for systems programming, the disadvantages of using a general-
purpose language sometimes outweigh the benefits [3,5]. We believe that mid-
dlebox programming is an example of this. By their nature, general-purpose
languages do not provide suitable abstractions for middlebox programming. An-
other disadvantage is that general-purpose languages are much too expressive
for writing middleboxes, which often do not implement complex behaviour. In-
deed middleboxes cannot implement complex behaviour if they are to operate
at line rate at high bandwidth.

This suggests the need for a framework in which to write middleboxes. This
could be implemented in two ways: as a DSL, or as a library. Either approach
could provide more suitable abstractions for middleboxes than is usually pro-
vided by a general-purpose language alone. Because of this, either approach
could lead to shorter, more readable, code, without significant regression in
performance. Work on both approaches has been described in the literature.

DSLs for middlebox programming include Click [4], POF [6], and P4 [2].
All of these are designed for processing packets. (Click can also be regarded

∗http://www.naas-project.org/

1

as a library, but even there it is oriented towards the implementation of packet
processors.) These languages seek to support the use of arbitrary protocols;
part of the programmer’s task is to encode the packet format.

But not all middleboxes are most naturally defined as packet processors—
this is particularly the case for application-level middleboxes which we seek to
support. We can think of middleboxes more generally as processors of arbitrary
data extracted from byte streams. xOMB [1] is a library for programming
middleboxes in C++. Unlike packet processors, xOMB elements can operate on
higher-layer data. But a library does not allow us to impose suitable constraints
on programs: using a middlebox library leaves you at liberty to write arbitrary
functions in the host language.

We therefore opted to design a DSL for implementing application-level mid-
dleboxes. Our language, called Flick, has the following features. First, it is
statically typed, and features algebraic types. In addition to being used for
type checking and inference, types can be used to synthesise serialisation and
deserialisation code for values of a type. This is achieved by decorating a type’s
declaration with serialisation annotations. These specify the precision of inte-
gers, for example, and byte ordering for multi-byte values. Second, Flick only
allows bounded recursion. It is a Turing-incomplete language; only terminating
computations can be expressed in Flick. This is an important constraint that
middlebox DSLs enforce, but that libraries cannot, as mentioned earlier. Third,
channels and processes are language primitives; such concepts seem native to
middleboxes. Channels are typed, and connect processes to other processes, or
to external (network) sources or destinations of data. Processes can run concur-
rently, and contain the middlebox’s logic. Fourth, processes encapsulate their
own state, but middleboxes may also share state. That is, message-passing is the
method used to both notify a process of new data, and to provide that data; but
shared memory can be used when notification is not necessary. We found this
useful for describing shared caches, such as in the encoding of a load-balancer
for the memcached key-value database, shown below.

proc Memcached: (cmd/cmd client, [cmd/cmd] backends)

global cache := empty_dict

client => test_cache(client, backends, cache)

backends => update_cache(cache) => client

Here the process Memcached has a channel client, and an array of channels
backends with which it can communicate with other processes. All channels
in this process can yield and accept values of type cmd, values of which are
memcached commands. update_cache and test_cache are functions. The
body of the process simply forwards requests from client to a backend unless
the reply has been cached; and it forwards replies from backends to the client,
after caching them locally.

So far we have a formal semantics for the core expression language, and a
partial compiler to a runtime of our devising. Future work involves language
features such as exception handling and resource estimation, as well as extending
the compiler to include more targets, including reconfigurable hardware.

2

References

[1] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin
Vahdat. xOMB: Extensible Open Middleboxes with Commodity Servers.
In Proceedings of the Eighth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’12, pages 49–60, New
York, NY, USA, 2012. ACM.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese,
and David Walker. P4: Programming Protocol-independent Packet Proces-
sors. SIGCOMM Comput. Commun. Rev., 44(3):87–95, July 2014.

[3] Pierre-Evariste Dagand, Andrew Baumann, and Timothy Roscoe. Filet-o-
fish: Practical and Dependable Domain-specific Languages for OS Develop-
ment. SIGOPS Oper. Syst. Rev., 43(4):35–39, January 2010.

[4] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The Click Modular Router. ACM Trans. Comput. Syst.,
18(3):263–297, August 2000.

[5] Adrian Schüpbach, Andrew Baumann, Timothy Roscoe, and Simon Peter.
A Declarative Language Approach to Device Configuration. ACM Trans.
Comput. Syst., 30(1):5:1–5:35, February 2012.

[6] Haoyu Song. Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 127–132, New York, NY, USA, 2013. ACM.

3

Towards a Next-Generation Parallel Particle-Mesh
Language∗

Sven Karol1, Pietro Incardona2,3, Yaser Afshar2,3, Ivo F.
Sbalzarini2,3, and Jeronimo Castrillon1

1 Chair for Compiler Construction, Center for Advancing Electronics Dresden,
TU Dresden, Dresden, Germany
[sven.karol|jeronimo.castrillon]@tu-dresden.de

2 MOSAIC Group, Chair of Scientific Computing for Systems Biology, Faculty
of Computer Science, TU Dresden, Dresden, Germany

3 Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell
Biology and Genetics, Dresden, Germany
[afshar|incardon|ivos]@mpi-cbg.de

Abstract
We present our previous and current work on the parallel particle-mesh language PPML—a DSL
for parallel numerical simulations using particle methods and hybrid particle-mesh methods in
scientific computing.

1 Introduction

During the past years, domain-specific languages (DSLs) gained central importance in
scientific high-performance computing (HPC). This is due to the trend towards HPC clusters
with heterogeneous hardware—today, mainly using multi-core CPUs as well as streaming
processors such as GPUs—in the future, using many-core CPUs, and potentially also
reconfigurable processors or data-flow processing units. Writing programs for these machines
is a challenging and time-consuming task for scientific programers, who do not only need
to develop efficient parallel algorithms for the specific problem at hand, but also need to
tune their implementations in order to take advantage of the cluster’s hardware performance.
This does not only require experience in parallel programming, e.g. using OpenMP, OpenCL,
or MPI, but also in computer architectures and numerical simulation methods, leading to the
so-called “knowledge gap” in program efficiency [12]. Besides, it renders the simulation codes
hardly portable. DSLs can help two-fold: First, they allow scientific programmers to write
programs using abstractions closer to the original mathematical representation, e.g., partial
differential equations. Second, they transparently encapsulate hardware-specific knowledge.

In the proposed talk, we focus on the parallel particle-mesh language (PPML) [3]. This
language provides a macro-based frontend to the underlying PPM library [13, 2] as a
parallel run-time system. We analyze PPML’s implementation as well as its advantages
and disadvantages w.r.t. state-of-the-art DSL implementation techniques. Based on this
analysis, we discuss our early efforts in realizing the next version of PPML (Next-PPML) in
conjunction with a redesign of the PPM library in C++.

∗ This work is partially supported by the German Research Foundation (DFG) within the Cluster of
Excellence “Center for Advancing Electronics Dresden”.

2 Towards a Next-Generation Parallel Particle-Mesh Language

2 Particle and Mesh Abstractions

In scientific computing, discrete models are naturally simulated using particles that directly
represent the discrete entities of the model, such as atoms in a molecular-dynamics simulation
or cars in a traffic simulation. These particles carry properties and interact with each other
in order to determine the evolution of these properties and of their spatial location. But also
continuous models, written as partial differential equations, can be simulated using particles.
In this case, the particle interactions discretize differential operators, such as in the DC-PSE
method [14]. This is often combined and complemented with mesh-based discretizations,
such as the finite-difference method. Mesh and particle discretizations are equivalent in that
they approximate the simulated system by a finite number of discrete degrees of freedom that
are the particles or the mesh cells. When using particles together with meshes, it is sufficient
to consider regular Cartesian (i.e., checkerboard) meshes, since all irregular and sub-grid
phenomena are represented on the particles, which can arbitrarily distribute in the domain.

Particles and meshes hence define data abstractions. A particle is a point abstraction
that associates a location in space with arbitrary properties, like color, age, or the value of
a continuous field at that location. These properties, as well as the particle locations, are
updated at discrete time steps over the simulation period by computing interactions with
surrounding particles within a given cut-off radius. Meshes are topological abstractions with
defined neighborhood relations between cells. The properties are stored either on the mesh
nodes or the mesh cells. The PPM library supports both types of abstractions, and also
provides conversion operators between them (i.e., particle-mesh interpolation).

3 Current Status of PPM(L)

Currently, PPM is implemented in object-oriented Fortran2003 [13, 2] and PPML is a macro
system embedded in Fortran2003 [3]. PPML and PPM support transparently distributed
mesh and particle abstractions, as well as parallel operations over them. This also includes
properties and iterators. Different domain-decomposition algorithms allow for the automatic
distribution of data over the nodes of an HPC cluster. Assigning data and work to processing
elements is automatically done by a graph partitioning algorithm, and communication between
processing elements in transparently handled by PPM “mappings”. The mathematical
equations of the model to be simulated are written in LaTeX-like math notation with
additional support for differential operators and dedicated integration loops [3].

Syntactically, PPML is an extension of Fortran2003 providing the aforementioned ab-
stractions as domain-specific language concepts. Technically, the language is implemented as
a source-to-source transformation relying on a mixture of macro preprocessing steps where
macro calls are interspersed with standard Fortran2003 code. Besides C-style preprocessor
directives, PPML also supports non-local macros. These are implemented in Ruby using
eRuby as a macro language and the ANTLR parser generator for recognizing macro output
locations, such as integration loops. Hence, PPML is partially realized using an island
grammar [11].

In this preliminary form, PPML has already nicely demonstrated the benefits of embedded
DSLs for scientific HPC. It has reduced both the size and the development time of scientific
simulation codes by orders of magnitude [3]. It hides much of the parallelization intricacies
(PPML automatically generates MPI) from scientific programmers without preventing them
from using all features of the underlying programming language. The latter is essential since
a DSL may not cover all potential corner cases, and may not always deliver top performance.
However, the current light-weight implementation of PPML has severe disadvantages when

S. Karol and Y. Afshar and P. Incardona and I. F. Sbalzarini and J. Castrillon 3

Figure 1 Compiler and grammarware-based language processing chain of Next-PPML.

it comes to code analysis algorithms targeting the whole program and domain-specific
optimizations based thereon. Moreover, PPML programs are difficult to debug due to a lack
of semantic error messages. We hence present our intended improvements addressing these
issues in Next-PPML.

4 Approach to Next-PPML

Next-PPML is a language extension using grammarware and compilerware. This allows us to
analyze larger portions of the program code. Examples such as the universal form language
(UFL) [1] for finite-element meshes, the Liszt language for mesh-based solvers [7], and the
Blitz++ [15] stencil template library have shown that domain-specific analyses and built-in
abstractions are beneficial for scientific computing DSLs. Hence, similar concepts will be
considered in the Next-PPML language.

Figure 1 conceptually illustrates the planned tool chain. First, the embedded DSL
program is parsed to an AST-based intermediate representation. This representation already
contains control-flow edges. After computing domain-specific static optimizations on this
intermediate representation, including optimizations to the communication pattern of the
parallel program, the Next-PPML compiler generates an executable (or source code) which
is then used to run the simulation on a parallel HPC cluster. During the simulation run,
the application continuously self-optimizes, e.g., for dynamic load balancing. While static
optimizations are handled by the DSL compiler, dynamic runtime optimization are handled
by the PPM library, which may rely on information provided by the DSL program.

Ideally, the new language uses a declarative approach that bases on an existing programming-
language grammar and extends it with new productions. Some well-known candidates for
this are Stratego/XT [4], TXL [6], JastAdd [8] or EMFText [9]. However, the target language
is C++11 which has no simple declarative specification. Hence, it is difficult to estimate if
the above-mentioned tools would scale, and implementing a C++ frontend is a huge project
on its own. Therefore, we prefer Clang [10] as an implementation framework, which already
provides built-in analyses that can be adopted and extended.

5 Conclusions

Hybrid particle-mesh simulations are the only scientific computing framework that is able
to simulate models of all four kingdoms: continuous/deterministic, continuous/stochastic,
discrete/deterministic, and discrete/stochastic. This versatility makes the hybrid particle-
mesh paradigm a prime target for a generic parallel HPC DSL for scientific computing. Prior
work has shown the power of parallelization middleware libraries like PPM, and embedded
DSLs like PPML. Over the past 10 years, they have reduced code development times for
parallel scientific simulations from years to hours, and enabled unprecedented scalability

4 REFERENCES

on large HPC machines [5]. The envisioned Next-PPML will address current shortcomings
in code generation, static and dynamic optimization, and semantic error checking and
reporting. It is co-developed with the next generation of the PPM library in C++ using a
semi-declarative language design.

References

[1] Martin Sandve Alnæs et al. “Unified Form Language: A domain-specific language for
weak formulations of partial differential equations.” In: CoRR abs/1211.4047 (2012).

[2] Omar Awile, Ömer Demirel, and Ivo F. Sbalzarini. “Toward an Object-Oriented Core of
the PPM Library.” In: Proc. ICNAAM, Numerical Analysis and Applied Mathematics,
International Conference. AIP, 2010, pp. 1313–1316.

[3] Omar Awile et al. “A domainspecific programming language for particle simulations
on distributed-memory parallel computers.” In: Proceedings of the 3rd International
Conference on Particle-based Methods. 2013.

[4] Martin Bravenboer et al. “Stratego/XT 0.17. A Language and Toolset for Program
Transformation.” In: Science of Computer Programming 72.1-2 (2008): Second Issue of
Experimental Software and Toolkits (EST), pp. 52–70. issn: 0167-6423.

[5] Philippe Chatelain et al. “Billion Vortex Particle Direct Numerical Simulations of
Aircraft Wakes.” In: Comput. Method. Appl. Mech. Engrg. 197 (2008), pp. 1296–1304.

[6] James R. Cordy. “The TXL Source Transformation Language.” In: Science of Com-
puter Programming 61.3 (2006): Special Issue on The Fourth Workshop on Language
Descriptions, Tools, and Applications (LDTA ’04), pp. 190–210. issn: 0167-6423.

[7] Zachary DeVito et al. “Liszt: a domain specific language for building portable mesh-
based PDE solvers.” In: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. ACM. 2011, p. 9.

[8] Torbjörn Ekman and Görel Hedin. “The JastAdd System—Modular Extensible Com-
piler Construction.” In: Science of Computer Programming 69.1-3 (2007): Special Issue
on Experimental Software and Toolkits, pp. 14–26. issn: 0167-6423.

[9] Florian Heidenreich et al. “Model-Based Language Engineering with EMFText.” In:
GTTSE IV. Vol. 7680. LNCS. Springer, 2013, pp. 322–345. isbn: 978-3-642-35991-0.

[10] Chris Lattner. “LLVM and Clang: Next generation compiler technology.” The BSD
Conference. 2008.

[11] Leon Moonen. “Generating Robust Parsers Using Island Grammars.” In: Proceedings
of the Eighth Working Conference on Reverse Engineering 2001. Los Alamitos, CA,
USA: IEEE Computer Society, 2001, pp. 13–22. isbn: 0-7695-1303-4.

[12] I. F. Sbalzarini. “Abstractions and middleware for petascale computing and beyond.”
In: Intl. J. Distr. Systems & Technol. 1(2) (2010), pp. 40–56.

[13] I.F. Sbalzarini et al. “PPM – A highly efficient parallel particle–mesh library for the
simulation of continuum systems.” In: Journal of Computational Physics 215.2 (2006),
pp. 566–588. issn: 00219991.

[14] Birte Schrader, Sylvain Reboux, and Ivo F. Sbalzarini. “Discretization Correction of
General Integral PSE Operators in Particle Methods.” In: J. Comput. Phys. 229 (2010),
pp. 4159–4182.

[15] Todd L. Veldhuizen. “Blitz++: The Library that Thinks it is a Compiler.” In: Advances
in Software Tools for Scientific Computing. Ed. by Hans Petter Langtangen, Are Magnus
Bruaset, and Ewald Quak. Lecture Notes in Computational Science and Engineering
10. Berlin/Heidelberg: Springer, 2000, pp. 57–87. isbn: 978-3-642-57172-5.

DSLs for Graph Algorithms and Graph Pattern Matching

Proposal for DSLDI 2015 - submitted 8 April 2015

Oracle Labs
Oskar van Rest
Sungpack Hong

Hassan Chafi

While SQL and procedural languages like PL/SQL have proven very successful for relational-data-based

applications, the increasing importance of graph-data-based applications is fueling the need for graph

processing DSLs. On the one hand is the need for a procedural-like language that allows you to implement

graph algorithms, like Dijkstra’s shortest path algorithm and Brandes’ Betweenness Centrality algorithm,

while on the other hand is the need for a declarative graph pattern-matching DSL, much like SQL for

graphs. We believe that our DSLs Green-Marl and GMQL are tailored for these two types of graph

workloads and we aim at making the languages standards in the field of graph processing.

Green-Marl is a procedural DSL for implementing graph algorithms for use cases such as product

recommendation, influencer identification and community detection. The language allows you to

intuitively define a wide set of graph algorithms by providing 1) graph-specific primitives like nodes and

edges, 2) built-in graph traversals like BFS and DFS, and 3) built-in iterations over neighbors and incoming

neighbors of nodes in the graph. Furthermore, Green-Marl algorithms can be automatically translated

into parallel implementations in C++, Java or other general purpose languages. Thus, Green-Marl users

can intuitively define their graph algorithms using high-level graph constructs, and then run their

algorithms efficiently on large graphs.

Our other language, GMQL, is a declarative graph pattern-matching query language that borrows syntax

from Neo4j’s Cypher and from the SPARQL query language. It is like SQL for graphs, but instead allows you

to query using concepts like nodes, edges and paths, instead of tables, rows and columns. A graph pattern

can be defined in the form of a set of nodes that are connected via edges or arbitrary-length paths

together with a set of constraints on (properties) of the nodes, edges and paths. More complicated

patterns that are typical for query languages, such as negation and optional matching, are also supported.

The execution of a GMQL query comes down to finding all the instances of the specified pattern inside

the graph. Again, execution can be done in parallel to support the efficient processing of large graphs.

The Green-Marl and GMQL compilers that we created, target our efficient, parallel, and in-memory graph

analytic framework PGX. PGX supports loading graphs from various popular flat file graph formats and can

also load graphs from an Oracle database. Graphs are efficiently stored in memory using the Compressed

Sparse Row (CSR) format. This format allows for huge graphs to fit into the memory of a single machine,

in such a way that they can be processed efficiently. Our framework is also very portable: The Green-Marl

and GMQL compilers target both our Java-based and C++-based PGX backbends. Furthermore, we are

working on a distributed backend that allows for the processing of even bigger graphs that do not fit into

the memory of a single machine. In such distributed mode, graphs are partitioned across multiple

machines and data is exchanged between machines using high-speed Infiniband or 10G-E.

So far, we have seen great performance improvements with PGX, when comparing it to other graph

frameworks: Green-Marl algorithms are processed one to two orders of magnitude faster than

corresponding implementations with the popular machine learning framework GraphLab. Furthermore,

GMQL queries are processed two to four orders of magnitude faster than corresponding Cypher queries

with Neo4j.

Because our PGX framework can process large graphs very efficiently, we decided to also create support

for the popular RDF graph data model. This means we import RDF graphs into PGX and query them using

either GMQL or the standard RDF query language SPARQL. In order to import RDF graphs, we created a

translation from RDF graphs into PGX’ property graphs. Furthermore, in order to query using SPARQL, we

have created a translation from SPARQL to GMQL. This translation currently supports a subset of W3C’s

SPARQL 1.1.

The Green-Marl, GMQL and SPARQL compilers were implemented using the Spoofax language workbench.

Spoofax provides high-level DSLs for specifying grammars, name binding, type systems and

transformations. By using these DSLs, we can keep our code base small and maintainable, while we obtain

much compiler functionality, such Eclipse IDE integration, from Spoofax for free.

Our Spoofax-based SPARQL implementation initially functioned merely as a building block for the SPARQL-

to-GMQL translation. However, the Eclipse editor that we obtained from Spoofax has become a product

on its own and is useful for anyone who wants to write SPARQL queries. The editor has full support for

W3C’s SPARQL 1.1 and provides editor features like formatting, code completion, syntax checking, name-

based checks for variables and prefixes, and editor navigation from name uses to their definitions. Many

of the features came with little implementation effort. For example, our SPARQL grammar definition in

Spoofax’ grammar definition formalism SDF3, gave us a parser, a formatter, syntax-checks and error

recovery rules, while our SPARQL name-binding definition in Spoofax’ name binding language NaBL gave

us name-based code completion, name checks and editor navigation. We were even able to encode the

more complicated name-binding rules needed for SPARQL constructs like NOT EXISTS, MINUS and for

Subqueries in NaBL, in very few lines of code.

Finally, we also allow our Green-Marl, GMQL and SPARQL compilers to be linked against a particular graph

such that we can perform additional compile-time error checking. For example, our GMQL compiler is

able to warn a user when they have misspelled a property name, based on the node and edge properties

that are available in a particular graph. We also provide such kinds of checks when querying schema-less

RDF graphs, by extracting schema information from an RDF graphs when it is loaded into PGX. In our

Eclipse editors, such error checking even happens in real-time.

DSLs of Mathematics, Theorems and
Translations

Cezar Ionescu∗ Patrik Jansson∗

In this talk, we present some of the ideas behind the course on DSLs of Mathe-
matics (DSLM), currently in preparation in Chalmers.

We view mathematics as a rich source of examples of DSLs. For example, the
language of group theory, or the language of probability theory, embedded in
that of measure theory. The idea that the various branches of mathematics are
in fact DSLs embedded in the “general purpose language” of set theory was
(even if not expressed in these words) the driving idea of the Bourbaki project,
which exerted an enormous influence on present day mathematics.

In DSLM, we consequently develop this point of view, aiming to show computer
science students that they can use the tools from software engineering and func-
tional programming in order to deal with the classical continuous mathematics
they encounter later in their studies.

In this talk, we’ll start with the simple example of the standard development of
a calculus of derivatives. This can be seen as a DSL whose semantics are given in
terms of limits of real sequences. We can try to give alternative semantics to this
language, in terms of complex numbers. This leads to the notion of holomorphic
function, and to an essentially different calculus than in the real case.

Our second example is that of extending the language of polynomials to power
series. This DSL can also be interpreted in various domains: real numbers,
complex numbers, or intervals.

In the case of complex numbers, a fundamental theorem creates a bridge be-
tween the DSL of derivatives and that of power series, through the identity of
holomorphic and (regular) analytic functions. This leads to the discussion of
translation between DSLs, an aspect which is fundamental in mathematics, but
has been somewhat neglected by computer science. Thus, we believe that a
closer examination of the DSLs of mathematics can also be relevant for practical
software engineering.

∗Chalmers University of Technology

Check Syntax: An Out-of-the-Box Tool for Macro-Based DSLs

Spencer Florence Ryan Culpepper Matthew Flatt Robert Bruce Findler
Northwestern University Northeastern University University of Utah Northwestern University

Abstract
Racket supports DSL construction through an open compiler,
where the compiler is made open through its macro system. Pro-
grammers define new syntactic constructs by macro-expansion to
existing constructs, using the Racket module system to hide the
originals and rename the new ones as needed. Taken together, these
facilities permit the definition of new languages, even enabling new
languages to give new semantics to familiar syntax.

In this world, all programs are compiled to a well-known inter-
mediate language, and tools can operate on that structure to com-
pute information about programs—including programs written in
a DSL that the tool knows nothing about. Crucially, binding infor-
mation and original source locations are available in the intermedi-
ate language. This information allows tools to provide keybindings
to hop between bound and binding occurrences of identifiers and
rename them. Since Racket’s documentation system is based on
binding, tools can also conveniently access API documentation.

1. Building a Macro-based Language in Racket
Programming tools typically support multiple languages by com-
piling all programs into a shared intermediate language. In Racket,
the representation of the intermediate language is the same as for
macro transformations: an enriched form of S-expressions that em-
beds source-location and binding information. This representation
offers an especially convenient way to make new languages via
macros, where the new languages inherit tools that operate on
macro-expanded programs.

For example, to build a DSL that uses call-by-need evaluation
instead of Racket’s usual call-by-value convention, we start with a
wait construct for delaying the evaluation of an expression. The
wait form is defined using define-syntax-rule, which directs
the compiler to replace expressions matching one subexpression
with another.

(define-syntax-rule
 (wait e)
 (Wait #t (λ () e)))

The definition of wait specifies that the body e in any (wait e)
is wrapped in a thunk (thus delaying the evaluation of e) and the
thunk is packaged into a Wait structure:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .
Copyright © ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

(struct Wait (waiting? TorV) #:mutable)

This struct declaration indicates that the Wait structure has two
mutable fields, waiting? and TorV, and it defines supporting
functions: Wait-waiting?, which accepts a Wait structure and
returns the value in the first field; set-Wait-waiting?!, which
accepts a Wait structure and a value and a new waiting? field
value and mutates the structure; Wait-TorV, which returns the
value of a Wait structure’s second field; and set-Wait-TorV!,
which mutates the value of a Wait structure’s second field.

To force a delayed evaluation, we define an act function. It
operates on a Wait structure, returning the result of the thunk
encapsulated in the second field and caching the thunk’s result.

(define (act w)
 (cond
 [(Wait? w)
 (when (Wait-waiting? w)
 (set-Wait-TorV! w ((Wait-TorV w)))
 (set-Wait-waiting?! w #f))
 (act (Wait-TorV w))]
 [else w]))

Next, we define macros that compile the various constructs of
our new language into constructs that already exist in Racket. In
this case, we’ll use the wait functionality and exploit Racket’s λ,
a conditional form, and some simple arithmetic operations, lifting
them into our lazy language. The following 8 lines provide the rest
of a lazy language implementation, using a mixture of function
definitions and macros.

(define-syntax-rule
 (app f x ...)
 ((act f) (wait x) ...))
(define (multiply a b) (* (act a) (act b)))
(define (subtract a b) (- (act a) (act b)))
(define-syntax-rule
 (if0 e1 e2 e3)
 (if (= (act e1) 0) e2 e3))

Using these constructs directly would be awkward. They do not
have the right names, and it is easy to accidentally step outside of
the language and use, for example, Racket’s * operation instead
of the multiply. To avoid those problems, we put the definitions
into a module, we use provide’s rename-on-export capability to
provide those operations with their expected names, and we hide
everything else (by simply not providing anything else). The only
subtle point here is that, when the Racket macro expander sees an
open parenthesis with no macro following it, it inserts a reference
to the #%app macro to make function application explicit, so we
must export app as #%app to cooperate with this feature of macro
expansion. Then, we can install the language as a Racket package,
so that if the first line of a file is #lang mini-lazy, the rest of the

file sees our bindings. For example, running the following program
(using the call-by-name Y combinator) produces 3628800.

#lang mini-lazy
(((λ (f) ((λ (x)
 (f (x x)))
 (λ (x)
 (f (x x)))))
 (λ (fac)
 (λ (n)
 (if0 n 1 (* n (fac (- n 1)))))))
 10)

Even though this language has a radically different order of
evaluation from Racket, it still compiles into Racket and, even
better, scope is preserved by this compilation.

2. Check Syntax
Check Syntax runs continuously as part of the DrRacket IDE. Each
time the user edits a program, Check Syntax takes the content as a
string, parses it using the current language’s parser, and hands it off
to the macro system, resulting in a program where the macros have
all been expanded away. In this state, programs are in a well-known
language that contains functions, conditionals, variable binding,
variable reference, and other core forms of Racket.1

Check Syntax traverses a program’s expansion, searching for
bindings and references. The expanded form of a program is an
enriched form of S-expressions known as syntax objects. A syntax
object includes information about whether or not a form appeared
in the original program and its location in the source, and identifiers
extracted from an expanded program can be compared to determine
whether they refer to the same binding. Check Syntax collects this
information into pairs of source locations, which DrRacket uses to
draw binding information in the editor window.

For the example at the end of the previous section, these are the
set of arrows that Check Syntax collects for the lexical variables:2

#lang mini-lazy
(((λ (f) ((λ (x)
 (f (x x)))
 (λ (x)
 (f (x x)))))
 (λ (fac)
 (λ (n)
 (if0 n 1 (* n (fac (- n 1)))))))
 10)

Check Syntax uses this information in several ways. First, when
the mouse is over a variable occurrence, Check Syntax draws ar-
rows to the other occurrences. Second, Check Syntax provides key-
bindings to jump between the occurrences of a variable in a file.
Finally, Check Syntax offers a bound-variable rename facility. The
user selects a variable and supplies a new name, and Check Syntax
follows the arrows to rename the variables.

The technique of traversing expanded programs can support
a myriad of different languages, even parenthesis-challenged lan-
guages like Datalog:

#lang datalog
ancestor(A, B) :-
 parent(A, B).
ancestor(A, B) :-
 parent(A, C), ancestor(C, B).

1 http://docs.racket-lang.org/reference/
syntax-model.html#%28part._fully-expanded%29
2 Naturally, the figures in this paper are generated by running Check Syntax
on the shown program text as the paper is typeset.

and Algol 60:

#lang algol60
begin
 integer procedure SIGMA(x, i, n);
 value n; integer x, i, n;
 begin
 integer sum;
 sum:=0;
 for i:=1 step 1 until n do
 sum:=sum+x;
 SIGMA:=sum;
 end;
 integer q;
 printnln(SIGMA(q*2-1, q, 7));
end

3. Scaling Up
For many constructs, the process described in the previous section
is enough to reconstruct the binding structure of a program. Other
constructs appear to the programmer as binding forms and variable
references, but they are compiled into data-structure accesses. For
example, one of the modularity constructs in Racket, unit, turns
variable definitions into the creation of a pointer and variable ref-
erences into pointer dereferences. Similarly, the pattern-matching
part of define-syntax-rule turns variable references into func-
tion calls that destructure syntax objects.3

To handle such forms, Check Syntax needs a little cooperation
from the implementing macro. When producing an expanded form,
a macro can add properties to the result syntax objects. These
properties have no effect on how the code runs, but they are used by
Check Syntax to draw additional arrows. More precisely, the macro
can add a property indicating that some syntax object (i.e., a piece
of the input to the transformation) was a conceptually a binding or
a reference; Check Syntax uses those syntax objects for renaming
and navigation, just like the program’s other syntax objects.

Check Syntax also recognizes properties for tool-tip informa-
tion. A macro can put an arbitrary string as a property on the result
of a macro, and Check Syntax displays the string in a tooltip. For
example, Typed Racket adds properties so that Check Syntax dis-
plays the types of expressions.

In Racket, the build process for documentation creates a database
that maps module names and exports to the file containing the doc-
umentation and to a function’s contract or a syntactic form’s gram-
mar. Check Syntax can examine a variable in the fully expanded
program and discover which module exported the variable. It uses
that information to consult the database and can render the con-
tract/grammar directly in the DrRacket window, including a link to
the full documentation.

In the following Typed Racket program, highlighting shows the
locations where Check Syntax finds documentation in the database:

#lang typed/racket
(: fib (-> Integer Integer))
(define (fib n)
 (cond
 [(= n 0) 0]
 [(= n 1) 1]
 [else (+ (fib (- n 1))
 (fib (- n 2)))]))

Acknowledgments. Thanks to Matthias Felleisen for comments on
earlier drafts and feedback on Check Syntax over the years.

3 The define-syntax-rule form is itself is a macro that expands into
the primitive macro-building form with a compile-time syntax transformer
that is synthesized from the specified pattern and template.

Dynamic Compilation of DSLs

Vojin Jovanovic and Martin Odersky

EPFL, Switzerland
{firstname}.{lastname}@epfl.ch

Domain-specific language (DSL) compilers use domain knowledge to per-
form domain-specific optimizations that can yield several orders of magnitude
speedups [4]. These optimizations, however, often require knowledge of val-
ues known only at program runtime. For example, in matrix-chain multiplica-
tion, knowing matrix sizes allows choosing the optimal multiplication order [2,
Ch. 15.2] and in relational algebra knowing relation sizes is necessary for choos-
ing the right join order [6]. Consider the example of matrix-chain multiplication:

val (m1, m2, m3) = ... // matrices of unknown size

m1 * m2 * m3

In this program, without knowing the matrix sizes, the DSL compiler can not
determine the optimal order of multiplications. There are two possible orders
(m1*m2)*m3 with an estimated cost c1 and m1*(m2*m3) with an estimated
cost c2 where:

c1 = m1.rows*m1.columns*m2.columns+m1.rows*m2.columns*m3.rows

c2 = m2.rows*m2.columns*m3.columns+m1.rows*m2.rows*m3.columns

Ideally we would change the multiplication order at runtime only when the
condition c1 > c2 changes. For this task dynamic compilation [1] seems ideal.

Yet, dynamic compilation systems—such as DyC [3] and JIT compilers—
have shortcomings. They use runtime information primarily for specialization.
In these systems profiling tracks stability of values in the user program. Then,
recompilation guards and code caches are based on checking equality of current
values and previously stable values.

To perform domain-specific optimizations we must check stability, intro-
duce guards, and code caches, based on the computation specified in the DSL
optimizer—outside the user program. Ideally, the DSL optimizer should be ag-
nostic of the fact that input values are collected at runtime. In the example
stability is only required for the condition c1 > c2, while the values c1 and c2

themselves are allowed to be unstable. Finally, recompilation guards and code
caches would recompile and reclaim code based on the same condition.

An exception to existing dynamic compilation systems are Truffle [7] and
Lancet [5]. They allow creation of user defined recompilation guards. However,
with Truffle, language designers do not have the full view of the program, and
thus, can not perform global optimizations (e.g., matrix-chain multiplication
optimization). Further, recompilation guards must be manually introduced and
the code in the DSL optimizer must be modified to specially handle decisions
based on runtime values.

2

We propose a dynamic compilation system aimed for domain specific lan-
guages where:

– DSL authors declaratively, at the definition site, state the values that are
of interest for dynamic compilation (e.g., array and matrix sizes, vector and
matrix sparsity). These values can regularly be used for making compilation
decisions throughout the DSL compilation pipeline.

– The instrumented DSL compiler transparently reifies all computations on
the runtime values that will affect compilation decisions. In our example,
the compiler reifies and stores all computations on runtime values in the
unmodified dynamic programming algorithm [2] for determining the optimal
multiplication order (i.e., c1 > c2).

– Recompilation guards are introduced automatically based on the stored
DSL compilation process. In the example the recompilation guard would
be c1 > c2.

– Code caches are automatically managed and addressed with outcomes of the
DSL compilation decisions instead of stable values from user programs. In
the example the code cache would have two entries addressed with a single
boolean value computed with c1 > c2.

The goal of this talk is to foster discussion on the new approach to dynamic
compilation with focus on different policies for automatic introduction of recom-
pilation guards: i) heuristic, ii) DSL author specified, and iii) based on domain
knowledge.

References

1. Joel Auslander, Matthai Philipose, Craig Chambers, Susan J Eggers, and Brian N
Bershad. Fast, effective dynamic compilation. In International Conference on Pro-
gramming Language Design and Implementation (PLDI), 1996.

2. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al.
Introduction to algorithms, volume 2. MIT press Cambridge, 2001.

3. Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J Eg-
gers. DyC: an expressive annotation-directed dynamic compiler for C. Theoretical
Computer Science, 248(1), 2000.

4. Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanović,
HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun, and Martin Odersky.
Optimizing data structures in high-level programs: New directions for extensible
compilers based on staging. In Symposium on Principles of Programming Languages
(POPL), 2013.

5. Tiark Rompf, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Hassan Chafi,
Kunle Olukotun, and Martin Odersky. Project Lancet: Surgical precision JIT com-
pilers. In International Conference on Programming Language Design and Imple-
mentation (PLDI), 2013.

6. P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A Lorie,
and Thomas G Price. Access path selection in a relational database management
system. In International conference on Management of data (SIGMOD), pages 23–
34, 1979.

7. Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Du-
boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One
VM to rule them all. In Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software (Onward!), 2013.

A practical theory of language-integrated query

—and—

Everything old is new again

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

15 April 2015

The proposed talk would consist of summaries of two recent pieces of work,
both concerned with applying quotation and the subformula property to domain-
specific languages. Both will also be the subject of an invited talk by the author
at Curry On.

A practical theory of language-integrated query
James Cheney, Sam Lindley, Philip Wadler
submitted to ICFP 2015
http://homepages.inf.ed.ac.uk/wadler/topics/recent.html#essence-of-linq

Language-integrated query is receiving renewed attention, in part
because of its support through Microsoft’s LINQ framework. We
present a theory of language-integrated query based on quotation
and normalisation of quoted terms. Our technique supports abstrac-
tion over values and predicates, composition of queries, dynamic
generation of queries, and queries with nested intermediate data.
Higher-order features prove useful even for constructing first-order
queries. We prove that normalisation always succeeds in translat-
ing any query of flat relation type to SQL. We present experimental
results confirming our technique works, even in situations where Mi-
crosoft’s LINQ framework either fails to produce an SQL query or,
in one case, produces an avalanche of SQL queries.

Everything old is new again: Quoted Domain Specific Languages.
Shayan Najd, Sam Lindley, Josef Svenningsson, Philip Wadler
ICFP 2013
http://homepages.inf.ed.ac.uk/wadler/topics/recent.html#qdsl

We describe a new approach to domain specific languages (DSLs),
called Quoted DSLs (QDSLs), that resurrects two old ideas: quota-
tion, from McCarthy’s Lisp of 1960, and the subformula property,
from Gentzen’s natural deduction of 1935. Quoted terms allow the
DSL to share the syntax and type system of the host language.
Normalising quoted terms ensures the subformula property, which

1

guarantees that one can use higher-order types in the source while
guaranteeing first-order types in the target, and enables using types
to guide fusion. We test our ideas by re-implementing Feldspar,
which was originally implemented as an Embedded DSL (EDSL), as
a QDSL; and we compare the QDSL and EDSL variants.

2

28

Panel Discussion

Figure 1: Discussion Panel at DSLDI’15. From left to right: Matthew Flatt, Jonathan Aldrich,
Andrzej Wąsowski Laurence Tratt and Sebastian Erdweg

Position Statements of the Panelists

Jonathan Aldrich Position: DSL frameworks should guarantee the absence of syntactic con-
flict, and support unanticipated interoperation between DSLs in the code and during typechecking,
execution, and debugging, without losing aspects that are special to each DSL.

Rationale: Programming today is all about composition; developers gain enormous leverage
from libraries, and expect them to work together even if they were designed separately. Conflicts
that prevent compilation when you merely import two different DSLs are completely unacceptable
in this world. Furthermore, most of the value from DSLs comes when they work like ”real”
languages, with checking, execution, and debugging facilities that are natural; an 80% solution is
not going to convince most real-world developers to adopt a DSL. In a composition-based world,
therefore, all these facilities must work even when multiple DSLs are used together.

Concrete Illustration: Here’s a multi-part challenge problem for language composition in DSL
frameworks:

• (A) Have different developers independently design and build DSLs for state machines and
structured synchronous programming

29

30

• (B) The DSL framework should guarantee that these DSLs can be used together without
having to resolve any syntactic conflicts

• (C) Write a state machine and a structured synchronous program that drives its state tran-
sitions, ideally with no visible role played by the DSL framework.

• (D) Statically verify that the structured synchronous program does not misuse the state
machine (e.g. by generating transitions that aren’t appropriate for the machine’s state)

• (E) With respect to task D, report any errors in a way that is consistent with both the
structured synchronous program and the state machine (rather than some translation of
each).

The two developers in A are not allowed to communicate or to anticipate tasks B-E. Tasks
B–E must be done without changing the DSLs developed in A.

Sebastian Erdweg The same language features reoccur in the design of many DSLs: operations
on primitive data, operations on structured data, conditionals and backtracking, error handling,
and many more. Yet, we have no principled way of composing basic language blocks into working
DSLs and we have no way of detecting and eliminating interactions between language features.
This is one of the big open challenges in the area of DSLs.

Matthew Flatt How can language-composition tools mediate extensions that depend on (or,
alternatively, adapt to) different semantics of shared constructs, such as function application?

For example, what happens when a form whose implementation depends on eager evaluation
is used in an otherwise lazy context? Or what happens when a from that implies a function
application is used in a language where function application is meant to be syntactically restricted
to first-order functions?

Racket’s hygienic-macro approach reflects core constructs like function application through
macros, such as #%app, whose use is typically implicit. A macro by default adopts its definition-
site implementation of such macros, which is usually the right approach. That means, however,
that a macro that uses eager function application has questionable behavior in a lazy use context.
Similarly, macros tend not to respect the function-application constraints of a context like Beginner
Student Language. A macro can adapt to a use-site notion of #%app by non-hygienically referencing
#%app from the use context, but that approach is relatively tedious not not commonly followed.

Laurence Tratt Language composition challenge: Integrating existing languages into a lan-
guage composition framework. Controversial statement: People have not shown themselves hugely
interested in the forms of language composition we’ve given them thus far.

Andrzej Wąsowski

• I believe that language composition is not a language problem, but a software engineering
problem.

• If you are lucky then the DSLs are composed by framework designers, which are usually
means very good programmers (or at least above-average).

• More often languages are composed by framework *users*, who design systems (often average
programmers or worse). You rarely find serious project using less than 5 languages, and 20
is a norm. Many of them DSLs.

• The challenge is how to allow language composition (or integration) for non-language de-
signers, but for system designers (the language users), so that they still get static checking,
meaningful messages, across language testing, etc.

31

Summary of the Discussion

• The practical value of a DSL does not grow linearly with the quality of the implementation.
You need a to have really polished framework/ecosystem to deliver value. (80/20 or 20/80
(todo)).

• The software engineering perspective on language composition is different from the pro-
gramming language perspective. The software engineering perspective emphasizes language
interopability, cross-language IDE support, and DSLs that are not necessarily like program-
ming languages (e.g., config files, build files, deployment descriptors, data mapping files,
etc.).

• Is using different languages in the same file an essential aspect of language composition? Is
language interopability an instance of language composition, and what are the consequences
for performance?

• Translating all language features down to a single virtual machine for execution, is possible,
but there can be costs in terms of performance. Example: the JVM is a state-of-the-art
virtual machine, but is not suitable for executing Prolog.

• Modular language components seems to be an extremely hard to achieve goal, but it is
necessary at the same time. Without it, the number of feature interactions quickly explodes.

• There is a need for language interfaces: what features, services or constructs are exported
from a language component?

• Integrating syntax and semantics are only two language aspects that need to be composed
for a realistic programming experience of a composed language. Examples include: name
binding, type checking, IDE features, etc.

• Cross language name analysis seems feasible and would solve real problems of program-
mers, now. A successful example is Jetbrains’ IntelliJ which integrates all references in Web
framework configuration files with Java.

