
Opportunities and Risks of MDSE:
experience with Derric,

a DSL for Digital Forensics

Tijs van der Storm
@tvdstorm / storm@cwi.nl

mailto:storm@cwi.nl

MDSE Promise

MDSE Reality?

http://jalopnik.com/5887265/tesla-motors-devastating-design-problem

http://jalopnik.com/5887265/tesla-motors-devastating-design-problem

About us: SWAT
• Me: Tijs van der Storm

• SoftWare Analysis and Transformation

• Centrum Wiskunde & Informatica (CWI)

• Rascal Meta Programming Language

• http://www.rascal-mpl.org

• => Language workbench for DSLs

http://www.rascal-mpl.org

Digital forensics

• From Wikipedia:

• “Digital forensics is a
branch of forensic
science encompassing
the recovery and
investigation of material
found in digital devices,
…”

Netherlands Forensic Institute
(“CSI Holland”)

Typical process

Turning data into
information

Securing the data

Recovery

Finding relevant
information

AnalysisAcquisition

Problems in
forensic data recovery

• High variability in devices, file systems etc.

• Off-the-shelf software inadequate

• Frequent, just-in-time customization

• Data in tera-byte range

Derric

• Key insight: it’s all about file formats

• Derric is a DSL for binary file format
description

• Implemented in Rascal  

http://www.derric-lang.org http://www.rascal-mpl.org

http://www.derric-lang.org
http://www.derric-lang.org

format jpeg
extension jpeg jpg jfif

unit byte
size 1
sign false
type integer
endian big
strings ascii

sequence
 SOI
 ([APP0JFIF APP0JFXX?] [APP1 APP2?])
 !(SOI APP0JFIF APP0JFXX EOI)*
 EOI

structures
SOI {
 marker: 0xFF, 0xD8;
}

APP0JFIF {
 marker: 0xFF, 0xE0;
 length: lengthOf(rgb) + (offset(rgb) -
 offset(length)) size 2;
 identifier: "JFIF", 0;
 version: size 2;
 units: 0 | 1 | 2;
 xdensity: size 2;
 ydensity: size 2;
 xthumbnail;
 ythumbnail;
 rgb: size xthumbnail * (ythumbnail * 3);
}

APP0JFXX {
 marker: 0xFF, 0xE0;
 length: size 2;
 identifier: "JFXX", 0;
 thumbnailformat: 0x10 | 0x11 | 0x13;
 thumbnaildata: size length - (offset(thumbnaildata)
 - offset(length));
}

Segment {
 marker: 0xFF;
 identifier: 0xD0..0xD7 | 0xDB..0xDC | 0xDF | 0xF0..0xFD;
 length: size 2;
 data: size length-(lengthOf(length));
}

SOS = Segment {
 identifier: 0xDA;
 compressedData:
 jpegdata(huffmantable=DHT.data,
 quantizationtable=DQT.data,
 terminator=0xFFD9+0xFFC4+0xFFDA,
 terminatorsize=16,
 includeterminator="false");
}

APP1 = Segment { identifier: 0xE1; }
APP2 = Segment { identifier: 0xE2; }
DQT = Segment { identifier: 0xDE; }
DHT = Segment { identifier: 0xC4; }
DRI = Segment { identifier: 0xDD; }
SOF0 = Segment { identifier: 0xC0; }
SOF2 = Segment { identifier: 0xC2; }
APPX = Segment { identifier: 0xE0..0xEF; }
COM = Segment { identifier: 0xFE; }

EOI { marker: 0xFF, 0xD9; }

• Opportunities

• raise level of abstraction

• separation of concerns

• domain-specific optimization

• Risks

• it’s not better (functional/non-functional)

• short-term domain analysis (myopia)

• over-engineering / accidental complexity

How we
exploited

them

How we
mitigated

them

Component Language Size (SLOC)

JPEG description Derric 92

Derric syntax Rascal 52

Code generator Rascal 510

Runtime Java 372

Total 1026

Raise level of abstraction

Separation of concerns

File Carving

Format Algorithm

Match Reassemble

Figure 2: Variability in the file carving domain

SOS structure on lines 36–40, the SOS structure overwrites
the marker field, reuses the length and data fields and then
adds the compressedData field.

Decoupling the sequence from data structure specifica-
tions and inheritance make data descriptions shorter and
help group related information, improving readability and
expressiveness of the language.

4. APPLICATION: CARVING
We have evaluated Derric in the domain of file carving [24],
which is the process of recovering deleted, fragmented or
otherwise lost files from storage devices. The complete de-
scription of Figure 1 has been input to a code generator to
obtain a JPEG validator. Such a validator can be used by
dedicated carving algorithms [9] to recover evidence from
disk images. The complete system including file format de-
scriptions in Derric, code generator and runtime library is
named Excavator.

4.1 Concerns in the Carving Domain
Analysis of the carving domain uncovers three concerns that
are variable across typical carver implementations: (1) For-
mat, (2) Matching and (3) Reassembly. A schematic overview
of this variability is shown in Figure 2. The first type of vari-
ability entails that for each type of file that must be recov-
ered, the file format must be defined. Carvers must know
the structure of, for instance, JPEG in order to recognize
that a certain sequence of bytes might be part of a valid
JPEG file. Additionally, some file formats exist in di�erent
versions and variants. For instance, the Portable Network
Graphics (PNG) format has three o⇤cial versions [32]. Fi-
nally, manufacturers of digital devices such as mobile phones
or digital cameras may implement a file format standard in
idiosyncratic ways, which could be valuable for recovery. We
consider all kinds of variation to be covered by the “Format”
concern.

The second dimension captures (1) the ways in which files
are matched in the input image, and (2) the method of re-
assembly if fragmentation is detected on the basis of file
format structure. In Figure 2 these variation points are in-
dicated as“Match”and“Reassemble” respectively, below the
abstract “Algorithm” concern.

There are at least three matching algorithms that are used
in carvers. The most basic matching algorithm is header/-
footer matching that returns blocks between signatures of
file headers and footers. Next, file structure-based match-
ing uses complete structural knowledge of a file format in
order to deal with, for instance, corrupted files. Finally,
characteristics-based matching takes (statistical) character-








 






Figure 3: Overview of the Excavator architecture

istics about a file’s contents into account, for instance high
entropy in compressed files.

Finally, the third concern consists of algorithms for re-
assembling fragmented files. For instance, bifragment gap
carving [9] assumes that files consist of only two fragments
and that they are located on the data storage device in the
correct order. The algorithm tries all possible gaps between
the matched beginning and end of the file. Map/generate [6]
is more elaborate in that it supports reassembling files that
are arbitrarily fragmented. It exercises any combination of
sectors and then prunes the search space if mismatches are
found.

Currently, file carvers implement a limited combination
of file formats and/or matching and/or reassembly algo-
rithms. O�-the-shelf carvers typically do not support ex-
plicit variation points to e⇤ciently make trade-o�s between
precision and performance. The implementation of data for-
mat, matching and reassembly is completely tangled. As a
consequence, modification or reconfiguration of carvers is
time consuming and error prone.

Additionally, the top-level dimensions of Figure 2, “For-
mat” and “Algorithm”, correspond to two di�erent roles in
the practice of using carvers in forensic investigations. On
the one hand there are the digital forensics investigators that
have intricate knowledge of many file formats. On the other
hand, there are the software engineers that know how to im-
plement, evolve, and optimize carving tools. With the cur-
rent tools, no division of labour is possible: domain-specific
knowledge about file formats has to be communicated to
software engineers in order for them to make the necessary
changes to the system.

4.2 Implementation
Each concern of Figure 2 corresponds to a variation point
in the implementation. In Excavator, each variation point
corresponds to a logical component. These components are:

1. The declarative surface syntax of Derric for describ-
ing the structure of file formats (Format).

2. A code generator that takes file format descriptions
and generates matching code (Matching)

3. A runtime library implementing reassembly algorithms
as well as defining the base types and interfaces for the
generated matching code. (Reassemble)

Both the file format model and the code generator are imple-
mented in Rascal [17]. File format descriptions are input

Derric
description Runtime

library

Generator

Separation of concerns

File Carving

Format Algorithm

Match Reassemble

Figure 2: Variability in the file carving domain

SOS structure on lines 36–40, the SOS structure overwrites
the marker field, reuses the length and data fields and then
adds the compressedData field.

Decoupling the sequence from data structure specifica-
tions and inheritance make data descriptions shorter and
help group related information, improving readability and
expressiveness of the language.

4. APPLICATION: CARVING
We have evaluated Derric in the domain of file carving [24],
which is the process of recovering deleted, fragmented or
otherwise lost files from storage devices. The complete de-
scription of Figure 1 has been input to a code generator to
obtain a JPEG validator. Such a validator can be used by
dedicated carving algorithms [9] to recover evidence from
disk images. The complete system including file format de-
scriptions in Derric, code generator and runtime library is
named Excavator.

4.1 Concerns in the Carving Domain
Analysis of the carving domain uncovers three concerns that
are variable across typical carver implementations: (1) For-
mat, (2) Matching and (3) Reassembly. A schematic overview
of this variability is shown in Figure 2. The first type of vari-
ability entails that for each type of file that must be recov-
ered, the file format must be defined. Carvers must know
the structure of, for instance, JPEG in order to recognize
that a certain sequence of bytes might be part of a valid
JPEG file. Additionally, some file formats exist in di�erent
versions and variants. For instance, the Portable Network
Graphics (PNG) format has three o⇤cial versions [32]. Fi-
nally, manufacturers of digital devices such as mobile phones
or digital cameras may implement a file format standard in
idiosyncratic ways, which could be valuable for recovery. We
consider all kinds of variation to be covered by the “Format”
concern.

The second dimension captures (1) the ways in which files
are matched in the input image, and (2) the method of re-
assembly if fragmentation is detected on the basis of file
format structure. In Figure 2 these variation points are in-
dicated as“Match”and“Reassemble” respectively, below the
abstract “Algorithm” concern.

There are at least three matching algorithms that are used
in carvers. The most basic matching algorithm is header/-
footer matching that returns blocks between signatures of
file headers and footers. Next, file structure-based match-
ing uses complete structural knowledge of a file format in
order to deal with, for instance, corrupted files. Finally,
characteristics-based matching takes (statistical) character-








 






Figure 3: Overview of the Excavator architecture

istics about a file’s contents into account, for instance high
entropy in compressed files.

Finally, the third concern consists of algorithms for re-
assembling fragmented files. For instance, bifragment gap
carving [9] assumes that files consist of only two fragments
and that they are located on the data storage device in the
correct order. The algorithm tries all possible gaps between
the matched beginning and end of the file. Map/generate [6]
is more elaborate in that it supports reassembling files that
are arbitrarily fragmented. It exercises any combination of
sectors and then prunes the search space if mismatches are
found.

Currently, file carvers implement a limited combination
of file formats and/or matching and/or reassembly algo-
rithms. O�-the-shelf carvers typically do not support ex-
plicit variation points to e⇤ciently make trade-o�s between
precision and performance. The implementation of data for-
mat, matching and reassembly is completely tangled. As a
consequence, modification or reconfiguration of carvers is
time consuming and error prone.

Additionally, the top-level dimensions of Figure 2, “For-
mat” and “Algorithm”, correspond to two di�erent roles in
the practice of using carvers in forensic investigations. On
the one hand there are the digital forensics investigators that
have intricate knowledge of many file formats. On the other
hand, there are the software engineers that know how to im-
plement, evolve, and optimize carving tools. With the cur-
rent tools, no division of labour is possible: domain-specific
knowledge about file formats has to be communicated to
software engineers in order for them to make the necessary
changes to the system.

4.2 Implementation
Each concern of Figure 2 corresponds to a variation point
in the implementation. In Excavator, each variation point
corresponds to a logical component. These components are:

1. The declarative surface syntax of Derric for describ-
ing the structure of file formats (Format).

2. A code generator that takes file format descriptions
and generates matching code (Matching)

3. A runtime library implementing reassembly algorithms
as well as defining the base types and interfaces for the
generated matching code. (Reassemble)

Both the file format model and the code generator are imple-
mented in Rascal [17]. File format descriptions are input

AccuracyPerformance

Domain-specific optimization

format jpeg
extension jpeg jpg jfif

unit byte
size 1
sign false
type integer
endian big
strings ascii

sequence
 SOI
 ([APP0JFIF APP0JFXX?] [APP1 APP2?])
 !(SOI APP0JFIF APP0JFXX EOI)*
 EOI

…

Slow but precise

Fast and imprecise

Model
transformations

• Opportunities

• raise level of abstraction

• separation of concerns

• domain-specific optimization

• Risks

• it’s not better (functional/non-functional)

• short-term domain analysis (myopia)

• over-engineering / accidental complexity

Is it worth it?
• Compare to existing, open-source file carvers

• ReviveIt

• Scalpel

• Photorec

• Standard, publicly available test images

• Digital Forensics Tool Testing Images

• DFRWS Forensic Challenges

J. van den Bos and T. van der Storm, Bringing Domain-
Specific Languages to Digital Forensics, (ICSE'11 SEIP)

0

25

50

75

100

JPEG1 Basic 1 Basic 2 DFRWS 2006 DFRWS 2007

ReviveIt Scalpel Photorec Derric

Recovered files (%)

Runtime performance (s)

0

175

350

525

700

JPEG1 Basic 1 Basic 2 DFRWS 2006 DFRWS 2007

ReviveIt Scalpel Photorec Derric

• Fact 45:

• Better methods lead to 
more maintenance, not less.

Long term perspective

Approach

• Run Derric derived matchers on all images
of Wikipedia (JPG, PNG, GIF)

• Record failures

• Fix the models

• Repeat until no more failures

• Classify edits in complexity classes

A Case Study in Evidence-Based DSL Evolution

Jeroen van den Bos1,2 and Tijs van der Storm1

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 Netherlands Forensic Institute, Den Haag, The Netherlands

jeroen@infuse.org, storm@cwi.nl

Abstract. Domain-specific languages (DSLs) can significantly increase produc-
tivity and quality in software construction. However, even DSL programs need
to evolve to accomodate changing requirements and circumstances. How can we
know if the design of a DSL supports the relevant evolution scenarios on its pro-
grams? We present an experimental approach to evaluate the evolutionary capa-
bilities of a DSL and apply it on a DSL for digital forensics, called DERRIC. Our
results indicate that the majority of required changes to DERRIC programs are
easily expressed. However, some scenarios suggest that the DSL design can be
improved to prevent future maintenance problems. Our experimental approach
can be considered first steps towards evidence-based DSL evolution.

1 Introduction

Domain-specific languages (DSLs) can increase productivity by trading generality for
expressive power [17, 5]. Furthermore, DSLs have the potential to improve the prac-
tice of software maintenance: routine changes are easily expressed. More substantial
changes, however, might require the DSL itself to be changed [4]. How can we find out
whether the relevant maintenance scenarios will require routine changes or not?

In this paper we present a test-based experimental approach to answer this question
and apply it to a domain-specific language for describing file formats: DERRIC [2].
DERRIC is used in the domain of digital forensics to generate software to analyze,
reconstruct, and recover file-based evidence from storage devices. In digital forensics
it is common that such file format descriptions need to be changed regularly, either to
accomodate new file format versions, or to deal with vendor idiosyncrasies.

As a starting point, we have assembled a large corpus of image files to trigger
failing executions of the file recognition code that is generated from DERRIC descrip-
tions. Each failing execution is attempted to be corrected through a modification of the
DERRIC code, until all image files are correctly recognized. The required changes are
accurately tracked, categorized and rated in terms of complexity. This set of changes
provides an empirical baseline to assess whether the design of DERRIC sufficiently fa-
cilitates necessary maintenance.

The results show that all of the required changes were expressible in DERRIC; the
DSL did not have to be changed to resolve all failures. The majority of harvested changes
consists of multiple, inter-dependent modifications. The second most common change
consists of a single, simple, local modification. Finally, a minority of changes is more
complex. We discuss how the DERRIC DSL may be changed to make these changes

European Conference on Modelling foundations and Applications (ECMFA’13)

Over-design

format jpeg
extension jpeg jpg jfif

unit byte
size 1
sign false
type integer
endian big
strings ascii

sequence
 SOI
 ([APP0JFIF APP0JFXX?] [APP1 APP2?])
 !(SOI APP0JFIF APP0JFXX EOI)*
 EOI

structures
SOI {
 marker: 0xFF, 0xD8;
}

APP0JFIF {
 marker: 0xFF, 0xE0;
 length: lengthOf(rgb) + (offset(rgb) -
 offset(length)) size 2;
 identifier: "JFIF", 0;
 version: size 2;
 units: 0 | 1 | 2;
 xdensity: size 2;
 ydensity: size 2;
 xthumbnail;
 ythumbnail;
 rgb: size xthumbnail * (ythumbnail * 3);
}

Speciali
zed tools.

Build process.

Educati
on.

…

Currently: internal DSL

• Embedding in plain Java

• Interpreter

• Practically no dependencies

• Just as good…

MDSE: a balancing act
• Opportunities

• Raise your level of abstraction

• Separate what can’t be separated

• Domain-specific analysis and optimization

• Risks

• It actually doesn’t make a difference

• Short-term domain analysis (myopia)

• Over-engineering and accidental complexity

Is Derric a success?
Yes It depends
No N/A

MDSE: a balancing act

• storm@cwi.nl / @tvdstorm

• http://www.cwi.nl/research-groups/
Software-analysis-and-transformation

• http://www.rascal-mpl.org

mailto:storm@cwi.nl
http://www.rascal-mpl.org

