
Object Grammars:
Compositional & Bidirectional Mapping Between Text and Graphs

Tijs van der Storm1,2, William R. Cook3 and Alex Loh3

1 Centrum Wiskunde & Informatica (CWI)
2 INRIA Lille Nord Europe

3 University of Texas at Austin

Abstract. Object Grammars define mappings between text and object graphs.
Parsing recognizes syntactic features and creates the corresponding object struc-
ture. In the reverse direction, formatting recognizes object graph features and
generates an appropriate textual presentation. The key to Object Grammars is
the expressive power of the mapping, which decouples the syntactic structure
from the graph structure. To handle graphs, Object Grammars support declarative
annotations for resolving textual names that refer to arbitrary objects in the graph
structure. Predicates on the semantic structure provide additional control over the
mapping. Furthermore, Object Grammars are compositional so that languages
may be defined in a modular fashion. We have implemented our approach to
Object Grammars as one of the foundations of the Ensō system and illustrate the
utility of our approach by showing how it enables definition and composition of
domain-specific languages (DSLs).

1 Introduction

A grammar is traditionally understood as specifying a language, defined as a set of
strings. Given such a grammar, it is possible to recognize whether a given string is in the
language of the grammar. In practice it is more useful to actually parse a string to derive
its meaning. Traditionally parsing has been defined as an extension of the more basic
recognizer: when parts of the grammar are recognized, an action is invoked to create the
(abstract) syntax tree. The actions are traditionally implemented in a general-purpose
programming language.

In this paper we introduce Object Grammars: grammars that specify mappings
between syntactic presentations and graph-based object structures. Parsing recognizes
syntactic features and creates object structures. Object grammars include declarative
directives indicating how to create cross-links between objects, so that the result of
parsing can be a graph. Formatting recognizes object graph features and creates a textual
presentation. Since formatting is not uniquely specified, an Object Grammar can include
formatting hints to guide the rendering to text.

The second problem addressed in this paper is modularity and composition of Object
Grammars. Our goal is to facilitate construction of domain-specific languages (DSLs).
It is frequently desirable to reuse language fragments when creating new languages.
For example, a state machine language may require an expression sub-language to
represent constraints, conditions, or actions. In many cases the sublanguages may also

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301639693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be extended during reuse. We present a generic merge operator on that covers both reuse
and extension of languages.

The contributions of this paper can be summarized as follows:

– We introduce Object Grammars to parse textual syntax into object graphs.
– Cross references in the object structure are resolved using declarative paths in the

Object Grammar.
– Complex mappings can be further controlled using predicates.
– We show that Object Grammars are both compositional and bidirectional.
– The entire system is self-describing.

The form of Object Grammars presented in this paper is one of the foundations of
Ensō, a new programming system for the definition, composition and interpretation of
external DSLs4.

2 Object Grammars

In domain-specific modeling, a software system is modeled using a variety of dedicated
languages, each of which captures the essence of a single aspect. In textual modeling [27],
models are represented as text, which is easy to create, edit, compare and share. To
unlock their semantics, textual models must be parsed into a structure suitable for further
processing, such as analysis, (abstract) interpretation or code generation.

Many domain-specific models are naturally graph structured. Well-known examples
include state machines, workflow models, petri nets, network topologies and grammars.
Nevertheless, traditional approaches to parsing text have focused on tree structures.
Context-free grammars, for instance, are conceptually related to algebraic data types. As
such, existing work on parsing is naturally predisposed towards expression languages,
not modeling languages. To recover a semantic graph structure, textual references have
to be resolved in a separate name-analysis phase.

Object Grammars invert this convention, taking the semantic graph structure (the
model) as the primary artifact rather than the parse tree. Hence, when a textual model
is parsed using an Object Grammar, the result is a graph. Where the traditional tree
structure of a context-free grammar can be described by an algebraic data type, the
graphs produced by object grammars are described by a schema. In Ensō, a schema
is a class-based information model [26], similar to UML Class Diagrams [29], Entity
Relationship Diagrams [8] or other meta-modeling formalisms (e.g., [5]).

There is, however, an impedance mismatch between grammars (as used for parsing),
and object-oriented schemas (to describe structure). Previous work has suggested the
use of one-to-one mappings between context-free grammar productions and schema
classes [1, 40]. However, this is leads to tight coupling and synchronization of the two
formats. A change to the grammar requires a change to the schema and vice versa. Object
Grammars are designed to bridge grammars and schemas without sacrificing flexibility
on either side. This bridge works both ways: when parsing text into object model and
when formatting a model back to text. An Object Grammar specifies a mapping between

4 http://www.enso-lang.org

http://www.enso-lang.org

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

This grammar is not very useful, because it is ambiguous. To resolve this ambiguity, we
use the standard technique for encoding precedence and associativity using additional
non-terminals.

Term ::= [Binary] lhs:Term op:"+" rhs:Fact | Fact

Fact ::= [Binary] lhs:Fact op:"*" rhs:Prim | Prim

Prim ::= [Const] value:int | "(" Term ")"

This grammar refactoring is independent of the schema for expressions; the additional
non-terminals (Term, Fact, Prim) do not have corresponding classes. Object grammars
allow ambiguous grammars: as long as individual input strings are not ambiguous there
will be no error. Thus the original version can only parse fully parenthesized expressions,
while the second version handles standard expression notation.

During formatting, the alternatives are searched in order until a matching case is
found. For example, to format Binary(Binary(3,"+",5),"*",7) as a Term, the top-level
structure is a binary object with a * operator. The Term case does not apply, because the
operator does not match, so it formats the second alternative, Fact. The first alternative
of Fact matches, and the left hand side Binary(3,"+",5) must be formatted as a Fact.
The first case for Fact does not match, so it is formatted as a Prim. The first case for Prim
also does not match, so parentheses are added and the expression is formatted as a Term.
The net effect is that the necessary parentheses are added automatically, to format as
(3+5)*7.

2.3 Collections

Object Grammars support regular symbols to automatically map collections of values.
For example, consider this grammar for function calls:

C ::= [Call] fun:id "(" args:Exp* @"," ")"

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

class Machine

start : State

states ! State*

class State

machine: Machine / states

name # str

out ! Transition*
in : Transition*

class Transition

event # str

from : State / out

to : State / in

Fig. 2. Ensō schema defining the structure of state machine object graphs

the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

modifier indicates that the field is part of the spine (a minimal spanning tree) of the object
graph. If a spanning tree is defined, then all nodes in a model must be uniquely reachable
by following just the spine fields. The spine gives object models a stable traversal order.
Note that in the example schema, the start field is not part of the spine, since the start
state must be included in the set of all states.

The textual representation in Fig. 1(b) uses names to represent links between states,
while the graphical presentation in Fig. 1(a) uses graphical edges so names are not needed.
When humans read the textual presentation in Fig. 1(b), they immediately resolve the
names in each transition to create a mental picture similar Fig. 1(a).

start M

M ::= [Machine] "start" \start:</states[it]> states:S*
S ::= [State] "state" name:sym out:T*
T ::= [Transition] "on" event:sym "go" to:</states[it]>

Fig. 3. Object Grammar to parse state machines

Figure 3 shows an Object Grammar for state machines5. It uses the reference
</states[it]> to look up the start state of a machine and to find the the target state of
a transition. The path /states[it] starts at the root of the resulting object model, as
indicated by the forward slash /. In this case the root is a Machine object, since M is
the start symbol of the grammar, and the M production creates a Machine. The path then
navigates into the field states of the machine (see Fig. 2), and uses the identifier from
the input stream to index into the keyed collection of all states. The same path is used to
resolve the to field of a transition to the target state.

Path ::= [Anchor] type:"."

| [Anchor] type:".."

|

[Sub] parent:Path? "/" name:sym Subscript?

Subscript

::= "[" key:Key "]"

Key ::= Path | [It] "it"

Fig. 4. Syntax of paths.

References and Paths In gen-
eral, a reference <p> represents
a lookup of an object using the
path p. Parsing a reference al-
ways consumes a single identi-
fier, which can be used as a key
for indexing into keyed collec-
tions. Binding a field to a refer-
ence thus results in a cross-link
from the current object to the ref-
erenced object.

The syntax of paths is given in Fig. 4. A path is anchored at the current object (.), at
its parent (..), or at the root. In the context of an object a path can descend into a field by
post-fixing a path with / and the name of the field. If the field is a collection, a specific
element can be referenced by indexing in square brackets. The keyword it represents
the string-typed value of the identifier in the input stream that represents the reference
name.

The grammar of schemas, given in Fig. 5, illustrates a more complex use of references.
To lookup inverse fields, it is necessary to look for the field within the class that is the
type of the field. For example, in the state machine schema in Fig. 1(b), the field from in
Transition has type State and its inverse is the out field of State. The path for the type
is type:</types[it]>, while the path for the inverse is inverse:<./type/fields[it]>,
which refers to the type object. To resolve these paths, the parser must iteratively evaluate
paths until all paths have been resolved.

To format a path, for example /states[it] in Fig. 3, the system solves the equation
/states[it]=o to compute it given the known value o for the field. The resulting name
is then output, creating a symbolic reference to a specific object.

5 The field label start is escaped using \ because start is a keyword in the grammar of grammars;
cf. Section 2.7.

start Schema

Schema ::= [Schema] types:TypeDef*
TypeDef ::= Primitive | Class

Primitive ::= [Primitive] "primitive" name:sym

Class ::= [Class] "class" name:sym Parent? defined_fields:Field*
Parent ::= "<" supers:</classes[it]>+ @","

Field ::= [Field] name:sym Kind type:</types[it]> Multiplicity? Annot?

Kind ::= "#" { key } | "!" { spine } | ":"

Multiplicity ::= "*" { many && optional }

| "?" { optional }

| "+" { many }

Annot ::= "/" inverse:<./type/fields[it]> | "=" computed:Expr

Fig. 5. Schema Grammar

2.5 Predicates

The mapping between text and object graph can further be controlled using predicates.
Predicates are constraint expressions on fields of objects in the object graph. During
parsing, the values of these fields are updated to ensure these constraints evaluate to true.
Conversely, during formatting, the constraints are interpreted as conditions to guide the
search for the right rule alternative to format an object.

Predicates are useful for performing field assignments that are difficult to express
using basic bindings. For instance, Ensō grammars have no built-in token type for
boolean values to bind to. To write a grammar for booleans, one can use predicates as
follows:

Bool ::= [Bool] "true" { value }

| [Bool] "false" { !value }

Predicates are enclosed in curly braces. When the parser encounters the literal “true” it
creates a Bool object and set its value field to true. Alternatively, when encountering the
literal “false” the value field is assigned false, to satisfy the constraint that !value is
true.

When formatting a Bool object, the predicates act as guards. The grammar is searched
for a constructor with a fulfilled predicate or no predicate at all. Thus, a Bool object with
field value set to true prints “true” and one with field value set to false prints “false”.

A more complex example is shown in the Schema Grammar of Fig. 5. The classes and
fields used in the grammar are defined in the Ensō Schema Schema [26]. The production
rule for Multiplicity assigns the boolean fields many and optional in different ways.
For instance, when a field is suffixed with the modifier “*”, both the many and optional

fields are assigned to values that make the predicate true; in this case both optional and
many are set to true. Conversely, during formatting, both many and optional must be true
in the model in order to select this branch and output “*”.

2.6 Formatting Hints

Object Grammars are bidirectional: they are used for reading text into an object structure
and for formatting such structure back to text. Since object structures do not maintain the
layout information of the source text, formatting to text is in fact pretty-printing, and not
unparsing: the formatter has to invent layout. As mentioned above, default lines breaks
and indenting are generated based on the repeated expressions (marked with * or +).

The layout can be further controlled by including formatting hints directly in the
grammar. There are two such hints: suppress space (.) and force line-break (/). They are
ordinary grammar symbols so may occur anywhere in a production.

The following example illustrates the use of . and /.

Exp ::= name:sym | Exp "+" Exp | "(".Exp.")"

Stat ::= Exp.";" | "{" / Stat* @/ / "}"

Spaces are added between all tokens by default, so the dot (.) is used to suppress the
spaces after open parentheses and before close parentheses around expressions. Similarly,
the space is suppressed before the semicolon of an expression-statement. The block
statement uses explicit line breaks to put the open and close curly braces, and each
statement, onto its own line. Note that the Stat repetition is separated by line-breaks
(@/) during formatting, but this has no effect on parsing.

2.7 Lexical syntax

Ensō’s Object Grammars have a fixed lexical syntax. This is not essential: Object
Grammars can easily be adapted to scannerless or tokenization-based parser frameworks.
For Ensō’s goal, a fixed lexical syntax is sufficient. Furthermore, it absolves the language
designer of having to deal with tokenization and lexical disambiguation.

First of all, whitespace and comments are completely fixed: spaces, tabs and newlines
are ignored. There is one comment convention, // to end of line. Second, the way
primitive values are parsed is also fixed. In the examples we have seen the int and sym

symbols to capture integers and identifiers respectively. Additional types are real and
str for standard floating point syntax and strings enclosed in double quotes.

The symbol to capture alpha-numeric identifiers, sym, is treated in a special way,
since it may cause ambiguities with the keyword literals of a language. The parser avoids
such ambiguities in two ways. First, any alpha-numeric literal used in a grammar is
automatically treated as a keyword and prohibited from being a sym token. Second, for
both keyword literals and identifiers a longest match strategy is applied. To use reserved
keywords as identifiers they can be escaped using \. An example of this can be seen in
the state machine grammar of Fig. 3, where the start field name is escaped because start
is a keyword in grammars.

3 Self-Description

The Ensō framework is fully self-describing and Object Grammars are one of the
foundations that make this possible. Grammars and schemas are both first-class Ensō

Grammar
Grammar

Schema
Schema

Fo
rm

at
te

d
by

Instance of

In
stan

ce o
f

Instance of

Fo
rm

at
te

d
 b

y
Formatted by

In
sta

nc
e

of

Formatted by

Schema
Grammar

Grammar
Schema

Fig. 6. The four core schema and grammar models

models [24], just like other DSLs in the system. In Ensō, all models are an instance of a
schema, and grammar and schema models are no exception. Schemas are instances of a
“schema of schemas”, which is in turn an instance of itself. For grammars the relation
is formatting. For example, the state machine grammar of Fig. 3 formats state machine
models. Similarly, the grammar of grammars (Fig. 7) formats itself. The grammar
of schemas (Fig. 5) parses and formats schemas. The schema of grammars (Fig. 8)
instantiates grammars, and is formatted using the grammar of schemas. The schema
of schemas and its relationship to other schemas are explained further in a companion
paper [26]. These four core models and their relations are graphically depicted in Fig. 6.

Self-description provides two important benefits. First, the interpreters that provide
the parsing and formatting behavior for Object Grammars can be reused to parse and
format the grammars themselves. The same holds for Schema factories that are used
to construct object graphs typed by a schema: the schema of schemas is just a schema
that allows the creation of schemas, including its own schema. Second, by representing
core languages grammar and schema as the first-class models of Fig. 6, they become
amenable to extension in the same way just like ordinary models. For instance, both the
Schema Schema and the Grammar Grammar reuse a generic expression language (cf.
Section 5). The self-described nature of Ensō poses interesting bootstrapping challenges.
However, we consider this to be outside the scope of this paper.

3.1 Grammar Grammar

The formal syntax of Object Grammars is specified by the Grammar Grammar defined
in Fig. 7. A grammar consists of the declaration of the start symbol and a collection of
production rules. There are two types of rules: concrete rules and abstract rules. Both
types are identified by their name, which identifies the non-terminal that is introduced.
A concrete rule has a body that consists of one or more alternatives separated by (|) as
defined in the Alt rule. For an abstract rule, the body is bound through composition with

start Grammar

Grammar ::= [Grammar] "start" \start:</rules[it]> rules:Rule*
Rule ::= [Rule] name:sym "::=" arg:Alt

| [Rule] "abstract" name:sym

Alt ::= [Alt] alts:Create+ @"|"

Create ::= [Create] "[" name:sym "]" arg:Sequence | Sequence

Sequence ::= [Sequence] elements:Field*
Field ::= [Field] name:sym ":" arg:Pattern | Pattern

Pattern ::= [Lit] value:str

| [Value] kind:("int" | "str" | "real" | "sym" | "atom")

| [Ref] "<" path:Path ">"

| [Call] rule:</rules[it]>

| [Code] "{" code:Expr "}"

| [Regular] arg:Pattern "*" Sep? { optional && many }

| [Regular] arg:Pattern "+" Sep? { many }

| [Regular] arg:Pattern "?" { optional }

| [NoSpace] "."

| [Break] "/"

| "(" Alt ")"

Sep ::= "@" sep:Pattern

abstract Path

abstract Expr

Fig. 7. The Grammar Grammar: an Object Grammar that describes Object Grammars

class Grammar start: Rule rules: Rule*
class Rule name: str arg: Alt?

grammar: Grammar / rules

class Pattern

class Alt < Pattern alts: Pattern+

class Sequence < Pattern elements: Pattern*
class Create < Pattern name: str arg: Pattern

class Field < Pattern name: str arg: Pattern

class Lit < Pattern value: str

class Value < Pattern kind: str

class Ref < Pattern path: Path

class Call < Pattern rule: Rule

class Code < Pattern expr: Expr

class NoSpace < Pattern

class Break < Pattern

class Regular < Pattern arg: Pattern sep: Pattern?

optional: bool many: bool

Fig. 8. The Grammar Schema

another grammar. Path is an example of an abstract rule, which was defined in Fig. 4.
See Section 5 for more discussion of grammar composition.

The grammar rules use the standard technique for expressing precedence of grammar
patterns, by adding extra non-terminals. An alternative is a Sequence of Patterns possibly
prefixed by a constructor (Create), which creates a new object that becomes the current
object for the following sequence of patterns. If there is no constructor, the current object
is inherited from the calling rule. The Patterns in a sequence can be Field bindings
or syntactical symbols commonly found in grammar notations, such as literals, lexical
tokens, non-terminals, regular symbols, and formatting hints.

Since the grammar of grammars is itself an Ensō model, it is accompanied by a
schema of grammars. This is shown in Fig. 8. Note that the different forms of regular op-
erators in the grammar are represented by a single class Regular with boolean properties
to define the number of repetitions.

There is something very elegant and appealing about the concise self-description in
the Grammar Grammar. For example the Create and Field rules both explain and use
the creation/binding syntax at the same time. The Ref and Call rules seem to be inverses
of each other, as the body of a Call is defined by a reference, and the body of a Ref is a
call to Path. The normal level and meta-level are also clearly separated, as illustated by
the various uses of unquoted and quoted operators (| vs. "|", * vs. "*", etc).

4 Implementation

The implementation of Ensō is a collection of interpreters for the DSLs that are used
in the system. Currently, these interpreters are implemented in the Ruby programming
language [14]. In contrast to most systems, which are based on generating code for a
parser by compiling a grammar, Ensō uses dynamic interpretation of grammars. The
same applies to schemas: a “factory” object interprets a schema to dynamically create
objects and assign fields [26].

These are the two interpreters relevant for the purpose of this paper:

parse : (S : Schema)→ GrammarS→ String→ S (1)
format : GrammarS→ S→ String (2)

The parse function takes a value S of type Schema, a grammar (compatible with S), and
a string, and returns a value of type S. Note that parse is dependently typed: the value
of the first argument determines the type of the result, namely S. The format function
realizes the opposite direction: given a grammar compatible with S and an value of type
S it produces a textual representation.

4.1 Parsing

The parser is implemented as an interpretive variant of the GLL algorithm [33]. GLL
is a general parsing algorithm. As a result it supports infinite lookahead and supports
the general class of context-free grammars. Tokenization of the input stream happens on
the fly, during parsing. When a certain token type is expected on the basis of the state of

def build(t, ob=nil, f=false, vs=[], ps=[])

l = t.label

case l.schema_class.name

when :Sequence then t.kids.each { |k|

build(k, ob, false, vs, ps)

}

when :Create then t.kids.each { |k|

build(k, ob=@factory.make(l.name))

}

when :Field then t.kids.each { |k|

build(k, ob, true, vs=[], ps=[])

}

vs.each { |v| update(ob, l.name, v) }

ps.each { |p| @fixes << [p, ob, l.name] }

when :Lit then vs << t.value if f

when :Value

vs << convert(t.value, l.kind)

when :Ref

ps << subst_it(t.value, l.path)

when :Code

l.code.assert(ob)

else then t.kids.each { |k|

ob = build(k, ob, f, vs, ps)

}

end

return ob

end

def fixup(root)

begin

later = []; change = false

@fixes.each do |path, obj, fld|

x = path.deref(root, obj)

if x then

the path can be resolved
update(obj, fld, x)

change = true

else

if not, try it later
later << [path, obj, fld]

end

end

@fixes = later

end while change

unless later.empty?

raise "Fix-up error"

end

end

Fig. 9. Pseudo Ruby code for building the spine and fix-up of cross-links

the parser, the scanner is asked to provide this token at the current position of the input
stream. If it delivers, parsing continues, otherwise, an alternative branch in the grammar
will be taken. If there are no remaining branches, a parse error is issued. The result of a
successful, non-ambiguous parse is a concrete syntax tree where the nodes are annotated
with grammar patterns (e.g., Sequence, Create etc.—see Fig. 8).

If parsing is successful, the object-graph is constructed from the concrete syntax tree
in two steps. First, the spine of the object graph is created. This is shown in the left-hand
side of Fig. 9. The build algorithm recursively traverses the syntax tree and depending
on the label of a node, creates objects and assigns fields. The first argument to build is
the syntax tree, ob represents the “current” object; f indicates if field assignment can be
performed. Finally, vs and ps collect values and paths respectively.

For constructor directives, a factory is called to create an object of the right class.
The created object becomes the new current object when recursing down the tree. In
the case for Field nodes, the values collected in vs are directly assigned to the current
object. The paths ps are recorded as “fixes” to the current object for the current field in
the global variable @fixes; these fixes are applied later to create cross-links.

Both Literals and Values (tokens) are simply added to the collection of values vs.
Values are first converted to the expected type; the value of a literal is recorded literally,
but only when the node is directly below a field binder. When a reference is encountered
(Ref) the special keyword it is substituted for the name that has been parsed, and the
result is added to ps. Finally, predicates (Code) are asserted in the context of the current
object so that the referenced fields are appropriately set.

In the second step, the path-based references are resolved in an iterative fix-point
process. This is shown in the right-hand side of Fig. 9. The fix-point process ensures that
dependencies between references are dynamically discovered. If in the end some of the
paths could not be resolved—for instance because of a cyclic dependency—an error is
produced.

4.2 Formatting

Formatting works by matching constructor and field binding specifications in an Object
Grammar against objects. In essence, the formatter searches for a minimal rendering
that is compatible with the object graph. When the class in a constructor directive
matches the class of the object being formatted, the object is formatted using the body of
the production alternative. If formatting fails when recursing through the grammar, the
formatter backtracks to select a different production alternative. If no suitable alternatives
can be found, an error is raised.

Literals are formatted directly to the output, and fields are selected from the object.
The formatter creates an intermediate formatting structure that includes the pretty printing
hints of the grammar. This structure is then formatted to text using Wadler’s prettier
printer algorithm [39].

5 Language Composition

Modular language development presupposes a composition operator to combine two
language modules into one. For two grammars, this usually involves taking the union of
their production rules, where the alternatives of rules with the same name are combined.
To union Object Grammars in such a way, it is also necessary to merge their target
schemas so that references to classes and fields in both languages can be resolved.

In Ensō, composition of grammars and schemas are both accomplished using the
same generic merge operator ·� ·. This operator can be characterized as an overriding
union where conflicts are resolved in favor of the second argument. Since a language
is defined by its schema and grammar, the composition of a base language B with an
extension E is given by Bgrammar �Egrammar and Bschema �Eschema.

5.1 Merge

The algorithm implementing � is shown in pseudo Ruby code in Fig. 10. There are
two passes in the merge algorithm. In the first pass, build traverses the spine of the
object graph o1 to create any new object required. If build encounters an object in o2

but none at the same location on the spine in o1, it creates a new copy of that object and

def merge_into(type, o1, o2)

build(type, o1, o2, memo = {})

link(type, true, o1, o2, memo)

end

def build(type, a, b, memo)

return if b.nil?

memo[b] = new = a || type.new

type.fields.each do |fld|

ax = a && a[fld.name]

bx = b[fld.name]

if fld.type.Primitive? then

new[fld.name] = bx

elsif fld.spine

if !fld.many

build(fld.type, ax, bx, memo)

else

ax.outer_join(bx) do |ai, bi|

build(fld.type, ai, bi, memo)

end

end

end

end

end

def link(type, spine, a, b, memo)

return a if b.nil?

new = memo[b]

return new if !spine

type.fields.each do |fld|

ax = a && a[fld.name]

bx = b[fld.name]

next if fld.type.Primitive?

if !fld.many? then

val = link(fld.type, fld.spine, ax, bx, memo)

new[fld.name] = val

else

ax.outer_join(bx) do |ai, bi|

x = link(fld.type, fld.spine, ai, bi, memo)

unless new[fld.name].include?(x)

new[fld.name] << x

end

end

end

end

return new

end

Fig. 10. Pseudo Ruby code for the generic � operator

attaches it to the graph of o1. Primitive fields from o1 are always overridden by the same
fields of o2, allowing the extension to modify the original language. Pairs of objects are
merged by merging the values of each field. Collections are merged pair-wise according
to their keys; outer_join is a relational join of two collections, matching up all pairs of
items with equivalent keys and pairing up the remaining items with nil. At the same
time, the first pass also establishes a mapping memo, between each object in o2 and the
corresponding object in the same spine location in o1.

In the second phase, non-spine fields—those without the ! modifier—are made to
point to their new locations. The object graph is once again traversed along the spine, but
this time link looks up memo for each non-spine field in order to find the updated target
object.

5.2 Composition in Ensō

Many of the current set of languages in Ensō are defined by composing two or more
language modules. Fig. 11 shows how Ensō languages are related with respect to
language composition. Each edge in the diagram represents an invocation of �. The
arrow points in the direction of the result. For instance, the Stencil and Web languages
are, independently, merged into the Command language. As a result both Stencil and

Grammar Schema StencilAuth

CommandExpr

Web

XMLPath

Controller

Fig. 11. Language composition in Ensō. Each arrow A→ B indicates an invocation of B�A.

Web include, and possibly override and/or extend the Command language. If a language
reuses or extends multiple other languages, the merge operator is applied in sequence.
For instance, Grammar is first merged into Path, and then merged into Expr.

The core languages in Ensō include both the Schema and Grammar languages, as
well as Stencil, a language to define graphical model editors. Additionally, Ensō features
a small set of library languages that are not deployed independently but reused in other
languages. An example of a library language is Expr, an expression language with
operators, variables and primitive values. It is, for instance, reused in Grammar for
predicates and in Schema for computed fields. Command is a control-flow language that
captures loops, conditional statements and functions. The Command language reuses the
Expr language for the guards in loops and conditional statements. Another example is
the language of paths (Path), shown in Fig. 4, which provides a model to address nodes
in object graphs.

The reuse of Expr and Path are examples of a simple embedding. The languages are
reused as black boxes, without modification. The composition of Command with Stencil
and Web, however is different. Stencil is created by adding language constructs for
user-interface widgets, lines, and shapes to the Command language as valid primitives.
The Command language can now be used to create diagrams. A similar extension is
realized in the Web language: here a language for XML element structure is mixed with
the statement language of Web. The extension works in both directions: XML elements
are valid statements, statements are valid XML content. The Piping and Controller
languages are from a domain-specific modeling case-study in the domain of piping and
instrumentation for the Language Workbench Challenge 2012 [25]. Fig. 11 only shows
the Controller part which reuses Expr.

An overview of the number source lines of code (SLOC) is shown in Table 1(a).
We show the number for the full languages in Ensō as well as the reused language
modules (Path, Command, Expr and XML). A language consists of a schema, a grammar
and an interpreter. The interpreters are all implemented in Ruby. Table 1(b) shows
the reuse percentage for each language [17]. This percentage is computed as 100×
#SLOCreused/#SLOCtotal. Which languages are reused in each case can be seen from
Fig. 11. As can be seen from this table, the amount of reuse in schemas and grammars is
consistently high, with the exception of the Piping language, which does not reuse any
language. It shows that the merge operator is powerful enough to combine real languages
in a variety of ways, with actual payoff in terms of reuse.

Language Schema Grammar Interpreter

Grammar 53 31 1243
Schema 30 20 667
Stencil 51 26 1387
Web 79 43 885
Auth 28 16 276
Piping 80 22 306
Controller 26 14 155

Path 14 6 222
Command 39 26 265
Expr 47 30 91
XML 10 6 47

(a)

Reuse Percentages
Language Schema Grammar Interpreter

Grammar 54% 54% 20%
Schema 61% 60% 12%
Stencil 63% 68% 20%
Web 55% 59% 31%
Auth 63% 65% 25%
Piping 0% 0% 0%
Controller 64% 68% 37%

(b)

Table 1. SLOC count (a) and reuse percentages (b) for schemas, grammars and interpreters of the
languages currently in Ensō

6 Related work

The subject of bridging modelware and grammarware is not new [1,40]. In the recent past,
numerous approaches to mapping text to models and vice versa have been proposed [13,
16,19,21,23,27,28]. Common to many of these languages is that references are resolved
using globally unique, or hierarchically scoped names. Such names can be opaque Unique
Universal Identifiers (UUIDs) to uniquely identify model elements or key attributes of
the elements themselves [18]. The main difference between these approaches and Object
Grammars is that Object Grammars replace the name-based strategy by allowing arbitrary
paths through the model to find a referenced object. This facilitates mappings that require
non-global or non-hierarchical scoping rules. Below we discuss representative systems
in more detail.

The Textual Concrete Syntax (TCS) language supports deserialization and serializa-
tion of graph-structured models [21]. Field binders can be annotated with {refersTo =

〈name〉}, which binds the field to the object of the field’s class with the field 〈name〉 hav-
ing the value of the parsed token. Rules can furthermore be annotated with addToContext

to add it to the, possibly nested, symbol table. The symbol table is built after the com-
plete source has been parsed to allow forward references. Only simple references to
in-scope entities are allowed, however. Path-based references of Object Grammars allow
more complex reference resolving, possibly across nested scopes. TCS aims to have
preliminary support for pretty printing directives to control nesting and indentation,
spacing and custom separators. However, these features seem to be unimplemented.

Xtext is an advanced language workbench for textual DSL development [13]. The
grammar formalism is restricted form of ANTLR so that both deserialization and seri-
alization is supported. Xtext supports name-based referencing. To customize the name
lookup semantics Xtext provides a Scoping API in Java. Apart from the use of simple
names, Xtext differs from Object Grammars in that, by default, linking to target objects
is performed lazily. Again, this can be customized by implementing the appropriate

interfaces. Xtext is said to support a limited form of modularity through grammar mixins.
For lexical syntax Xtext provides a standard set of terminal definitions such as INT and
STRING, which are available for reuse.

EMFText is an Ecore based formalism similar to Xtext grammars [9, 19]. EMFText,
however, supports accurate unparsing of models that have been parsed. For models that
have been created in memory or have been modified after parsing, formatting can be
controlled by pretty printing hints similar to the . and / symbols presented in this paper.
The grammar symbol #n forces printing of the n spaces. Similarly, !n is used for printing
a line-break, followed by n indentation steps.

In the MontiCore system both metamodel (schema) and grammar are described in
a single formalism [23]. This means that the non-terminals of the grammar introduces
classes and syntactic categories at the same time. Grammar alternatives are declared by
non-terminal “inheritance”. As a result, the defined schema is directly tied to the syntactic
structure of the grammar. The formalism supports the specification of associations and
how they are established in separate sections. The default resolution strategy assumes file-
wide unique identifiers, or syntactically hierarchical namespaces. This can be customized
by programming if needed.

The Textual Concrete Syntax Specification Language (TCSSL) is another formal-
ism to make grammars metamodel-aware [15]. It features three kinds of syntax rules:
CreationRules which function like our [Create] annotations,—SeekRules, which look
for existing objects satisfying an identifying criterion,—and SingletonRules, which are
like CreationRules, but only create a new object if there is no existing object satisfying
a specified criterion. The queries used in SeekRules seem more powerful than sim-
ple, name-based resolution; it is however unclear from the paper how they are applied
for complex scenarios. TCSSL furthermore allows code fragments enclosed in double
angular brackets (<<>>) but it is unclear how this affects model-to-text formatting.

Discussion The requirements for mapping grammars to metamodels were first formu-
lated in [20]: the mapping should be customizable, bidirectional and model-based. The
Object Grammars presented in this paper satisfy these requirements. First, the mapping
is customizable because of asynchronous binding: the resulting structures are to a large
extent independent of the structure of the grammar. Path-based referencing and predi-
cates are powerful tools to control the mapping, but admit a bidirectional semantics so
that formatting of models back to text is possible. Formatting can be further guided using
formatting hints. Finally, Object Grammars are clearly model-based: both grammars
and schemas are themselves models, self-formatted and self-described respectively. A
comparative overview of systems to parse text into graph structures that conform to
class-based metamodels can be found in [18].

To our knowledge, Object Grammars represent the first approach to mapping between
grammars and metamodels that supports modular combination of languages. Xtext, EMF-
Text, TCS, MontiCore, and TCSSL are implemented using ANTLR. ANTLR’s LL(*)
algorithm, however, makes true grammar composition impossible. Object Grammars,
on the other hand, are compositional due to the use of the general parsing algorithm
GLL [33]. Moreover, the use of a general parsing algorithm has the advantage that
there is no restriction on context-free structure. For instance, the designer of a modeling

language does not have to worry about whether she can use left-recursion or whether
her grammar is within some restricted class of context-free grammars, such as LL(k) or
LR(k). As a result, Object Grammars can be structured in a way that is beneficial for
resulting structure, without being subservient to a specific parsing algorithm. Object
Grammars share this freedom with other grammar formalisms based on general parsing,
such as SDF [36] and Rascal [22].

The way references are resolved in Object Grammars bears resemblance to the way
attributes are evaluated in attribute grammars (AGs) [30]. AGs represent a convenient
formalism to specify semantic analyses, such as name analysis and type checking, by
declaring equations between inherited attributes and synthesized attributes. The AG
system schedules the evaluation of the attributes automatically. Modern AG systems,
such as JastAdd [11] and Silver [35], support reference attributes: instead of simple
values, such attributes may evaluate to pointers to AST nodes. They can be used, for
instance, to super-impose a control-flow graph on the AST. Reference resolving in
Object Grammars is similar to attributes: they are declarative statements of fact, and
the system—in our case the parse function— decides how to operationally make these
statements true. Object-grammars are different, however, in the sense that the object
graph is first-class, and not a decoration of an AST. Moreover, path-based references only
allow navigating the object graph without performing arbitrary computations. Extending
Object Grammars with AG style attributes is an area for further research.

Modular language development is an active area of research. This includes work on
modular extension of DSLs and modeling languages [34, 37, 38], extensible compiler
construction [4, 11], modular composition of lexers [7] and parsers [6, 32], modular
name analysis [10] and modular language embedding [31]. Object Grammars support a
powerful form of language composition through the generic merge operation (�) applied
in tandem to both grammars and schemas. The merge operator covers language extension
and unification as discussed in [12]. In essence, merge captures an advanced form of
inheritance similar to feature composition [2, 3]. However, merge currently applies only
syntactic and semantic structure. To achieve the same level of compositionality at the
level of behavior, i.e. interpreters, is an important direction for further research.

7 Conclusion

Object Grammars are a formalism for bidirectional mapping between text and object
graphs. Unlike traditional grammars, Object Grammars include a declarative specification
of the semantic structure that results from parsing. The notation allows objects to be
constructed and their fields to be bound. Paths specify cross-links in the resulting graph
structure. Thus the result of parsing is a graph, not a tree. Object Grammars can also be
used to format an object graph into text.

Our implementation of Object Grammars in Ensō supports arbitrary context-free
grammars. This is required when composing multiple grammars together. We have shown
how Object Grammars are used in Ensō to support modular definition and composition
of DSLs.

Acknowledgements We thank Atze van der Ploeg and the anonymous reviewers for their
comments on earlier drafts of this paper.

References

1. Alanen, M., Porres, I.: A relation between context-free grammars and meta object facility
metamodels. Technical Report 606, Turku Centre for Computer Science (2004)

2. Apel, S., Hutchins, D.: A calculus for uniform feature composition. ACM Trans. Program.
Lang. Syst. 32(5) (2008) 19:1–19:33

3. Apel, S., Kastner, C., Lengauer, C.: FeatureHouse: Language-independent, automated soft-
ware composition. In: Proceedings of the International Conference on Software Engineering
(ICSE). (2009) 221–231

4. Avgustinov, P., Ekman, T., Tibble, J.: Modularity first: a case for mixing AOP and attribute
grammars. In: Proceedings of the International Conference on Aspect-Oriented Software
Development (AOSD), ACM (2008) 25–35

5. Bąk, K., Czarnecki, K., Wąsowski, A.: Feature and meta-models in Clafer: mixed, specialized,
and coupled. In: Proceedings of the 3rd international conference on Software Language
Engineering (SLE’10), Springer (2011) 102–122

6. Bravenboer, M., Visser, E.: Parse table composition. In: Proceedings of the International
Conference on Software Language Engineering (SLE). Revised selected papers. Volume 5452
of LNCS., Springer (2009) 74–94

7. Casey, A., Hendren, L.: MetaLexer: a modular lexical specification language. In: Proceedings
of the International Conference on Aspect-Oriented Software Development (AOSD), ACM
(2011) 7–18

8. Chen, P.P.: The Entity-Relationship Model—Toward a Unified View of Data. ACM Transac-
tions on Database Systems 1(1) (1976)

9. DevBoost: EMFText: concrete syntax mapper http://www.emftext.org/.
10. Ekman, T., Hedin, G.: Modular name analysis for Java using JastAdd. In: Proceedings of

the International Summerschool on Generative and Transformational Techniques in Software
Engineering (GTTSE), Springer (2006) 422–436

11. Ekman, T., Hedin, G.: The JastAdd system—modular extensible compiler construction. Sci.
Comput. Program. 69(1-3) (December 2007) 14–26

12. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Proceedings
of the International Workshop on Language Descriptions, Tools and Applications (LDTA).
(2012)

13. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick and dirty
way. In: OOPSLA Companion (SPLASH), ACM (2010) 307–309

14. Flanagan, D., Matsumoto, Y.: The Ruby Programming Language. O’Reilly (2008)
15. Fondement, F., Schnekenburger, R., Gérard, S., Muller, P.A.: Metamodel-aware textual

concrete syntax specification. Technical Report LGL-2006-005, EPFL (December 2006)
16. Fondement, F.: Concrete syntax definition for modeling languages. PhD thesis, EPFL (2007)
17. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv. 28(2) (1996)

415–435
18. Goldschmidt, T., Becker, S., Uhl, A.: Classification of concrete textual syntax mapping

approaches. In: Proceedings of the European Conference on Model Driven Architecture—
Foundations and Applications (ECMDA-FA). Volume 5095 of LNCS. (2008) 169–184

19. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and refinement of
textual syntax for models. In: Model Driven Architecture—Foundations and Applications
(ECMDA-FA). Volume 5562 of LNCS. Springer (2009) 114–129

20. Jouault, F., Bézivin, J.: On the specification of textual syntaxes for models. In: Eclipse
Modeling Symposium, Eclipse Summit Europe 2006. (2006)

21. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete
syntaxes in model engineering. In: Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), ACM (2006) 249–254

http://www.emftext.org/

22. Klint, P., van der Storm, T., Vinju, J.: Rascal: A Domain Specific Language for Source Code
Analysis and Manipulation. In: Proceedings of the International Working Conference on
Source Code Analysis and Manipulation (SCAM), IEEE (2009) 168–177

23. Krahn, H., Rumpe, B., Völkel, S.: Integrated definition of abstract and concrete syntax
for textual languages. In: Proceedings of the International Conference On Model Driven
Engineering Languages And Systems (MoDELS). Volume 4735 of LNCS. Springer (2007)
286–300

24. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks. In: OOPSLA
Companion (OOPSLA), ACM (2006) 602–616

25. Loh, A.: Piping and instrumentation in Ensō. Language Workbench Challenge Workshop
at Code Generation 2012 (March 2012) http://www.languageworkbenches.net/index.php?
title=LWC_2012. Accessed June 11th, 2012.

26. Loh, A., van der Storm, T., Cook, W.R.: Managed data: Modular strategies for data abstraction
http://www.cs.utexas.edu/~wcook/Drafts/2012/ensodata.pdf. Submitted.

27. Merkle, B.: Textual modeling tools: overview and comparison of language workbenches. In:
OOPSLA Companion (SPLASH), ACM (2010) 139–148

28. Muller, P.A., Fondement, F., Fleurey, F., Hassenforder, M., Schneckenburger, R., Gérard, S.,
Jézéquel, J.M.: Model-driven analysis and synthesis of textual concrete syntax. Software and
System Modeling 7(4) (2008) 423–441

29. Object Management Group: Unified Modeling Language Specification, version 1.3. OMG,
http://www.omg.org (March 2000)

30. Paakki, J.: Attribute grammar paradigms—a high-level methodology in language implemen-
tation. ACM Comput. Surv. 27(2) (1995) 196–255

31. Renggli, L., Denker, M., Nierstrasz, O.: Language boxes: bending the host language with
modular language changes. In: Proceedings of the International Conference on Software
Language Engineering (SLE). Volume 5969 of LNCS., Springer (2010) 274–293

32. Schwerdfeger, A.C., Van Wyk, E.R.: Verifiable composition of deterministic grammars.
In: Proceedings of the Conference on Programming Language Design and Implementation
(PLDI), ACM (2009) 199–210

33. Scott, E., Johnstone, A.: GLL parsing. Electr. Notes Theor. Comput. Sci. 253(7) (2010)
177–189

34. Van Wyk, E.: Aspects as modular language extensions. In: Proc. of Language Descriptions,
Tools and Applications (LDTA). Volume 82.3 of Electronic Notes in Theoretical Computer
Science., Elsevier Science (2003)

35. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute grammar system.
Science of Computer Programming 75(1–2) (January 2010) 39–54

36. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam
(September 1997)

37. Völter, M., Solomatov, K.: Language modularization and composition with projectional
language workbenches illustrated with MPS. In: Proceedings of the International Conference
on Software Language Engineering (SLE). Revised selected papers. Volume 6563 of LNCS.,
Springer (2010)

38. Völter, M., Visser, E.: Language extension and composition with language workbenches. In:
OOPSLA Companion (SPLASH), ACM (2010) 301–304

39. Wadler, P.: A Prettier Printer. In: The Fun of Programming. Palgrave Macmillan (2003)
40. Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In: Proceedings of the

Satellite Events at the MoDELS Conference, Springer (2006) 159–168
41. Wirth, N.: What can we do about the unnecessary diversity of notation for syntactic definitions?

Commun. ACM 20(11) (1977) 822–823

http://www.languageworkbenches.net/index.php?title=LWC_2012
http://www.languageworkbenches.net/index.php?title=LWC_2012
http://www.cs.utexas.edu/~wcook/Drafts/2012/ensodata.pdf
http://www.omg.org

	Object Grammars: Compositional & Bidirectional Mapping Between Text and Graphs

