
Language Workbench Support for Block-Based DSLs
Mauricio Verano Merino

Eindhoven University of Technology
Eindhoven, Netherlands
m.verano.merino@tue.nl

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)

Amsterdam
University of Groningen, Groningen

Netherlands
storm@cwi.nl

Abstract
Block-based languages oer notable advantages for bring-
ing domain-specic languages (DSLs) closer to an end-user
programming audience. Nevertheless, the construction of
block-based languages is still a rather ad hoc and low-level
endeavour. Language workbenches [1] have been shown to
be eective in improving productivity when developing tex-
tual or otherwise graphical DSLs. In this paper, we sketch
open challenges and work in progress to provide language
workbench support for block-based languages. In particu-
lar we address dedicated meta languages for dening the
syntax of block-based languages. Making block-based lan-
guage development part of the common languageworkbench
repertoire will improve the adoption of the block metaphor
outside the realm of programming education, and bring DSLs
closer to end-user programming.

Keywords Language workbenches, language formalism,
block-based grammar

1 Introduction
Nowadays there are various tools and libraries that support
the development of block-based programming environments
such as Scratch [6], App Inventor [3], Blockly [5], Open-
Blocks [7], and Snap! [4]. However, these tools and libraries
focus primarily on the user interface part of a language, and
hence lack support to dene other aspects of a language pro-
cessor, such as type checkers, code generators, debuggers,
etc.
Language workbenches oer comprehensive meta lan-

guages and tools to aid the end-to-end development of (tex-
tual) software languages, including IDE services such as
syntax coloring, reference linking (“jump to denition”), out-
line views, error marking, debugging, and others [1]. In this
position paper we aim to identify the challenges for bringing
both of these worlds closer together.

In particular, we raise the following main question: What
new tools, interfaces, APIs, or formalisms would be needed to
bring the development of block-based languages up to speed?
In Section 2 we identify concrete questions regarding syntax
denition, abstract syntax tree (AST) representation, and
static analysis. In particular, we explore how traditional

BLOCKS+, November 04, 2018, Boston, MA, USA
2018.

start syntax Machine

= "machine" Id State*;

syntax State

= "state" Id "{" Trans* "}";

syntax Trans

= "on" Id "to" Id;

lexical Id = [a-zA-Z]+;

Figure 1. State machine grammar denition and state ma-
chine in block notation

context-free grammars could be used to dene block-based
languages in Section 3. Next we rst introduce a simple
running example to illustrate the challenges.

Example: State Machines The left of Figure 1 shows the
context-free grammar of a simple state machine DSL. This
grammar notation is the built-in grammar notation of the
Rascal language workbench [2]. A state machine consists
of a number named states, which in turn may contain any
number of transitions, from a named event to a target state.
The right of Figure 1 shows a state machine in block-based
notation, modeling the opening, closing, and locking of a
door. As can be seen from the gure, there is a close corre-
spondence between the context-free grammar on the one
hand, and the structure and labels of the blocks on the other
hand. In Section 3, we discuss this relationship in more de-
tail based on our work on mapping arbitrary context-free
grammars to Blockly [5] interfaces. First, however, we use
the running example to discuss the general challenges of
dening block-based languages.

2 Challenges
Syntax Denition Existing systems and libraries for den-
ing block-based languages require either low-level program-
ming or graphical conguration of blocks and their structure.
Textual computer languages have since long been described
using context-free grammars, which provide a declarative

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301639649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BLOCKS+, November 04, 2018, Boston, MA, USA Mauricio Verano Merino and Tijs van der Storm

specication of the syntax of a language. What would a
declarative language for block look like? Block-based lan-
guages are dierent from textual languages, in that they
dene more of the layout (e.g., horizontal vs vertical stack-
ing, left-to-right connecting, or nesting, etc.), often require
internationalization, and support multiple widgets for “ter-
minal” symbols (e.g., names, literal values, etc.).

Abstract Syntax Whereas the previous point is concerned
about dening the concrete syntax of block-based languages,
dening the abstract syntax is equally important for imple-
menting language processors. Language workbenches typi-
cally employ algebraic data types, or object-oriented class
models for this. It is naturally possible to map a block pro-
gram to some tree structure, but it is unclear, for instance,
how much such trees could be typed (e.g., according to the
categorization, or allowed nesting of blocks), and how ref-
erences to outside entities (i.e., entities not literally part of
the program, like variables and slider values, etc.) should be
represented.

Static Checking In block-based languages, the syntax of
a program is correct by construction, but the user may still
make type errors and name errors. For instance, dening
more than one transition on the same event could be consid-
ered erroneous because it introduces non-determinism, and
the user should be notied about this. Another error could
be to refer to a state that is not (yet) dened as part of the
machine.
The denition of such static checking can be dened in

terms of the language’s abstract syntax, but the reporting
of errors needs to be closely integrated with the user inter-
face. In textual languages this is often realized using source
locations (e.g., line and column number), but such locations
are not easily available for block languages. Such identica-
tion of syntax elements is also instrumental for other IDE
services, such as hover documentation, jump-to-denition,
and visualization of debugging state.
To summarize, we posit that the rst challenges to be

solved for integrating block-based languages into language
workbenches are as follows:
• A declarative formalism to dene the concrete and
abstract syntax of block-based languages.
• A generic mechanism of identifying syntactic elements
for presenting the results of both static and dynamic
analyses.

3 Kogi - CFG2Blockly
Kogi is a tool for deriving block-based programming envi-
ronments from context-free grammars, as dened using the
Rascal syntax denition facility. The grammar in Figure 1 is
an example of such a grammar, and we expect that Kogi will
be able to generate a block-based environment as shown on
the right of the gure.

The mapping from grammar to Blockly, however, is not
one-to-one. We employ the following heuristics:
• The start symbol (e.g., Machine) produces a block with-
out top and bottom connections, which clusters all the
possible language constructs.
• Each lexical production produces a block represented
as a male jigsaw which allows textual input.
• Each context-free production in the grammar produces
one kind of block. The look and behavior of the block
depend on the symbols that make up the production.
• A nonterminal symbol (e.g. Id in the State denition)
in a production is mapped to an input block (input
value).
• A list of nonterminal symbols is mapped to an input
statement, which allows top and bottom connections.
• The order of the literal symbols (e.g. “machine”, “state”,
“”, “” etc.) are kept in the same position in the block
constructs.

As a result of the derivation process, Kogi is able to generate
a block-based programming environment using Blockly as
frontend.

Our current focus is how to supplant the information that
is in grammar with additional block-specic conguration
parameters, to guide horizontal vs vertical stacking, colors,
categorization, and ensuring that invalid connections be-
tween blocks are not allowed.

4 Conclusion
In this position paper, we have presented some of the open
challenges for supporting the denition of block-based lan-
guages using language workbenches. We posit that syntax
denition and source location identication are key require-
ments. As a rst step, we have presented work in progress
on Kogi, a tool that analyzes context-free grammars and
produces block-based congurations.

References
[1] Sebastian Erdweg, Tijs van der Storm,Markus Volter, and Laurence Tratt

et al. 2015. Evaluating and comparing language workbenches: Existing
results and benchmarks for the future. Computer Languages, Systems &
Structures 44 (2015), 24–47.

[2] Paul Klint, Tijs van der Storm, and Jurgen Vinju. 2009. Rascal: A Do-
main Specic Language for Source Code Analysis and Manipulation. In
SCAM’09. 168–177.

[3] MIT. 2012. MIT App Inventor. (2012). Retrieved August 23, 2018 from
hp://appinventor.mit.edu/

[4] Jens Monig and Brian Harvey. 2018. Snap! (2018). Retrieved August 22,
2018 from hps://snap.berkeley.edu

[5] E. Pasternak, R. Fenichel, and A. N. Marshall. 2017. Tips for creating a
block language with blockly. In 2017 IEEE Blocks and Beyond Workshop.
21–24.

[6] Mitchel et al. Resnick. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (Nov. 2009), 60–67.

[7] R. V. Roque. 2007. OpenBlocks: an extendable framework for graphical
block programming systems. Master’s thesis. Massachusetts Institute of
Technology, Dept. of Electrical Engineering and Computer Science.

2

http://appinventor.mit.edu/
https://snap.berkeley.edu

	Abstract
	1 Introduction
	2 Challenges
	3 Kogi - CFG2Blockly
	4 Conclusion
	References

