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Abstract

The Meta-Environment is a flexible framework for lan-

guage development, source code analysis and source code

transformation. We highlight new features and demonstrate

how the system supports key functionalities for software

evolution: fact extraction, software analysis, visualization,

and software transformation.

1. Introduction

The Meta-Environment is an open framework for lan-

guage development, source code analysis and source code

transformation. It consists of syntax analysis tools, seman-

tic analysis and transformation tools, and an interactive de-

velopment environment (see Figures 1 and 2). It is sup-

ported by a growing open source community, and can easily

be modified or extended with third party components.

The Meta-Environment is a generalization of the

ASF+SDF Meta-Environment that has been successfully

used in many analysis, transformation and renovation

projects. In the software evolution domain, The Meta-

Environment has been used for applications such as:

• Parsing (new and old) programming languages, for fur-

ther processing the parse trees.

• Analysis of source code (fact extraction, type analysis,

and documentation generation).

• Transformation, refactoring, and code generation.

2. Features of The Meta-Environment

The Meta-Environment has already pioneered several in-

novations in generic language technology:

• Modular grammar definitions—a consequence of our

generalised parsers.

Figure 1. User interface

• Declarative disambiguation filters used to resolve

many common ambiguities in programming lan-

guages.

• Conditional term rewriting used to perform software

transformations.

• Seamless integration of user-defined syntax in rewrite

rules, enabling the definition of transformation rules in

concrete syntax, as opposed to using abstract syntax

and getting much more obscure rules. This also guar-

antees fully syntax-safe source code generation.

• A highly modular and extensible architecture based on

the coordination of language processing tools.

• ATerms as a language-independent intermediate data

exchange format between tools.

• An Integrated Development Environment (IDE) that

provides interactive support and on demand tool ex-

ecution.

Version 2.0 of The Meta-Environment includes various new

features that are directly relevant for software evolution:
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Figure 2. End-user view

• A grammar library containing grammars for C, Java,

Cobol and other programming languages.

• Rewriting with layout. This enables fine-grained anal-

ysis and transformations such as high-fidelity source-

to-source transformations that preserve comments and

whitespace.

• Automatically generated syntax highlighting based on

syntax definitions for arbitrary languages.

• Automatically generated prettyprinters that can be re-

fined by the user.

• Rscript—a relational calculus engine that enables easy

computing with facts extracted from source code.

• Advanced information visualization tools for the inter-

active display of relations, parse trees and dependen-

cies.

• A fully customizable, plugin-based user-interface with

dockable panes, and user-defined menus and buttons.

Plugins can run user-defined scripts to interact with

other tools.

A major architectural improvement in version 2.0 is the di-

vision of the system into several separate layers that enable

the creation of a family of related applications that share

common facilities such as user-interface, parsing infrastruc-

ture, and error reporting (the kernel layer). The facilities for

syntax analysis (SDF layer) and transformation (ASF layer)

are implemented on top of this kernel. See Figure 3 for an

overview of this layered architecture.

3. Relevance for software evolution

The Meta-Environment is an ideal framework to imple-

ment tools that perform essential tasks when solving soft-

ware evolution problems:

• The analysis that forms the basis to assess which main-

Figure 3. Run-time architecture

tenance actions are needed to remedy the effects of

software evolution.

• The factory-like transformations that are selected on

the basis of this analysis.

In the area of software evolution, The Meta-Environment

has been successfully applied to the analysis of embedded

SQL and the transformation of database schemas [2], Cobol

prettyprinting [1] and restructuring [3], PL/I parsing, analy-

sis and restructuring of C++, smell detection [5] and dead-

code detection in Java, and also aspect mining in C.

Due to the many extension points (rules for defining syn-

tax, prettyprinting, analysis and transformation; extensible

user-interface; connection of third-party components; ex-

tensible architecture) the system can be easily adapted to

the requirements of a specific software evolution or renova-

tion problem.

To download The Meta-Environment and to access its

documentation, publications and applications see [4].
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