
Using The Meta-Environment for Maintenance and Renovation

M.G.J. van den Brand

Department of Mathematics and Computer Science, Technical University of Eindhoven

Eindhoven, The Netherlands

M. Bruntink, G.R. Economopoulos, H.A. de Jong, P. Klint, T. Kooiker, T. van der Storm and J.J. Vinju

Centrum voor Wiskunde en Informatica (CWI)

Amsterdam, The Netherlands

www.meta-environment.org

Abstract

The Meta-Environment is a flexible framework for lan-

guage development, source code analysis and source code

transformation. We highlight new features and demonstrate

how the system supports key functionalities for software

evolution: fact extraction, software analysis, visualization,

and software transformation.

1. Introduction

The Meta-Environment is an open framework for lan-

guage development, source code analysis and source code

transformation. It consists of syntax analysis tools, seman-

tic analysis and transformation tools, and an interactive de-

velopment environment (see Figures 1 and 2). It is sup-

ported by a growing open source community, and can easily

be modified or extended with third party components.

The Meta-Environment is a generalization of the

ASF+SDF Meta-Environment that has been successfully

used in many analysis, transformation and renovation

projects. In the software evolution domain, The Meta-

Environment has been used for applications such as:

• Parsing (new and old) programming languages, for fur-

ther processing the parse trees.

• Analysis of source code (fact extraction, type analysis,

and documentation generation).

• Transformation, refactoring, and code generation.

2. Features of The Meta-Environment

The Meta-Environment has already pioneered several in-

novations in generic language technology:

• Modular grammar definitions—a consequence of our

generalised parsers.

Figure 1. User interface

• Declarative disambiguation filters used to resolve

many common ambiguities in programming lan-

guages.

• Conditional term rewriting used to perform software

transformations.

• Seamless integration of user-defined syntax in rewrite

rules, enabling the definition of transformation rules in

concrete syntax, as opposed to using abstract syntax

and getting much more obscure rules. This also guar-

antees fully syntax-safe source code generation.

• A highly modular and extensible architecture based on

the coordination of language processing tools.

• ATerms as a language-independent intermediate data

exchange format between tools.

• An Integrated Development Environment (IDE) that

provides interactive support and on demand tool ex-

ecution.

Version 2.0 of The Meta-Environment includes various new

features that are directly relevant for software evolution:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301639618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 2. End-user view

• A grammar library containing grammars for C, Java,

Cobol and other programming languages.

• Rewriting with layout. This enables fine-grained anal-

ysis and transformations such as high-fidelity source-

to-source transformations that preserve comments and

whitespace.

• Automatically generated syntax highlighting based on

syntax definitions for arbitrary languages.

• Automatically generated prettyprinters that can be re-

fined by the user.

• Rscript—a relational calculus engine that enables easy

computing with facts extracted from source code.

• Advanced information visualization tools for the inter-

active display of relations, parse trees and dependen-

cies.

• A fully customizable, plugin-based user-interface with

dockable panes, and user-defined menus and buttons.

Plugins can run user-defined scripts to interact with

other tools.

A major architectural improvement in version 2.0 is the di-

vision of the system into several separate layers that enable

the creation of a family of related applications that share

common facilities such as user-interface, parsing infrastruc-

ture, and error reporting (the kernel layer). The facilities for

syntax analysis (SDF layer) and transformation (ASF layer)

are implemented on top of this kernel. See Figure 3 for an

overview of this layered architecture.

3. Relevance for software evolution

The Meta-Environment is an ideal framework to imple-

ment tools that perform essential tasks when solving soft-

ware evolution problems:

• The analysis that forms the basis to assess which main-

Figure 3. Run-time architecture

tenance actions are needed to remedy the effects of

software evolution.

• The factory-like transformations that are selected on

the basis of this analysis.

In the area of software evolution, The Meta-Environment

has been successfully applied to the analysis of embedded

SQL and the transformation of database schemas [2], Cobol

prettyprinting [1] and restructuring [3], PL/I parsing, analy-

sis and restructuring of C++, smell detection [5] and dead-

code detection in Java, and also aspect mining in C.

Due to the many extension points (rules for defining syn-

tax, prettyprinting, analysis and transformation; extensible

user-interface; connection of third-party components; ex-

tensible architecture) the system can be easily adapted to

the requirements of a specific software evolution or renova-

tion problem.

To download The Meta-Environment and to access its

documentation, publications and applications see [4].

References

[1] Mark van den Brand, Taeke Kooiker, Jurgen Vinju, and
Niels Veerman. A Language Independent Framework
for Context-sensitive Formatting. In CSMR ’06: Pro-
ceedings of the Conference on Software Maintenance
and Reengineering, pages 103–112, Washington, DC,
USA, 2006. IEEE Computer Society Press.

[2] Anthony Cleve and Jean-Luc Hainaut. Co-
transformations in Database Applications Evolution.
In Generative and Transformational Techniques in
Software Engineering, volume 4143 of Lecture Notes
in Computer Science, pages 409–421. Springer, 2006.

[3] Steven Klusener, Ralf Lämmel, and Chris Verhoef. Ar-
chitectural Modifications to Deployed Software. Sci-
ence of Computer Programming, 54:143–211, 2005.

[4] http://www.meta-environment.org.

[5] Eva van Emden and Leon Moonen. Java Quality Assur-
ance by Detecting Code Smells. In Proceedings of the
9th Working Conference on Reverse Engineering. IEEE
Computer Society Press, October 2002.

2


