View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by CW!I's Institutional Repository

Solving the Bank with Rebel
On the Design of the Rebel Specification Language and Its Application inside a Bank

Jouke Stoel

Centrum Wiskunde & Informatica,
The Netherlands

stoel@cwi.nl

Tijs van der Storm

Centrum Wiskunde & Informatica,
University of Groningen,
The Netherlands

storm@cwi.nl

Jurgen Vinju

Centrum Wiskunde & Informatica,
TU Eindhoven,
The Netherlands

jurgenv@cwi.nl

Joost Bosman

ING Bank, The Netherlands
joost.bosman@ing.nl

Abstract

Large organizations like banks suffer from the ever growing
complexity of their systems. Evolving the software becomes
harder and harder since a single change can affect a much
larger part of the system than predicted upfront. A large
contributing factor to this problem is that the actual domain
knowledge is often implicit, incomplete, or out of date,
making it difficult to reason about the correct behavior of
the system as a whole. With Rebel we aim to capture and
centralize the domain knowledge and relate it to the running
systems.

Rebel is a formal specification language for controlling
the intrinsic complexity of software for financial enterprise
systems. In collaboration with ING, a large Dutch bank,
we developed the Rebel specification language and an In-
tegrated Specification Environment (ISE), currently offering
automated simulation and checking of Rebel specifications
using a Satisfiability Modulo Theories (SMT) solver.

In this paper we report on our design choices for Rebel,
the implementation and features of the ISE, and our initial
observations on the application of Rebel inside the bank.

Categories and Subject Descriptors D.2.1 [Software Engi-
neering]: Requirements/Specifications—Languages

Keywords DSL, specification language, model checking,
SMT, language design, industry case

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ITSLE’ 16, October 31, 2016, Amsterdam, Netherlands
© 2016 ACM. 978-1-4503-4646-7/16/10...$15.00
http://dx.doi.org/10.1145/2998407.2998413

13

1.

The ING bank is an organization with a long history and was
among the first Dutch companies that started automating their
processes. In the past decades many different systems on dif-
ferent technologies were created to support the ever growing
need for process automation. With every new automated ser-
vice and with the growing use of these services the demand
on these systems also grew quickly. During these decades
the underlying technologies in which new systems where
implemented changed while often the underlying problem do-
main did not. This resulted in an application landscape with
numerous applications implemented in different technologies
running on different platforms.

Reasoning about the impact of change or the introduction
of new features in such a large and technologically scattered
application landscape is hard. Especially since the description
of the domain knowledge which is captured by these applica-
tions if often missing, out of date, or incomplete. When the
domain knowledge is captured it is written down in informal
documents like Word files or Excel sheets without connection
to the implemented application. Changing the software be-
comes a labour intensive task relying on the tacit knowledge
of the people in the organization. As a result, the ability to
predict and control the correctness (Meyer|[1985)), cost-of-
ownership, performance and reliability is compromised.

In a public/private partnership between our research in-
stitute and the ING bank we set out to improve the quality
of communication between stakeholders, to simplify the
design and implementation of products and services using
lightweight formal methods (Jackson|2001)). The initial re-
sult of this collaboration is the Rebel specification language
and its ISE. Rebel is built using of the language workbench

Rascal (Klint et al.|2009), and employs the state-of-the-art
SMT solver Z3 (Moura and Bjorner|2008) for simulation and

Introduction

https://core.ac.uk/display/301639531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

checking. In this paper we describe the current design and
initial observations of Rebel within the bank.

The contributions of the current report can be summarized as
follows:

e We provide a description of the requirements and design
of Rebel (Section[3);

* We sketch how Rebel specifications are translated to SMT
formulas for formal analysis and simulation (Section[5).

* We show how the simulation of specifications can be used
to test existing applications (Section [6).

® We report on initial observations in applying Rebel and
its ISE inside the bank (Section[7).

Ultimately Rebel specification could serve as the base for
new applications.

2. Background

Based on discussions we had with various stakeholders within
the bank we identified four challenges faced by the bank.

Dispersed Functionality. The current application land-
scape of the bank contains approximately 1400 applications
with many interactions between them of unknown scale. This
landscape is the result of nearly 50 years of software evolution
within the bank incorporating many different technologies,
frameworks and design styles. Some of the applications have
overlapping functionality, but it is often unclear whether they
behave similarly under equal conditions. As a result, changes
to the software require extensive, labour intensive testing.

Scattered and Implicit Domain Knowledge. Which appli-
cations should encode which part of the domain is informally
documented (if at all) and scattered across the landscape.
There are many partial requirements documents, ranging from
written documentation and presentation slides to Excel sheets
and sometimes UML diagrams like Statecharts and sequence
diagrams. These partial descriptions, however, are often am-
biguous, incomplete and under-specified. It is eventually up
to the developers to implement the requirements to the best
of their knowledge. Ultimately, the only source of domain
knowledge is the software itself, but eliciting this knowledge
is a hard problem, well-known from research in reverse en-
gineering (Tonella and Potrich|2004). As a result, questions
like “What is a savings account?” or “Which operations are
allowed on a savings account?” are very hard to accurately
answer.

Stricter Regulations. Regulation of banking is becoming
more strict. This has become even more urgent since the start
of the economic crisis of 2008. As a result the accountability
of the system as a whole must increase. Currently, questions
like “Why did this transaction fail?” are hard to answer and
require intensive manual labour like mining log files to trace
calls through large parts of the application landscape.

14

Implicit Quality Assurance. There exists a conceptual gap
between product owners—domain experts that are responsi-
ble for a specific product—and development teams. Currently
the way to check whether development teams have imple-
mented requested features correctly is by demonstrating the
actual software itself or a prototype of it. It is then up to a
product owner to decide whether the implemented feature
meets its specifications. Since the specification are often in-
formally documented there is currently no automated way to
check whether the software meets this specification. Next to
this it can be hard for product owners to find deficiencies in
the product that are caused by under-specification. In other
words, a product owner currently does not have many tools
that help making this decision.

3. Design of the Rebel Language and ISE

The design of the Rebel language and ISE is guided by the
challenges that are described in the previous section. In the
coming section we will elaborate on the design choices. How
these choices are reflected in the language and ISE is delayed
to later sections.

Centralized and Unambiguous Specifications. To tackle
the challenge of scattered and implicit domain knowledge
we designed Rebel as a formal specification language in
which it is possible to represent the essential characteristics
of financial products at a very high level of abstraction. The
language focusses on capturing domain knowledge and omits
any details of technical implementation. Rebel is designed as
a domain specific language (DSL) for the banking enterprise
domain. This means that it should be possible to capture
all parts of banking. For example, banking is both about
financial transactions and customer relations. Both domains
can be described with Rebel.

Increase Collaboration between Product Owner and Devel-
opment Team. 1t is important that both product owner and
development team have a thorough understanding of the prod-
uct that was specified. For instance, a product owner must
decide whether or not a specification is complete regarding
the desired functionality. To check this so called external con-
sistency of the product specification (Snoeck et al.[2003) the
ISE offers a simulation environment as a means for rapid pro-
totyping. Next to this it should be possible to visualize Rebel
specifications in other formalisms like UML Statecharts, a
formalism which is well known to the product owners of
the bank. In our vision both product owner and development
team take part in the specification process. By making use of
techniques like simulation and other visualization methods
we aim to minimize the possibility for miscommunication
and thus ultimately, the inception of the wrong software.

Practical Automatic Reasoning. In light of stricter regula-
tions reasoning on the level of specification is required. For
instance in the Netherlands the legislator prohibits a person
under the age of eighteen to buy certain financial products.

Being able to check whether the specification would allow
or disallow this behavior is of great value to the bank. This
kind of automatic reasoning should still be practical in its use,
meaning that a user of Rebel should be able to check this kind
of properties by the push of a button in a reasonable amount
of time. In the Rebel ISE we try to balance completeness of
reasoning with the response time of the reasoning process.

4. Rebel Specifications Explained

We introduce Rebel using an example specification. For
explanatory reasons we chose a simplified version of the
real ING savings account.

4.1 The SimpleSavings Account

The SimpleSavings account can be opened by a customer
provided that the customer deposits more than or equal to 50
euro into the account on opening. After the account is opened
the customer can deposit and withdraw money. Next to
depositing money, money can also flow into the account when
interest is received. The amount of interest that a customer
gets is variable but it never exceeds a fixed percentage. This
percentage differs over different saving accounts but for this
SimpleSaving account it is fixed on 5%. In extreme cases, for
instance when the customer is under suspicion of criminal
behavior, the account can be blocked. This means that no
money can be withdrawn from, or deposited to the account. In
the end, the account can be closed provided that the remainder
of money has been taken out of the account. When it is closed
the account finally ends up in a state without any possible
further interactions. It is invariant for every type of savings
account that the balance is always positive. In other words, it
is not allowed to overdraw a savings account.

4.2 Business Entities as State Machines

The Rebel implementation of the SimpleSaving account is
shown in Fig.

Each specification consists of four (optional) parts: state
variables, event declarations, invariants and life cycles. The
fields section describes state variables of this entity and their
types (e.g., balance, accountNumber). Since Rebel has been
designed specifically for the banking domain, some of the
types are specific for this domain. For example, Rebel has
built-in types for Money, Currency and IBAN (unique European
bank account number), next to the standard types for booleans,
numbers and strings. With this design we aim to maximize the
range of banking domain problems which can be expressed,
while using values which are natural to domain experts,
and without forcing them to formalize “trivial” details (e.g.
uniqueness of IBAN).

The events section contains all possible transition triggers
(e.g., openAccount, withdraw, deposit, etc.). The lifeCycle
section defines a state machine for each instance of the speci-
fication. Fig. [2depicts the state machine of a SimpleSaving

instance. The pattern for a transition s; — sy : ey,...,e,

15

specification SimpleSavings {
fields {

accountNumber :
balance: Money

IBAN

1
2
3
4
5 3
6
7
8

events {
openAccount[minimalDeposit = EUR 50.00]
9 withdraw[]
10 deposit[]
1 block[]
12 unblock[]
13 interest[maxInterest = 5%]
14 close[]
15 3}
16
17 invariants { mustBePositive }

19 lifeCycle {

20 initial init -> opened: openAccount
21

22 opened -> opened: withdraw, deposit, interest
23 -> blocked: block

24 -> closed: close

25

26 blocked -> opened: unblock

27

28 final closed

29 3

30}

Figure 1. Rebel specification of a SimpleSavings account.

withdraw,deposit,interest

openAccount

Figure 2. Graphical representation of the life cycle of the
SimpleSavings example shown in Fig.|T]

should be read as a transition from s; to s, is possible via
any event in ey, ..., e,. For instance, it is possible to block an
account that has been opened, which changes the state of the
savings account to state blocked. A transition fires if and only
if it is enabled by the life cycle and its conditions are satisfied
(see sectiond.3). The initial and final keywords mark the
initial and final states of the machine.

Finally, the invariants defined for an entity capture pred-
icates that always have to be true. For instance, it should
not be possible to overdraw from the savings account, given
the invariant mustBePositive; it is up to the conditions of the
withdraw event to satisfy this invariant.

event openAccount[minimalDeposit: Money = EUR 0.00]

1

2 (accountNumber: IBAN, initialDeposit : Money) {
3

4 preconditions {

5 initialDeposit >= minimalDeposit;

6 3}

7

8 postconditions {

9 new this.balance == initialDeposit;

10 new this.accountNumber == accountNumber

1 3}

Figure 3. Definition of the openAccount event

4.3 Declaring Events and Invariants

Note that Fig. [T]does not show the definition of the pre- and
post conditions and invariants. These are specified elsewhere
to promote reuse of events and invariants for specifying other,
similar business entities, and for making Rebel specifications
more concise. As an example, consider a possible definition
of the openAccount event, shown in Fig. E} Event definitions
have two sets of parameters: configuration parameters (en-
closedin [...]) and transition parameters (enclosed in (...)).
Configuration parameters are bound at design time, and have
default values. The default values can be overridden when an
event is included in a specification. For instance, the config-
uration parameter minimalDeposit with the default value of
EUR 0.00 (Fig.[3] line 1) is bound in SimpleSavings (Fig. [T}
line 7) to be EUR 50.00. With the use of these configuration
parameters it is possible to reuse the openAccount event in the
specification of other types of ING saving accounts.

Events can refer to entity fields using the keyword this.
This notation is borrowed from object-oriented languages and
refers to the current instance of the specification. The key-
word new refers to the value of the variable in the post-state,
after the transition has fired. This distinction is necessary to
express logical and arithmetic constraints between the state
of an instance before and after each transition. For instance,
when withdrawing money the post-state of the balance state
variable would be expressed using the current value (new
this.balance == this.balance - amount). Semantically, all
the constraints written in the preconditions must hold for the
instance of the specification to make the transition and after
the transition it is asserted that post-condition holds.

Invariants are also specified separately and they specify
predicates that must be true at all times. For instance, the
mustBePositive invariant exists to assert that the balance of
the SimpleSavings is greater than or equal to EUR 9.00 in all
reachable states:

invariant mustBePostive { this.balance >= EUR 0.00 }

5. Simulation and Checking Specifications

Both simulation and checking share the the same underlying
encoding strategy which will be explained in the next subsec-
tion. The subsections that follow will contain more details on
the individual steps.

16

5.1 Overall SMT Encoding Strategy

We define the semantics of Rebel in terms of labeled tran-
sition systems (as introduced by Keller (Keller||{1976) and
popularized by Plotkin (Plotkin|{1981)). The current state
of the transition system for a given specification maps to a
named state of the specification, tupled with the current field
variable assignments and the event parameter assignments
that led to the current state. The labeled transitions map to the
events and their preconditions and postconditions. The invari-
ants are used as external specifications of expected behavior
and are simply mapped to additionally asserted formulas.

Labeled transitions systems can be checked using bounded
model checking (Veanes et al.[2009). We use an encoding of
symbolic bounded model checking (with data) as an SMT
problem inspired by Milicevic (Milicevic and Kugler;2011)
and Veanes et al. (Veanes et al.[2009). The goal of bounded
model checking is to find a reachable state in which some
property of interest does not hold (e.g. a state in which some
invariant does not hold). We use the bound, encoded by
k, as a parameter to balance efficiency and response time
in the ISE with completeness of the check and we use it
also to explore the state-space in a breadth-first manner for
simulation purposes.

In bounded model checking, the initial state s(is con-
strained by some function: 6. For Rebel the semantics of the
function 6 constrains the initial state to represent an uninitial-
ized specification.

Next, the transition function that constrains the valid transi-
tion from one state s;_; to the next s; is captured by p(s;_, ;).
This means that in a valid trace—a chain of valid transitions
from one state to the next—the following formula must hold:
(80, 51) A p(s1,52) A ...o(Sk—1, Sk). For Rebel the semantics
of the transition function is the exclusive disjunction of all
defined events. For instance, a SimpleSavings specification
can only transition via withdraw @ deposit but never both.
This means that a state transition in a Rebel specification is
always constrained by only one of the defined events.

Like mentioned earlier, the goal of bounded model check-
ing is to find a reachable state in which some property of
interest does not hold. This property is also known as the
safety property and captured by the function P. We are inter-
ested in a trace in which the safety property holds in all states
except for the last. More formally, the following should hold:
P(so) AP(s1)A...=P(si). In the case of Rebel we are interested
in finding states where the invariants do not hold. The safety
property is defined as the conjunction of all defined invariants
since a specification can contain multiple invariants.

So, using the above mapping of Rebel to SMT formulas
we may verify—up to transition traces of length k—that
the specified invariants hold during the entire life cycle of
any entity. We may use the same mapping to infer single
transition steps to run a simulator. In this case the SMT
solver provides us with computations which satisfy the route
from pre-condition to post-condition for every transition.

Effectively, the SMT solver has then become an interpreter

for Rebel specifications.
In the coming sections we will give a more detailed

description of the steps that are used when translating a Rebel
specification to SMT constraints.

5.2 Normalization

Before we simulate or check a Rebel specification it is nor-
malized. Normalization of the Rebel specification is not only
done to make the mapping to SMT formulas easier; it also
partially gives semantics. After normalization a specification
contains all the necessary information for the aforementioned
mapping to SMT. It consists of the following steps:

1. Inlining. Referenced events with their configurations and
invariants are resolved and inlined with the specification.

2. Desugaring the Life Cycle. The life cycle is desugared
by strengthening the pre- and postconditions of the events
with the life cycle information. To achieve this two fields,
_state and _step, are added to the fields of the specifica-
tion. A distinct identity is assigned to each state and event.
The _state field holds the identity of the current state and
the _step field holds the identity of the event that led to
the current state. This way the original life cycle can be
expressed by adding constraints based on the two newly
added fields to the pre- and postconditions of the events.

3. Adding Frame Conditions. To guard the fields that are
not changed by the event frame conditions are added (Jack+
son|[2012)). These frame conditions make sure that a field
has the same value after the transition as before.

5.3 Bounded Checking

The goal of checking Rebel specifications is to check whether
a given specification is consistent. A specification is consid-
ered consistent if the invariants hold in all reachable states.
A reachable state is a state which can be reached from the
initial state via (a chain of) valid transitions. Since Rebel
specifications have data encapsulated and life cycles may
have loops model checking without reasonable bounds could
quickly suffer from the state explosion problem (Clarke et al.
2009). Here we describe two verification techniques we im-
plemented for Rebel (both use a similar encoding).

Step 1: Quickly Check if the Specification is (trivially) Con-
sistent. First we use the SMT solver to try to inductively
prove that the invariants hold in all possible transitions. This
is expressed using these three formulas:

1. If the initial condition holds in some state then the safety
property should also hold: 6(sy) = P(so)

2. If the initial condition holds in the first state and there
is a transitions possible to a second state then the safety
property should also hold in the second state: 6(s;_1) A
p(si1, 8)) = P(s;)

17

3. If the safety property holds in the first state and there
is a transition possible to a second state then the safety
property should also hold in the second state: P(s;—1) A
p(si-1, 81) = P(s;)

If these three formulas can be proven by the SMT solver it
means that the specification is consistent. In this case we
report back to the user that the specification is found to be
consistent. If they can not be proven it means that there might
be a transition possible which leads to a state in which the
safety property does hold.

This strategy can lead to false positives—a specification
which is wrongly labeled as inconsistent—but never to false
negatives. For instance: if the third hypothesis can not be
proven it means that it is possible to construct a state in which
the invariants hold, make a valid transition and end up in a
state in which the invariants do not hold. However, whether
the first state of the counter example is reachable from the
initial state is unknown making it a potentially unreachable
counter example. To find out if the counter example is actually
reachable we run a bounded model check on the specification.

Step 2: Run Bounded Analysis. During bounded analysis
we are interested in finding the smallest possible counter
example, where smallest means in the least possible steps.
The formulas that we try to prove are similar to those
described in the previous section but the difference is that we
now use explicit step unwinding.

The process of finding a counter example is fully auto-
matic and incremental. We start by checking if an invalid
state can be reached in one step. If not then we check if it can
be reached in two steps. This is continued until a counter ex-
ample is found or some k is reached ﬂ More formally, we try
to prove that: 6(sg) A P(s9) A p(so, S1) AP(s) A ..o(Sk=15 Sk) A
-P (S k) .

If a counter example is found by the solver the found
model is translated back to the Rebel simulator which can
then visualize the counter example as a trace in the simulation
environment. If no counter example can be found in the given
k the ISE reports to the user that the specification might be
consistent. The phrasing ‘might’ is used since it still could
be the case that a counterexample can be found after n steps
where n > k.

5.4 Simulation

The purpose of simulation differs from checking. Where
checking is done to check the internal consistency, simu-
lation is used to check the external consistency (Snoeck et al.
2003). Fig. 4| shows a screenshot of the implemented sim-
ulator in the Eclipse IDE. Using the simulator the user can
quickly check whether the created specification behaves as
(informally) expected. Where checking is about reasoning
about all possible traces, simulation is about reasoning about

!'In our implementation we have chosen to work with a configurable timeout
given to the SMT solver instead of some fixed k. This choice is practical by
nature, we want to control the maximum time spent waiting by the user.

=

[Simulation :: SimpleSavings 23

SimpleSavings
Fields
accountNumber 123 blocked
balance EUR 50.0
Possible events
withdraw unblock openAccount
deposit
interest
block block close withdraw deposit interest
close
Display Options
Z00m: 1.0 ==
show traces:

Figure 4. Screenshot of the Rebel simulator. The right side
shows a graphical representation of the life cycle. The current
state is highlighted by a red ellipse. The top left side contains
the current values assigned to the fields, and the bottom part
displays buttons for each possible transition that can be fired
from the current state.

individual steps. This can be implemented using the similar
strategy as described in the previous section. As mentioned
earlier, when simulating we effectively use the SMT solver
and our encoding as an interpreter of Rebel specifications.

Translate a Single Step to SMT. We translate the event
the user wants to execute to SMT formulas. The transition
function, p(sy, s2), contains the pre- and postconditions of
the to be executed event. The current values of the simulated
specification are translated as constraints on the current state,
s1, and the user is asked to provide the data values for the
transition parameters of the chosen event transition.

Next, the solver is asked whether it can indeed ‘make the
step’. This means that we check two things:

1. Whether it is possible to satisfy the constraints of the
selected events given the current state and actuals of the
transition parameters of the event: p(sy, s2)

2. Whether the invariants (the safety property) hold in the
resulting state: P(s5).

If it can not make the step because the first check fails
we make use of the unsatisfiability core functionality of
the solver to find out which constraints are most likely the
cause of the failure. The unsatisfiability core functionality
reports an unsatisfiable subset of clauses of the asserted
formulas (Cimatti et al.[2011)). The returned constraints are
mapped back to the original Rebel expressions and presented
to the user. If it can not make the step because the second
check fails we report back to the user which invariant is
violated as a result of the step, and we roll back to the previous
state so that the user can explore other options without having
to restart the simulation.

18

6. Performing Model Based Testing of
Existing Applications

Another important aspect of the Rebel ISE is the ability to
check whether an existing application behaves according to
the specification. Mismatches between specification and the
system under test (SUT) can point to bugs in the existing
applications or to erroneous assumptions in the specification.
This is essentially a model based testing approach to test
existing ING applications (Dalal et al.|1999).

To implement this functionality we use the traces that were
described in Section[5] By automatically checking whether
the SUT accepts the trace as a valid execution trace we can
check whether the SUT behaves similar as the specification.
To playback the steps in a trace on the SUT every transition
is split into three steps:

1. Check whether the current state of the SUT conforms to
the current state in the trace (pre-transition check)

2. Ask the SUT to perform the actual operation according to
the trace (transition check)

3. Check whether the new state of the SUT conforms to the
new state in the trace (post-transition check)

To implement the above steps we map every event declared
in the specification to an operation in the SUT (to perform
the transition check). Next to that we map fields of the
specification onto the state of the SUT (to perform the
pre- and post-transition checks). A requirement on these
mappings is that all events and fields of the specification
are completely mapped onto the SUT (otherwise the trace
effectively can not be played back). Our first prototype used
SOAP services provided by the SUT and performed the
operations by sending SOAP messages and by checking
whether the received responses were conform to the trace.

Currently, it is possible to perform the described testing
interactively using the simulation described in Section[5.4]
Every step made in the simulation is automatically also
performed in the configured SUT. Any difference between the
simulation and the SUT is then displayed in the simulation
showing which values differ between the two. Expanding this
functionality to also work completely automatically using a
given trace is future work but should be straightforward to
implement.

7. Applying Rebel inside the Bank

We implemented a prototype of the Rebel ISE and tested
its implementation inside the bank. As a first test case we
specified saving accounts (Peters|[2014). Fourteen (out of
seventeen) types of ING saving accounts where specified.
These saving accounts were build up out of fifteen distinct
events. With the use of the configuration parameters these
events could be reused across different types of savings
accounts.

The verification tool showed an unexpected counter ex-
ample where the mustBePositive invariant would not hold,

caused by the —unlikely but real— possible circumstance of
a negative interest rate.

Using the prototype of the model based testing tool we
found a difference between the specification and an existing
system where the existing system allowed for accounts with
incorrect account numbers.

During the use of Rebel inside the bank we observed that
our initial assumption that Rebel syntax would be under-
standable for product owners was incorrect. We informally
evaluated the understandability of Rebel specifications by ask-
ing a handful of product owners whether they understood the
specification. Some had more trouble than others in perform-
ing this task. When faced with a manually written document
containing similar specifications and visualized using UML
Statechart diagrams the same product owners were able to
understand the specifications. This led us to develop trans-
formations from Rebel specification to both natural language
documents and interactive UML Statechart visualizations to
increase the ease of understanding amongst product owners.
A more thorough evaluation on the understandability of Rebel
specification is left as future work.

8. Related Work

Formal Specification Languages. Rebel is inspired by
other formal methods. We will discuss Alloy (Jackson|2002)
and B (Abrail||1996) since Rebel has similarities with both.

Alloy is a specification languages based on relational logic.
Alloy is positioned as a lightweight formal method (Jackson
2001) meaning that instead of demanding rigorous proofs
of the specifications it uses the bounded model finder Kod-
kod (Torlak and Dennis|2006)) to analyze the specification
and gives counter examples if the assertions made in the
specifications do not hold. Rebel is also a lightweight formal
method in the sense that it uses similar bounded analysis
of its specifications. Unlike Alloy, Rebel does allow other
theories to be used next to relational logic. For instance, a
defined Rebel parameter can be of type Integer allowing for
all the usual arithmetic expressions to be used in the pre- and
postconditions. Next to this Rebel and Alloy handle state
differently. Alloy is a general purpose specification language
allowing for different modeling paradigms. It is possible to
model state based systems in Alloy but this is not a builtin,
meaning that users should take special care when modeling
state based systems. In Rebel State is a first class concern
making it hard for other modeling paradigms to be used.

B is a formal method in which abstract machines play a
central role (Abrail|[1996). It uses first order logic and set
theory to define operations on abstract machines. B was built
with code generation in mind. To achieve this B uses a process
called specification refinement. In every new refinement step
the user adds more detail to the specification. The last level of
refinement is the actual code which can be executed. On every
refinement level B requires users to provide proof that the
refinement is correct. Most of these proofs can be obtained

19

automatically but, if not, they must be provided by the user.
This proof obligation is the biggest difference with Rebel.
Rebel follows the same philosophy as Alloy. Requiring full
proofs can be experienced as ‘too heavy’ by our intended
users.

Enterprise Modeling. Modeling enterprise systems is a
well known topic in both research and industry (i.e. (Davies
et al.[2014)). There are many approaches, but here we high-
light only one, MERODE, since it has a unique formal anal-
ysis component. MERODE is a domain modeling approach
for enterprise systems (Snoeck et al.|2003). MERODE de-
fines static entity-relationship (ER) models and a dynamic
model based on a process algebra. By combining the notion
of existence dependency (Snoeck and Dedene|1998)) in the
ER model, with the process algebra of the dynamic model,
an enterprise model can be checked for deadlocks (Dedene
and Snoeck| 19935)). Although MERODE offers some formal
analysis techniques it was not build with verification in mind.
For instance, MERODE allows for the definition of (class,
attribute and method) constraints (in an OCL like syntax) but
there is no method to check whether certain assertions will
hold. It is left to the user to transform these constraints to
meaningful implementations using model-to-source transfor-
mations.

DSLs and Finance. Domain-specific languages (DSLs)
have a long history in the domain of ﬁnanceﬂ One of the
earliest financial DSLs is RISLA (Arnold et al.||[1995). The
language was designed to capture the nature of interest
products offered by banks. One of the findings of the authors
was that financial engineering was extremely suitable as an
area to apply formal methods, because financial damage
inflicted by incorrect system behavior can be very severe.

The difference with Rebel and other financial DSLs is the
scope of the problem domain that is covered by the DSL.
While Rebel focusses on the whole of the banking enterprise,
other financial DSLs, like RISLA, are specifically created to
work on one specific financial problem domain.

Formal Methods and Finance. Gimblett, Roggenback and
Schlingloff present a case-study on how to formally specify
the international Electronic Payment System (ep2) standard
in CSP-CASL (Gimblett et al.|2004). With the formal speci-
fication they were able to identify a number of deficiencies
in the standard. As a source for the formalization they used
the informal documentation of the ep2 standard which was
mostly text-based, augmented with UML-like diagrams. They
found that it was easy to formalize high level descriptions
but when it came to the details the standard was often found
lacking.

Gimblett, Roggenback and Schlingloff show that there
is value in formally specifying financial standards. It is not
their aim to provide a method for specifying these types of
standards. With Rebel we aim to provide such a method.

2 See (Christerson et al.) for an overview

9. Conclusion

In this paper we presented the Rebel language and its ISE, an
integrated specification environment for defining financial en-
terprise systems. With the use of the Rebel ISE we were able
to formally specify banking products like saving accounts.
By using a mapping of the Rebel language to SMT formu-
las it is possible to simulate and check Rebel specifications.
Simulation is useful for checking the external correctness of
the specification (‘does the product behave as I expected’)
and checking is useful to check the internal correctness of the
specification (‘do the specified invariants hold’). The map-
ping to SMT uses the same strategy for both simulation and
checking using a bounded model checking encoding of the
Rebel specifications.

Our first impression of the use of Rebel inside the bank
is that formal specifications help in translating vague and
ambiguous product description in precise product specifica-
tions. Simulation helps as an early prototyping mechanism
with which users can verify whether the specified product is
complete regarding its functionality. Checking helps users
verifying internal consistency. It does not allow for traces
where the system ends up in a state in which the defined
invariants do not hold.

Next to this we observed that transforming the specifica-
tions into documentation that closely resembles the current
documents that are written by hand seems to help under-
standing. As future work we would like to more thoroughly
evaluate the understandability of Rebel specifications so we
can further improve the communication between stakeholders
using these specifications.

Based on these initial results we are now further investi-
gating the optimization of the model checking and simulation
processes, adding features of (parallel) composition of enti-
ties and communication between entities from Rebel specifi-
cations. Meanwhile, the bank has invested to produce more
Rebel specifications of their products and services as they
already see the benefit of having an unambiguous product
specification as a method of communication.

References

J. Abrail. The B-Book: Assigning programs to meaning. Cambridge
University Press, 1996.

B. Arnold, A. van Deursen, and M. Res. An algebraic specification
of a language for describing financial products. In ICSE-17 Work-
shop on Formal Methods Application in Software Engineering,
pages 613, 1995.

M. Christerson, D. Frankel, and T. Schiller. Financial domain-
specific language listing. http://www.dslfin.org/resources,
html. Accessed: 4-8-2016.

A. Cimatti, A. Griggio, and R. Sebastiani. Computing small
unsatisfiable cores in satisfiability modulo theories. Journal
of Artificial Intelligence Research, 40:701-718, 2011.

E. Clarke, E. Emerson, and J. Sifakis. Model Checking : Algorithmic

Verification and Debugging. Communications of the ACM, 52
(11):74-84, 2009.

20

S. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. Lott, G. Patton, and
B. Horowitz. Model-based testing in practice. Proceedings of the
1999 International Conference on Software Engineering, 1999
(May):285-294, 1999.

J. Davies, J. Gibbons, J. Welch, and E. Crichton. Model-driven
engineering of information systems: 10 years and 1000 versions.
Science of Computer Programming, 89:88—104, sep 2014.

G. Dedene and M. Snoeck. Formal deadlock elimination in an object
oriented conceptual schema. Data & Knowledge Engineering, 15
(1):1-30, 1995.

A. Gimblett, M. Roggenbach, and H. Schlingloff. Towards a formal
specification of electronic payment systems in CSP-CASL. In
Recent Trends in Algebraic Development Techniques, pages 61—
78. Springer, 2004.

D. Jackson. Lightweight formal methods. In FME 2001: For-
mal Methods for Increasing Software Productivity, pages 1-1.
Springer, 2001.

D. Jackson. Alloy: a lightweight object modelling notation. ACM

Transactions on Software Engineering and Methodology, 11(2):
256-290, 2002.

D. Jackson. Software Abstractions - Logic, Language, and Analysis.
MIT press, revised edition, 2012.

R. M. Keller. Formal verification of parallel programs. Communica-
tions of the ACM, 19(7):371-384, 1976.

P. Klint, T. van der Storm, and J. Vinju. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation.
In 2009 Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 168—177. IEEE, 2009.

B. Meyer. On Formalism in Specifications. IEEE Software, 2(1):
6-26, 1985.

A. Milicevic and H. Kugler. Model checking using SMT and theory
of lists. In NASA Formal Methods, pages 282-297. Springer,
2011.

L. D. Moura and N. Bjorner. Z3: An efficient SMT solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages
337-340, 2008.

C. Peters. FORS - Seperating Configuration From Formal Specifica-
tion. Master’s thesis, Universisty of Amsterdam, 2014.

G. D. Plotkin. A structural approach to operational semantics.
Technical report, Computer Science Dept., Aarhus University,
Denmark, 1981.

M. Snoeck and G. Dedene. Existence dependency: The key to
semantic integrity between structural and behavioral aspects of
object types. Software Engineering, IEEE Transactions on, 24
(4):233-251, 1998.

M. Snoeck, C. Michiels, and G. Dedene. Consistency by construc-
tion: the case of MERODE. In International Conference on
Conceptual Modeling, pages 105-117. Springer, 2003.

P. Tonella and A. Potrich. Reverse Engineering of Object Oriented
Code (Monographs in Computer Science). Springer, 2004.

E. Torlak and G. Dennis. Kodkod for Alloy users. In First ACM
Alloy Workshop, Portland, Oregon. ACM, 2006.

M. Veanes, N. Bjgrner, Y. Gurevich, and W. Schulte. Symbolic

bounded model checking of abstract state machines. Int J
Software Informatics, 3:149-170, 2009.

http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html

	Introduction
	Background
	Design of the Rebel Language and ISE
	Rebel Specifications Explained
	The [language=rebel]SimpleSavings Account
	Business Entities as State Machines
	Declaring Events and Invariants

	Simulation and Checking Specifications
	Overall SMT Encoding Strategy
	Normalization
	Bounded Checking
	Simulation

	Performing Model Based Testing of Existing Applications
	Applying Rebel inside the Bank
	Related Work
	Conclusion

